
DEVVING IN

DURBAN

GAME MAKER
COMMUNITIES

8 GOLDEN RULES OF
GAME DEVELOPMENT

REVIEWS : THE CLEANER. FEATURE : DURBAN
DEVLAN. TECH: DATA STRUCTURES 3
Cover: “The Cleaner” by DarthlupiTHE GAME DEV. POWERHOUSE

ISSUE 9 2006
S

O
U

T
H

 A
F

R
IC

A
’ S

 F
I R

S
T

 G
A

M
E

 D
E

V
E

L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

REGULARS
03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
05 - FUN AND GAMING IN DURBAN

REVIEW
08 - THE CLEANER

DESIGN
10 - 8 GOLDEN RULES

12 - FRAMESWORKS: GAME STATES

16 - BLENDER TUTORIALS: PART 5

TECH
19 - DATA STRUCTURES: PART 3

MOBILE
22 - GAME DEVELOPMENT IN JAVA:
MULTI-PLATFORMER

TAILPIECE
25 - GAME MAKER COMMUNITIES

02 DEV MAG ISSUE 8 2006

161121 33

CONTENTS

ED’S NOTE
No lies -- this has been quite a month. There’s a big bad boil-up near the end

of every year, with this annum being no exception. During the production
of this issue, work commitments took from us one of our dear designers,

several of our writing staff and six packets of greatly cherished peanuts (which, the
witty may suggest, are used to pay these staff in the first place).

Thankfully, the scantness of this issue is going to be cancelled out by the size of
our two-month special, due for release in late January and promising over 50 pages
of game development goodness. Why late January? Well, like everyone else, Dev.
Mag enjoys a holiday now and again, and our brief sabbatical from the field will
hopefully do good in refreshing us for another year of writing. So, be sure to stick
around, and don’t worry -- we won’t be dropping off the face of the earth. Not for
longer than a month, anyway.

From the looks of things, Durban is rapidly heating up as a secondary base for
local Game.Dev activities, moving from its successful D# Hotlabs onto its very
own DevLAN held in November. Two prestigious Game.Dev figures were there to
give talks and host workshops over the course of two days, much to the delight of
local devvers. Read more about this rewarding experience in this month’s featured
article.

Adios, enjoy the holiday, and we’ll catch you early next year!

Deputy Editor
Rodain “Nandrew” Joubert

THE STAFF

DRIVER’S SEAT
Stuart “GoNzO” Botma

PASSENGER’S SIDE
Rodain “ Nandrew ” Joubert

FURNISHERS
Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

ENGINEERS
Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairnswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

“Skinklizzard”

WEB ACCESS
Claudio “Ch1ppit” de Sa

Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

To join, make suggestions or

just tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of

the South African Game.Dev

community. Visit us at

www.gamedotdev.co.za

All images used are Copyright

and belong to their respective

owners. If you try claim other-

wise, aliens will eat your brain.

Don’t say we didn’t warn you ...

03 DEV MAG ISSUE 8 2006

04 DEV.MAG ISSUE 8 2006

DIGITAL STOMPIES

Podcasts on mobile technology

http://www.khronos.org/podcasts/

The Khronos Group has recently started on a
series of Mobile Media Developer Podcasts.
The group, which describe themselves
as “the developers behind the industry
standards for 3D, 2D, video and audio for
mobile devices” focus on explaining the
new technologies in their podcasts. Two
podcasts have been released so far, dealing
with OpenKODE and OpenSL ES.

New dev-oriented community site

http://www.greatgamesexperiment.com/

The Great Games Experiment is a
community aimed at both gamers and
game developers, trying to get the two
groups to network and gain exposure to
one another. Given an online “space”,
game developers or groups can profile
themselves, meet other people in the
industry and generally have a new plat-
form on which to promote themselves.
This website was developed by Garage
Games (www.garagegames.com) and
is currently in an invitation-based beta
state. Newcomers are, however, allowed
to request a beta invite and sign up for
the newsletter.

New Torque release

http://www.garagegames.com/blogs/33542/11746

Take a look here for a detailed outline of the new Torque Game Builder
release, version 1.1.3. The windows version of the release has already been
made, and includes a new documentation framework, a new text object, align-
ment tools and, of course, a major list of bugfixes which are sure to make
a lot more users happy. If you don’t know about the Torque Game Builder
already and would like to find out what it’s about (or benefit from a 30-day
free trial), take a look at http://www.garagegames.com/products/torque/tgb/
for more info.

N
E

W
S

3D fun with Panda

http://panda3d.org/

Panda3D version 1.3 has just been
released, adding lots of goodies to the
growing 3D engine. Panda3D is a C++
library with Python bindings, meaning
that it is callable from either of the
two languages. It focuses on rapid
game development with a short (and
assumedly painless) learning curve,
and has already succeeded in making
many 3D projects extremely quickly.
Panda3D was originally used by Disney
to create their MMO Toontown, and was
first released as free software in 2002.

Some XNA eye candy ...

http://channel9.msdn.com/Showpost.aspx?postid=257928
http://channel9.msdn.com/Showpost.aspx?postid=261254

The Channel 9 forums recently
blessed XNA enthusiasts with
a two-part video series on XNA
called “Looking at XNA”. The
first part of the series is an
in-depth interview with Boyd
Multerer about the tool, includ-
ing the idea behind XNA and the
Studio IDE which it uses. The
second part gets XNA in action
on a 1080p display, showing off
its immense power, and also
consists of a bit of chit-chat
with Frank Savage, one of the
people who worked on the old
Wing Commander titles.

05 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

FUN AND GAMING IN

DURBAN

Dozens of game developers.

Two Game.Dev gurus.

One Durban DevLAN.

06 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

On the tenth and eleventh

of November, Durban

saw its first DevLAN/Game.

Dev workshop. Held in the

local branch of I.T. Intellect, it

received a score of budding

and enthusiastic developers

who gathered to listen, watch

and most of all absorb valu-

able and insightful ideas from

two of South Africa’s leading

game development gurus,

Danny Day and Miktar Dracon.

The weekend kicked off on

Friday evening with an introduc-

tory presentation by Danny

on game development in SA.

The avid listeners were quickly

brought up to speed on the local

situation: to grow the industry in

this country, games are needed

– good quality games mostly, but

games nonetheless. Not ideas,

as the lack of local publishers

means that local companies are

hard-pressed to sell game ideas.

This little speech put a purpose

in these avid developers’ hearts

– they were going to save SA’s

game development industry by

making the best, most ultra awe-

some game ever. But, rather than

let them all run off, cause havoc

and ultimately get nowhere,

Danny moved on to the process

of sound game design by giving

the attendees a challenge. This

challenge was to come up with

an idea and design a board or

card game so as to emphasize

the importance of good design

and planning. To help them all

out with this strenuous challenge

he even gave a small talk on

game design to nudge them in

the right direction.

Day two, Saturday, started bright

and early at nine o’clock. This

was when the real fun began.

After a quick introduction to the

basics of Game Maker 6.1, a

very powerful little game creation

tool, along with a demonstration

of just how much could be done

with it, the developers were once

07 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

a chocolate bar that he couldn’t

finish. Being the kind soul that he

is, he generously gave his half

eaten chocolate to a ravenous (or

so it seemed) growing boy who

needed the energy, on one condi-

tion (yes, he puts conditions on

giving away food) – the chocolate

was not to be sold on eBay (it’s

going for free but shipping to

anywhere will cost R250).

Having replenished their energy,

it was back to work for the devel-

opers. Interestingly, Miktar’s

tutorial digressed from the life of

John to a tutorial on how to make

a classic top-down shooter: blue

dot against a horde of yellow

dots. In his defence though, not

only was John allowed to dream,

but the chain reaction caused

by the power pickup was totally

and completely awesome. Think

power bullet hits enemy releasing

10 others all in random directions

which hit other enemies and so

on and on. Many diverse and

interesting ideas were used for

Johns life: for waking up, one

group decided to have the player

throw John off of his bed and

try and hit an X on the floor with

him, while another game had the

player firing neurons into Johns

synapses to wake him up. For

work, John was anything from a

bling thief to a policeman to the

only thing between this world

and the rabid invading teddies.

All in all, the weekend was a

great success with fun being

had by all, in the process of

learning how to make a game…

That’s the power of the level 90

arch devvers Danny and Miktar,

turning normal innocent humans

into rampaging devlings, but hey

– who doesn’t want to be a dev-

ling with the chance of one day

becoming a great arch devver?

SKINKLIZZARD

again challenged, but this time

by Miktar. The challenge was

simple, or so it seemed: one

had to write a game about a day

in the life of fictional character

John. How hard could that be?

Well, it turned out to be tougher

than the developers thought, not

because of a lack of inspiring

and awesome ideas but rather

the lack of experience working

with Game Maker. However,

with Miktar taking the reins and

setting up a projector to do a

few tutorials in the one lab and

Danny the same in the other, this

problem was overcome.

Lunch break. Ahhh, that

wonderful point when you stand

up, rub your eyes to try and

remove the purple spots of retina

burn and take a break from

strenuous coding to get food.

The developers dispersed: some

got themselves Steers burgers,

others pies, chips and gravy,

and in Miktar’s case a coke and

08 DEV.MAG ISSUE 8 2006

R
E

V
IE

W

The Cleaner sees the

player adopting the role

of a mage whose goal is to

rid the ‘multiverse’ of an evil

race that seeks to obliterate

the friendly race of magic

wielders. Players will travel

throughout multiple unique

worlds, all presented in an

incredibly impressive and

stylish manner. Every detail

is there, right down to the

way the player’s cape flows

behind him as he flies through

the air.

The game’s storyline advances

by use of numerous cutscenes,

which set the scene for the

player. The back-story quickly

fades into obscurity, though,

and the focus is quickly estab-

lished on the action. And action

there is! The game constantly

throws challenging situations

at the player, and everything

from the terrain to the boss

fights becomes part of the

challenge.

As the player progresses

through the game, battling

enemies and solving puzzles,

he or she is rewarded with

experience points which are

in turn used to purchase new

offensive and defensive spells

or upgrades. These spells

are varied enough so as to

provide strategic uses for all

Despite its somewhat bland name, The Cleaner is a prime example of what can be achieved by talented
developers with the right tools. It oozes quality and has a length to rival, and perhaps even surpass,

some commercial games. And the best part about it? You can get it for free!

The Cleaner

sold as a commercial title.

The Cleaner is probably one

of the best games ever to be

created using Game Maker,

and is a true showcase of the

framework’s potential.

CH1PPIT

Developer: Darthlupi

Website: http://darthlupi.com/

Genre: Action

Year: 2006

09 DEV.MAG ISSUE 8 2006

R
E

V
IE

W

of them. In addition to your

magical arsenal, the player

also has the ability to fling

objects at enemies using

telekinetic abilities.

The game also includes

totally unique artwork, musi-

cal score and sound effects.

The music works well to set

the often tense atmosphere,

and doesn’t become repeti-

tive. However, the graphics

might be a little hard on the

eyes and the sounds effects

can become harsh and annoy-

ing. Despite these minor short-

comings, it is the exquisite

style in which the whole game

is assembled that truly makes

it shine.

It is a true boon to gamers that

the game’s creator, Darthlupi,

decided to release this game

for free, since it could be easily

10 DEV.MAG ISSUE 8 2006

D
E

S
IG

N

In the world of IT, there is a

whole branch dedicated to a

topic called Human Computer

Interaction (HCI). The term

HCI is fairly self-explanatory:

it’s basically the study of how

people interact with comput-

ers and how well the interface

between the user and computer

is designed. Another good way

to phrase it is simply ‘user-

friendliness’.

In the field of HCI, a man by the

name of Ben Shneiderman cre-

ated 8 rules to be applied when

designing the user interface. While

they seem relatively simple to

most of us when applied to creat-

ing business software, they can

also be applied to game design

with great effect. Let’s take a look

at the rules and how they can

improve our games.

Strive for consistency

When a player plays a game they

get used to and comfortable with the

controls and gameplay mechanics

as time progresses. While it’s good

to create a sense of advancement

by adding things as the player

progresses, don’t go overboard.

Sometimes, in the process of

making a game, you test it so often

that it becomes too easy for you

and you are tempted to make things

harder. As you design the learning

curve and progression of difficulty,

always bear the inexperienced

player in mind.

Enable frequent users to use

shortcuts

As a player invests time in a game,

they improve and seek ways to

achieve things quickly with less

effort. Strategy games often offer

keyboard shortcuts that allow

players to do things quickly and

on-the-fly, all while giving them

an advantage. Things like mouse

gestures make surfing the Internet

so much more of a joy and it can

have the same positive effect on

a game.

Offer informative feedback

Players need to know what’s going

on in the game; things like ammo

and health are important to a player

as it influences their decisions.

Make sure your system provides

all the statistics a player needs

in a clear and concise manner.

A common, useful method is to

display things in the corner of the

screen. Recently, some developers

have decided to remove the on-

screen display to improve realism.

While it’s great to be different, an

alternate, effective solution which

still depicts vital stats must be put

in place.

Applying Shneiderman’s 8
Golden Rules to Game Design

8 GOLDEN
RULES

11 DEV.MAG ISSUE 8 2006

D
E

S
IG

N

Let the user know when they

have completed a task

Ever wasted time in a game

searching for something when

you’ve already found it? It’s not

fun and can ruin the experience.

Make sure things are clearly

designed so as to let the player

know if they have been successful

or have failed.

Offer simple error handling

Offer a struggling player help

when it seems he or she has

moved astray. Sometimes a

player attempts a mission, but

doesn’t see the first vital check-

point and runs off in the wrong

direction. Some subtle guidance

can give them much needed help.

For example, if the player has

spent more than a certain amount

of time running around aimlessly,

give them an arrow leading them

to the correct destination or intro-

duce a ‘side-kick’ character who

can point them in the right direc-

tion. It seems so simple but can

prevent the player from becoming

frustrated and giving up.

Permit easy reversal of actions

Everyone makes mistakes, and

whether the player has accidentally

pushed the wrong tile in a puzzle

game or has missed the second-

to-last golden star while jumping

around in a time trial, offering some-

thing as simple a quick-restart option

is a useful anti-frustration measure.

This gives the player a break and

allows them to try again.

Provide a sense of user control

Gaming is an interactive form of

entertainment, so players like to feel

like they are controlling the action.

While cut scenes are necessary to

advance the plot, try and keep them

at a minimum. You could even be

really innovative and give the player

some form of control in a cut scene.

Reduce short-term memory load

Humans have a limited short-term

memory, so don’t over burden them

with things to remember while

playing. Not many people are going

to remember some little detail like

the security code they used 2 hours

ago, not without prior warning

or some kind of reminder. While

you may have spent many hours

coding and know the game inside

out, the player doesn’t have the

same experience as you.

I hope that these points have

given you some ideas and things

to keep in mind the next time you

design a game. Try to remember

that, while designing, the player’s

experience is of utmost importance.

These points can help improve the

experience, and a good experience

results in a happy gamer.

INSOMNIAC

8 GOLDEN
RULES

12 DEV.MAG ISSUE 8 2006

D
E

S
IG

N

State Management refers to

many different aspects within

a game. The weapon selected by a

player in an FPS is an example of

state management while the screen

the player is currently seeing is also

an example of state management,

often referred to as the Game State.

This article will examine various

methods of managing Game State

within a Game’s State Management

framework.

Game State can be managed as

part of the standard game loop. This

is often used when a single input

method is being managed or when

the number of state is kept very

small. To enable State Management

within the Game Loop a global state

variable can be set and evaluated

each execution of the game loop.

Based on the currently active state

the relevant rendering and game

update procedures can be called,

or even on a very small game the rel-

evant rendering and updates can be

done within the Game Loop itself.

A separate Class can be created to

manage the game state. A class can be

created for each game state and the

main game loop will only execute the

relevant methods of the active state.

With inheritance and polymorphism, the

implementation of a class-based state

system is very easy. A base class can

be created that contains virtual meth-

ods for the standard functions such

as Rendering, Update and Input. As

new states get added to the game the

base class is extended to manage the

new requirements. When relevant the

Game State is marked as active and is

immediately used within the game. A

class based state management system

will typically ensure that each state is

atomic and knows nothing about any

other state in the game. This therefore

sometimes requires other mechanisms

to pass messages between states

for things like highscores or to save

games etc.

Game Maker uses rooms to represent

game state. Each room is effectively

a class that manages the player’s cur-

rent in-game experience. As the game

state changes and the player moves

into a new room, the old room no

longer affects the player or the screen

in any way and the new room now

becomes the item controlling the game

experience. Game Maker ensures that

the Input, Update and Rendering func-

tionality for each room is completely

independent of each other room.

Whichever way State Manage-

ment is implemented within a game,

certain aspects must be included in

the design. If these aspects are not

included as part of the design they will

impact the later game implementa-

tion quite heavily. If these aspects

are included as part of the original

State Management design, the effort

required to extend them for each game

state is minimal.

FRAMEWORKS
State Management

While a game is running, it will pass through a number of global states. These states dictate what the player is

currently seeing and experiencing within the game. It is important to manage game state and understand the flows

between the different game states to ensure that the player always has control over their in-game experience.

Basic Game States

13 DEV.MAG ISSUE 8 2006

D
E

S
IG

N
Each state needs to be able to

render the required graphics to the

screen. Each state therefore needs

its own render method. If state

management is managed within

the game loop the rendering of the

graphics may be a custom procedure

called based on the current state.

A class-based state management

system will implement different

rendering processes for each state

within its class.

The management of input for each

state can sometimes be more

complex than the rendering as the

program typically receives the input

messages and needs to pass them

to the relevant state management

system. The class based state

management can implement a

custom method within the class to

manage the input handling, while the

game loop based state management

system may define independent

functions to manage the input or

in simpler games may do all input

management within a single method.

Input management can also be

implemented using events that the

various state management systems

subscribe to.

As the player interacts with the

game the current game state needs

to react to the player. Each state

therefore needs to implement its

own update method that allows the

various entities on the screen to

move, collide etc. Each state once

again needs to implement the update

process to only update the items

relevant to the current state.

One state that is often forgotten or

ignored is the Pause state. The pause

state is a special state in that it either

represents a static screen or it keeps

the screen of the previous state and

waits until the pause state ends. When

the pause state ends the game should

resume with the previous state active

and as if no pause had happened.

Based on events and actions within the

game states must change. Game Loop

state transitions are easy as the cur-

rent state parameter only needs to be

updated with the new state to allow the

game state to change. A class based

state management system has more

complex mechanisms needed to imple-

ment state transition. Either each pass

through the game loop must check for

the end of the current state and then

initiate the new state, or an event must

be raised by the state that is caught by

the main game code which controls the

transition to a new state.

In many cases state management

can be extended to allow states to

in the game is easy and reusable.

A Class based state management

system allows the design of generic

state structures such as a Movie play

class, a Company intro screen, a

Please register screen that, with very

little rework, can be used over and

over again in many different games.

A game loop-based system is easier

to code and allows the creation of

detailed game templates but suffers

from not having enough flexibility to

adjust older games to newer ideas.

State Management is a key concept

needed when creating games. With

a good flexible state management

system, the options available to the

game developer expand and make

new functionality easier to add. A well

designed state management system

can decrease the amount of work

required for a new game significantly

as the look and feel of the game is

already predefined. By spending some

time understanding the ins and outs

of state management each and every

game the game developer creates will

be easier, quicker and more complex

than the previous game.

CAIRNSWM

D
E

S
IG

N

have initialization and

finalization functions.

These functions can

include things such as

game start-up processes,

screen fade ins and outs

and load game data etc.

The design o f the state

management system

can be done in such a

way that the develop-

ment of new functionality Complex States

14 DEV.MAG ISSUE 8 2006

D
E

S
IG

N

public class GameState
 {
 protected GraphicsDeviceManager graphics;
 protected ContentManager content;
 protected SpriteBatch spriteBatch;
 protected GameMouse mouse;
 protected KeyboardState keyboard;
 protected ImageList Images;

 /// Constructor to create a new Game State
 public GameState()
 {
 Cursor = null;
 CursorOn = false;
 mouse = new GameMouse();
 }

 /// Initialize all the required fields of the GameState.
 /// This must be called after the game state is created.
 public virtual void Initialise(GraphicsDeviceManager NewGraphics,
ContentManager NewContent, SpriteBatch NewSpriteBatch, ImageList NewImages)
 {
 graphics = NewGraphics;
 content = NewContent;
 spriteBatch = NewSpriteBatch;
 Images = NewImages;
 LoadResources();
 }

 private TImage _Cursor;

 public TImage Cursor
 {
 get { return _Cursor; }
 set { _Cursor = value; if (value != null) { CursorOn = true; } }
 }

 private NeheFont _Font;

 public NeheFont Font
 {
 get { return _Font; }
 set { _Font = value; }
 }

 private string _GameTitle = “C# XNA”;

 public string GameTitle
 {
 get { return _GameTitle; }
 set { _GameTitle = value; }
 }

 private bool _CursorOn = false;

 /// When True the Cursor Image will be displayed.
 public bool CursorOn
 {
 get { return _CursorOn; }
 set { _CursorOn = value; }
 }

 public event StateEventHandler OnEndState;

 /// Check User Input - Call DoInput()
 public void Input()
 {
 mouse.GetState();
 keyboard = Keyboard.GetState();
 DoInput();
 }

CODED EXAMPLE OF GAME STATE FRAMEWORK

D
E

S
IG

N

15 DEV.MAG ISSUE 8 2006

 /// Update the objects etc
 public void Update()
 {
 DoUpdate();
 }

 public virtual void LoadResources()
 {
 }

 /// Call the Draw function
 /// Display the Cursor if neccessary.
 public void Draw()
 {
 DoDraw();

 if (CursorOn & (Cursor != null))
 { Cursor.Draw(mouse.X, mouse.Y); }
 }

 /// Update the game state – Must be overriden by child classes
 public virtual void DoUpdate()
 {
 }

 /// Called when a state is entered for the first time
 public virtual void DoStartState()
 {
 mouse.Clear();
 }

 /// Called when the state exists – Must be overriden by child classes
 public virtual void DoEndState()
 {
 mouse.Clear();
 if (OnEndState != null)
 {
 OnEndState(this);
 }
 }

 /// Override to respond to user Input– Must be overriden by child classes
 public virtual void DoInput()
 {
 }

 /// Draw the state onto the screen – Must be overriden by child classes
 public virtual void DoDraw()
 {
 }

 private bool _Active;

 public bool Active
 {
 get { return _Active; }
 set { bool OldActive = _Active;
 _Active = value;
 if (_Active & !OldActive) { DoStartState(); }
 }
 }

 }

16 DEV MAG ISSUE 8 2006

Welcome back. This month we’ll be com-

pleting the checkerboard we modelled

last time. If you followed the last tutorial, you

should have the basic design of the checker-

board with pieces. If you don’t, go back to last

month’s tutorial and create the scene or down-

load last month’s file from the Dev.Mag website’s

content section.

While we have a reasonably good and accurate-

looking model, a render doesn’t do it any justice

at the moment. It needs colour, shading and some

better lighting. If you used the duplication methods

described in the previous instalment, then applying

the materials to the correct objects will be easy.

BLENDER TUTORIAL PART 5

D
E

S
IG

N

Let’s start with the board itself. Select one of the

board pieces, go to the materials tab, and create

a material. This new material will automatically be

applied to any linked duplicates of the piece you

selected. We’ll set the material properties first, and

then come back to colouring the pieces. Firstly,

naming the material is often a good idea, espe-

cially in larger scenes where multiple materials are

used. Change the box which reads ‘MA: Material’

to another, more descriptive, name. Then use the

settings for the material shown in the figure at the

bottom of the page.

Once that is done, select one of the board blocks that

is not linked to the one you just applied your material

to. In the material tab of this new block, select the

material you just created from the drop down material

box, and then select Add New. This will create a new,

independent, material that is based on the settings

of the previous one. Give this new material another

descriptive name.

17 DEV MAG ISSUE 8 2006

Now, for the sake of accuracy, bear in mind that -- in

a traditional layout -- the light blocks always alter-

nate from the lower-right corner of the board and

the actual pieces are all placed on the dark blocks.

Apply the colours with that in mind. I used the follow-

ing blue colour scheme for the board:

Dark blocks:

Colour: (R: 0.0, G: 0.0, B: 0.2)

Specular: (R: 0.0, G: 0.0, B: 0.4)

Mirror: (R: 0.0, G: 0.0, B: 0.6)

Light blocks:

Colour: (R: 0.6, G: 0.6, B: 1.0)

Specular: (R: 0.7, G: 0.7, B: 1.0)

Mirror: (R: 0.8, G: 0.8, B: 1.0)

We’ll repeat the same process for the actual pieces.

As before, create a material for the one set of

pieces, apply the shading settings, create another

material based on it, and then apply the colouring

to the two separate materials. The shading settings

I used are visible below. Our pieces won’t be trans-

parent or reflective, so you can leave those settings

at their default values.

 D
E

S
IG

N
I picked the following red/white scheme for the

pieces. The mirror value won’t be used here, so you

can ignore it.

Red Pieces:

Colour: (R: 1.0, G: 0.2, B: 0.2)

Specular: (R: 1.0, G: 0.3, B: 0.3)

White Pieces:

Colour: (R: 1.0, G: 1.0, B: 1.0)

Specular: (R: 0.9, G: 0.9, B: 0.9)

We’ll also change the colour of the background from

the old boring blue. Switch to the Shading Menu, if

you aren’t still there, and click the World Buttons icon

to bring up some new options. All you have to worry

about here is the left-most colour block. Click on it

and change it to white. You could also type in RGB

values like you do with materials.

Finally, we’ll modify the lighting for better effect.

Select the original point lamp, make 3 linked dupli-

cates and arrange them around the four corners of

the board. Make certain that they’re pretty high over

the board. Set their brightness to 0.4. Disable their

shadow casting ability by clicking the Ray Shadow

button.

Now add a new spotlight, place it along one of the

edges or corners of the board, and point it obliquely

across the face of the board. You might need to

adjust the Dist value to give the light a little more

reach. Then, in the ‘Shadow and Spot’ tab, increase

the ‘SpotSi’ value to increase the angle of the

spotlight so that it encompasses a greater portion

of the board. Also change it to cast shadows using

D
E

S
IG

N

18 DEV MAG ISSUE 8 2006

ray-tracing instead of the shadow buffer.

And that’s it! Your scene is done, and a render

should produce a scene similar to the picture below.

Congratulations, you have created a complete

scene in Blender. Feel free to make your own addi-

tions to the scene and see if you can improve on it.

[end.png]

The completed scene can be downloaded from

devmag.org.za.

CH1PPIT

D
E

S
IG

N

Our final scene. Good enough to play with.

What we started with.

19 DEV.MAG ISSUE 8 2006

T
E

C
H

Trees are a very popular form

of data structure, mainly due

to their ability to store data hierar-

chically in a sorted manner. This

functionality allows for the data in

a tree to be accessed very quickly.

Most often, trees are used to store

world data for rendering or for pro-

cessing, but they can also be very

useful for general data storage

Basic Tree Structure

The root level of a tree is made up

a single node. This node has some

kind of equation(s) or condition(s)

associated with it that is used to

organize the incoming data, as

well as for doing searches when

data is requested. Along with

these equation(s) are various

branches, each corresponding

to an outcome of the equation(s).

Finally, at the end of each of these

branches are other nodes, also

with some equation(s)1, as well as

more branches.

This process continues recur-

sively until nodes are reached that

can no longer have an equation. At

this point, instead of having more

branches, any data that has filtered

down here is merely stored2, usually

in the form of a linked list.

Binary Trees

The simplest form of a tree is known

as a Binary Tree. This means that

each node of the tree has at most

2 child branches that lead to new

nodes / data, and they are a very

useful way to store data in a sorted

method so that it can be retrieved

efficiently at a later time.

A very simple binary tree would be

one where the root node’s equation

was (x > 0). This means that all data

sent into the tree that was > 0 would

be placed into the right child branch

of the tree, and all data that was <=

 0 would be placed into the left child

branch of the tree

However, this would be very inef-

ficient usage of a tree, as we are

only dividing all of our data in half.

Therefore, if you added 1000 values

to the tree and then wanted to find

a specific one, you would still have

to search linearly through many of

them until the one that you wanted

was reached.

To expand on this example, the

equation used at each node down

the tree could be modified so that

the data is easily sorted into ranges

of 10s. To do this, the node belong-

ing to the right child branch of the

root node could have the equation

(x > 10), and the node belonging

to the left child branch of the root

node could have the equation (x < -

10). This would continue recursively

for as long as we wanted, with each

new node adding an addition 10 to

its equation.

 INSERT “btree2.jpg”

HERE

THE TECH
WIZARD

Data structures part 3: Trees

1 -- The equations at each node of the tree are usually derived from the root node equation, modified based on the current level of the tree that you are currently at.
2 -- Many types of tree usage also allow for data to be stored at nodes that do in fact have branches down to lower nodes.

20 DEV.MAG ISSUE 8 2006

T
E

C
H

However, this would lead to a very

unbalanced tree. This is because

the right child node of the right

child node would have (x > 20)

as its equation. Given this, we

would only be able to add to its

right child node and we wouldn’t

be able to do anything with its

left child node as all numbers

between 1 and 10 that get this far

will remain at this node.

Unbalanced trees are not as

efficient as balanced ones, as

they are always much deeper than

balanced trees, and each level of

a tree that needs to be traversed

takes up additional time. A more

optimal solution would be to pick

a maximum value that our number

could ever be, and instead of

merely increasing the value in

our equation linearly, we adopt a

divide and conquer method.

In other words if we choose 100

as the maximum value that our

number can be, instead of setting

the equation of the root’s right

child node to be (x > 10), we would

set it to be (x > 50). Accordingly,

its right child node would then

have the equation (x > 75) and

its left child node would have (x

> 25). This would continue until

we reached a level that would be

deemed sufficiently small enough

and not worth dividing again.

 INSERT “btree3.jpg”

This keeps the tree more balanced

and reduces the number of potential

searches needed to locate data in

the tree.

BSP Trees

Perhaps the most well known kind of

tree is a BSP Tree, which stands for

Binary Space Partitioning1. As the

name implies, it is really only a spe-

cific implementation of the simple

binary trees discussed above, how-

ever it was devised to specifically

handle the rendering of static world

geometry in 3D environments. They

have actually been around for many

years, but were only made popular

by the first generation of 3D FPS

games (Doom, Quake, etc.) as a way

to efficiently render the visible world.

A BSP Tree works by dividing the

geometry in a world so that only the

visible portion of the world is ren-

dered at any given time. What makes

them different from standard Binary

Trees is that the equations used at

the individual nodes for creating

the tree structure are actually the

planes that form the geometry of the

world itself. This is why they were

very popular for the standard indoor

environment FPS games, as most of

these worlds were just made up of

flat, perpendicular walls.

In order to create a BSP Tree, any

plane can be chosen as the “equa-

tion” for each node in the tree.

However, choosing different planes

can provide more balanced and

therefore optimal tree creation, so

usually some kind of exhaustive

testing algorithm is used to try vari-

ous combinations of which planes

to use at each level of the tree.

 INSERT

“bspdtree1a.jpg”, through

“bsptree1d.jpg” HERE

The reason behind breaking up the

world in this manner is so that for

any given plane in the world, it is

easy to tell which other planes are
1 -- Binary = 2; Space = World/area that you are dealing with; Partitioning = Division

21 DEV.MAG ISSUE 8 2006

T
E

C
H

in front of it as well as behind it.

This then allows for very straight-

forward rendering of the world, as

given the position and direction

of a camera you will easily be able

to traverse through the built up

tree and at each node check if the

plane data contained there is in

front of the camera1.

If it is, you can render that data of

the world geometry represented

by that plane. The process is then

repeated in a recursive fashion

down each branch of the tree that

the camera is in front of until a

terminating node is hit, at which

point you have finished rendering

all visible world geometry.

KD Trees

KD Trees are similar to BSP Trees

except that instead of using actual

world data (ie. the planes of the

polygons in the world), they only

use planes that are perpendicular to

the world axes. Generally, KD Trees

used in a 2 dimensional sense (ie. X

and Z splitting planes), but can be

used 3 dimensionally as well (ie. X,

Y, and Z splitting planes)2.

So, instead of choosing a splitting

plane corresponding to some

arbitrary world geometry, the world

is initially split in the direction of a

single axis. It doesn’t matter which

one, and it also doesn’t matter at

which point of the axis it is split (ie.

(X = 0) and (X = 5) would both work).3

Once the world has been divided

along that initial axis, each of the

new halves is then divided along an

alternate axis (ie. if the X axis was

used for the first division, then the

Y axis would be used for the next).

This continues recursively until

some kind of size limitation is met,

at which point the tree is complete.

Generally, KD Trees are used for

storing objects in a game world as

it allows for easy searching of ones

that are close to each other in the

world for such things as rendering,

as well as collision testing, etc. The

main advantage that KD Trees have

over BSP trees is that they do not

require the typical indoor FPS style

of “walled” worlds in order for them

to produce effective and efficient

trees.

COOLHAND

1 -- This is done by using simple algebra and plugging in the camera data into the Ax + By + Cz + D = 0 plane equation
2 -- However, like BSP Trees, KD Trees can be used in both 2D and 3D worlds
3 -- Generally, the axis used as well as its equation, like with BSP Trees, are decided upon by doing exhaustive searching at the tree generation time

22 DEV MAG ISSUE 8 2006

For the last couple of months, we have been

working under a very utopian assumption

that Java’s ‘write once, run anywhere’ ideal

is realistic. Even within the same profile and

configuration standards, different devices have

their own quirks. As a mobile developer, you

need ways to deal with these quirks. The first

weapons in your arsenal are emulators. We have

been using the standard WTK emulator, but most

of the major cellphone manufacturers provide

their own versions which should more closely

resemble their handsets. We will be looking at

how to set up one of these emulators and how to

have multiple configurations for your project in

NetBeans so you can easily build different ver-

sions of your MIDlet.

The first thing you need to do is install a manu-

facturer SDK such as the Sony Ericsson one

mentioned last time (http://developer.sonyerics-

son.com/site/global/docstools/java/p_java.jsp).

Once installed, select Java Platform Manager

from the NetBeans Tools menu. In the platform

manager, click Add Platform. Change the radio

selection to Java Micro Edition Platform Emula-

tor and click next. NetBeans will now search for

any compliant emulators and list them for you.

MOBILE GAME
DEVELOPMENT IN JAVA

Multi-Platformer

 M
O

B
ILE

Check the emulator(s) you want to install and

click Next and then Finish. The platform will now

appear in the list in the platform manager, you

can close it.

Now in the Tutorial project’s properties dialog

(accessible by the right clicking on the project),

notice the Project Configuration section at the

top of the dialog. At the moment you should only

have DefaultConfiguration and Add Configuration

in the dialog. Select Add Configuration and in the

dialog that pops up, give your new configuration

a name appropriate to your newly added emulator

(for example SonyEricsson) and click OK. Now

in the list on the left, select the Platform group,

uncheck Use Values from “DefaultConfiguration”

and choose your newly added platform from the

Adding a new platform to NetBeans

23 DEV MAG ISSUE 8 2006

Emulator Platform drop down menu. Ensure

that MIDP-2.0 is selected. Switch to the Abilities

group and once again disable Use Values from

“DefaultConfiguration”. Click Add to add a new

ability, and name it after your emulator (e.g.

SONYERICSSON). Now close the properties

dialog, and open TutorialCanvas.java so we can

see what all this was about.

In your doPaint method, just before the draw-

String call that renders the available number of

lives, add the following code:

//#if SONYERICSSON

g.drawString(“SONYERICSSON”, getWidth()/2,

getHeight()/2, Graphics.HCENTER|Graphics.TOP);

//#endif

 M
O

B
ILE

Notice that the preprocessor directives (like #if)

are ‘commented out’, this is because unlike in

C++, preprocessing is not normally part of the

build process (in fact some Java purists may be

appalled by this necessary evil). NetBeans auto-

matically preprocesses out code for us, saving

us from some extra work. The SONYERICSSON

tested for above is the ‘Ability’ we added in the

project settings, so it may be different for you.

Now click in the margin to the left of the new

drawString call and a pink block indicating a

breakpoint will appear. Now run your project

(F5) and see what happens. Two things should

be different to what you are used to. First of

all, rather than Sun’s ugly (and unrealistically

large) emulator, you will see that you now have

 M
O

B
ILE

Property configurations are extremely customizable

24 DEV MAG ISSUE 8 2006

an emulator running in what looks much more

like a real phone. Secondly, when you run your

game, rather than being faced with the bouncing

ball, paddle and blocks, you are kicked back into

NetBeans right where you set your breakpoint.

This is a very good thing. As recently as 18

months ago, this sort of thing was only possible

through expensive IDEs like Jbuilder, and the

typical hobbyist mobile developer would have to

make do with scattering System.out.println calls

everywhere to determine what was going on

when something went wrong. Notice that, in the

watches tab in the bottom right of NetBeans, you

can actually see the values of all local variables

currently in scope. Feel free to look around at

the rest of the tabs to see what they offer as

well. Click in the margin again to remove the

breakpoint and press Ctrl+F5 to continue run-

ning the game. Notice the text in the middle of

the screen? You expected that, right?

Now I’m sure you can guess what the preproces-

sor defines are for, but let’s do a little proof of

concept for interest sake. Close the emulator,

right click on the Tutorial project and choose Set

active project Configuration->DefaultConfigura-

tion. Notice how NetBeans has commented out

the code between the #if and #endif directives?

Set a breakpoint in the same point and run the

project again. Not only does the standard emula-

tor launch, the breakpoint is never hit and our

text is no longer drawn. So you see the combina-

tion of configurations, preprocessing and device

specific emulators makes it much easier to tailor

our code for each platform. In addition, if you

chose to install the Sony Ericsson emulators,

and you happen to have one of the newer Sony

Ericsson phones, you can actually debug your

 M
O

B
ILE

game right on the device! Stepping through code

on it is obviously a bit slower than just using

the emulator, but this ability is amazingly useful

considering it is almost impossible for manufac-

turers to make their emulators behave exactly

like the actual phone.

That’s it for this edition. We have really only

scratched the surface of what is possible with

emulators and configurations and the best way

for you to find out more is of course to play

around with these tools and see what you can

discover. Also, take a look in the folder where

your NetBeans project files are stored, and com-

pare the java class files found in the preverified

directory to the ‘originals’.

Next week we will look at NetBeans’ powerful

WYSWYG mobile form editor and add some

structure to our game.

FLINT

Swish! A shiny vendor emulator.

25 DEV MAG ISSUE 8 2006

Game Maker Community

http://forums.gamemaker.nl

These are the official Game Maker forums. More

often than not, they are filled with lots of contro-

versies which no-one should play witness to. It

is usually what some may call a “n00b-ridden”

place, but it has its merits.

The Game Maker Community is a great place to

get answers to problems, discuss Game Design

and generally see what is happening in the world

of Game Maker. It does its job in acting as the

global center for all Game Maker communities.

TA
ILP

IE
C

E

64Digits

http://www.64digits.com

64Digits is an exceptional site which not only

hosts your files, but also gives you access to

your own Game Maker blog, download counters

and badges. It is delightful to read all the like-

minded developers’ blogs, especially when Game

Maker greats like GearGOD (1st lighting engine

in GM) and FredFredrickson (King of Cagematch

winner, ie Best GM game ever) blog there.

64Digits is a very friendly and an easy community

to get into. One can easily craft one’s own niche

into the site. With several games developed spe-

cifically for 64Digits, like the LOLOMGWTFBBQ

series and recent ColumsX, members can get

badges from the games, which makes the com-

munity grow closer and closer.

The Game Maker
Communities

On the net there are several Game Maker communities. By this, I mean websites dedicated to the
people who enjoy using the Game Maker development tool. In this article, I hope to give you an objec-

tive low-down on the most popular ones I have visited.

26 DEV MAG ISSUE 8 2006

Game Maker Showcase

http://www.gmshowcase.dk

Game Maker Showcase does indeed do what it

says. It is an awesome place to showcase your

games, since a lot of games get reviewed length-

ily and quite frequently by the “reviewers”. Its

forum community seems close-knit – however,

this does make it harder for newbies to get in.

Some of the threads (in the off-topic section) are

legendary and a delight to read. It also seems

that it isn’t quite as geared toward game devel-

oping as other communities are.

A recent event caused the whole site to be

remade, and it is still being reconstructed.

GM Clans

http://www.gmclans.com

This is mostly a forum community built around

the concept of “clans”. While I have only

recently started “lurking” there, it seems quite

decent. Members get XP for their games, and

level up according to what they did in a “clan”.

TA
ILP

IE
C

E

Game Maker Games

http://www.gamemakergames.com

This is home to greats like Darthlupi (The

Cleaner) and Tapeworm (Seiklus). Game Maker

Games is host to a vast archive of Game Maker

titles! Most of the time, one’s game does not get

reviewed, but it is still a useful place to showcase

your work.

It has a “top-sites” section, which usually falls

victim to spammers, but it is still great place to

check out the sites of other developers.

Its forum community is small and not as active as

Game Maker Community.

Game Maker Info

http://gamemaker.info/nl

Although this isn’t a Game Maker community, it’s

a great place to get all the news from all Game

Maker communities, since it gets an RSS feed off

all the main communities.

I hope I wasn’t too subjective about all the com-

munities, and I hope I catch you around on one of

these forums sometime!

TR00JG

