
THE GAME MAKER’S
APPRENTICE!
Interview with co-writer
Jacob Habgood

XNA
IS HERE!

MOBILE GAME
DEVELOPMENT:
TOOLING UP WITH
NETBEANS

REVIEWS : PYGAME. FEATURE : XNA. GAME DEV
AND DEV MAG AT RAGE!. BLENDER TUTORIALS
Cover: The Game Maker’s Apprentice http://book.gamemaker.nl/THE GAME DEV. POWERHOUSE

ISSUE 8 2006
S

O
U

T
H

 A
F

R
IC

A
’ S

 F
I R

S
T

 G
A

M
E

 D
E

V
E

L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

CONTENTS
REGULARS
03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
06 - IT’S ALL ABOUT XNA

REVIEW
09 - PYGAME

10 - 3D GAME PROGRAMMING FOR TEENS

SPOTLIGHT
11 - JACOB HABGOOD

DESIGN
13 - BLENDER TUTORIALS: PART 4

15 - THE QUALITY TOUCH: PART 4

17 - GOOD USER INTERFACE

POSTMORTEM
19 - THE MAKING OF NONEX 2: PART 1

21 - FFS! (FAST FOOD IN SPACE!)

TECH

27 - AN INTRODUCTION TO PATHFINDING

MOBILE
30 - GAME DEVELOPMENT IN JAVA: NETBEANS

TAILPIECE
33 - RAGE REPORT

COMIC
38 - DIGITAL MAYHEM

02 DEV MAG ISSUE 8 2006

161121 33

ED’S NOTE
Hey all, due to endish circumstances, our editor has been out of action for

this month. No fear, however, as Dev.Mag will proudly march on regardless!
We have some special stuff lined up for you this month, including the

opening of a new Projects section in the mag.

Something that we’ve been thinking about recently is the idea that some of our
content can follow the “lead by example” philosophy – the idea that entire games,
rather than just components of their build, could be examined and evaluated as
they progress.

To this end, Dev.Mag has incorporated two new articles this issue, one of them
being an offshoot of last month’s feature known as a postmortem (in which a game’s
creators reect upon the successes and failures of completed projects) and a new
series that follows the building process of the game Nonex 2, with the author
highlighting triumphs, challenges and downright pitfalls as the game progresses
from chicken scratch to completed product.

We hope you like what we’ve done with this issue, we’ve done our best to revamp
a lot even given oppressive circumstances, and I hope this is reected in the
enjoyment that you, the readers, gain from this jam-packed edition.

Game on!

Deputy Editor
Rodain “Nandrew” Joubert

THE STAFF

RANKING OFFICER
Stuart “GoNzO” Botma

SECOND IN COMMAND
Rodain “ Nandrew ” Joubert

DESIGN SQUAD
Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

CEREBRAL SOLDIERS
Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairnswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Yuri “knet” Oyoko

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

WEB WARRIOR
Claudio “Ch1ppit” de Sa

Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

To join, make suggestions or

just tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of

the NAG Game.Dev forum.

Visit us at www.nag.co.za

All images used are Copyright

and belong to their respective

owners. All reference made to

Chuck is purely for entertain-

ment purposes and should not be

taken seriously .

03 DEV MAG ISSUE 8 2006

04 DEV.MAG ISSUE 8 2006

DIGITAL STOMPIES

Swiss army chainsaw

http://www.gamasutra.com/

This Gamasutra feature is
a handy little guide to tool
development, what
challenges to expect, and
what to do while dealing with
them. A great guide for any-
body who wants to improve

the usability of their products (or games) and learn how to work more efciently,
especially with other people. Even if you’re just a lone ranger doing bedroom
development, it helps to know when to smile and “fend off bad voodoo”.

How game artists get their jobs

http://www.gamecareerguide.com

Are you a budding 2D/3D artist,
environment designer or animation
specialist looking to get into the
industry? Take a peek at this
8-page feature on Game Career
Guide, which takes an in-depth look
at your portfolio requirements, how
to approach companies for a job
and just what sort of qualities com-
panies are looking for in potential
employees.

Talent can bring you most of the
way, but a little smart thinking still
needs to be applied when you’re
in such a competitive environment,
making this article invaluable for
those in the eld.

Books: some good reading ...

http://www.next-gen.biz/

Next Generation has assembled a collec-
tion of about 50 books related to game
development that are recommended for
anybody going into the eld of game cre-
ation, or anybody who’s already in the
game industry, for that matter. Topics
range from theory to design practice and
even include sociological texts, with an
aim of accommodating absolutely every-
one in the business, up to and including
lawyers and part-time testers. Browse
through this handy little library – you
could probably nd something that takes
your fancy.

Moondance releases Independent Games
Vol 2

http://www.moondancegames.com/games/

Moondance Games, media sponsor of the
Independent Games Festival, has just retailed
its second compilation pack of indie games
featuring titles from the festival. Game titles
include Cute Knight (Kishi Kawaii), Tube Twist,
Unipong, Morning’s Wrath and many others
over a wide range of genres. For indie gaming
at its nest, take a look at getting your hands
on this set. It sports 21 impressive indie titles
and is available for $19.95 from Amazon.com.

N
E

W
S

05 DEV.MAG ISSUE 8 2006

Quantum leap awards – RPGs

http://www.gamasutra.com/

Much like their previous feature on rev-
olutionary rst person shooters, Gama-
sutra has asked its readers what they
consider to be the game which marks
the greatest leap made in the RPG
genre.

With so many to choose from, some
interesting results have reared their
heads, along with actual quotes from
readers explaining why they felt like
they did regarding their chosen game,
and just how much it contributed towards changing the RPG world. Consists of the top ve games and several honorary mentions..

A guide to XNA development

http://learnxna.com/pages/XNABook.aspx

For those who want to learn a little bit about using XNA, this isn’t too bad a site to
be looking at. LearnXNA.com has XNA tutorial videos, news posts concerning the
XNA toolkit and its own downloadable book, currently standing at four chapters, which
strives to cover an ever-greater variety of topics as new chapters get released. Stop
by here if you fancy learning a little about this exciting new tool, covered extensively
in this month’s Dev.Mag feature.

Mobile game contest

http://www.actionscript.it/
mobilecontest/mob_rules.html

January 29, 2007. A new date to diarise,
marking the deadline for a brand-new
mobile development competition run by
mobile.actionscript.it. The premise –
make a game, any game, using either
Flashlite or J2ME.

 Prizes are awarded for each category of
tool used, including books, Flash Studio
8 and, naturally, several high-end mobile
phones.

 This is the second contest from the
organisation, the rst having brough for-
ward entries of an exceptionally high
quality and from all over the world. Time
to put some more local names in there ...

Blog: Tales of the rampant coyote

http://www.rampantgames.com/

Blog hunters, hark! Here’s another indie
gaming blog to whet your appetite, complete
with a particularly interesting post made enti-
tled “You can’t design fun on paper”. The
author takes an in-depth look at design docu-
ments, how they work as a “second brain”,
how they sometimes don’t work and how get-
ting too detailed too quickly could be a danger.

An interesting perspective that stands contrary
to most established ideas, coming from an
established game developer.

N
E

W
S

06 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

The XNA GSE (Game Studio

Express) is a set of tools for

building managed games together

with the XNA Framework. XNA

GSE is based on the free Visual

C# Express 2005 and to install

game studio on a desktop, users

will need Visual C# Express 2005,

the latest DirectX runtime (or the

August 2006 DirectX SDK if users

want to use the DirectX audio cre-

ation tools) and the XNA Game

Studio Express plug-in (http://

www.microsoft.com/xna).

Visual C# Express 2005 can run

alongside Visual Studio 2005 and will

not interfere with your other devel-

opment projects. The game studio

only supports C# but you can use

the XNA Framework in any .NET lan-

guage (although you won’t then have

the visualization tools that make the

XNA GSE so worthwhile).

The XNA Framework is a completely

different set of technologies from

MDX (Managed DirectX) 1.1 and 2.0

and provides more functionality to

help game developers create games

productively (although there are sim-

ilarities because it is still based on

DirectX). MDX 2.0 beta has been

unchanged since the DirectX April 2006

SDK release and there will be no further

changes nor will it ever be released of-

cially. The MDX 2.0 assemblies will be

removed from the DirectX SDK once the

XNA Framework beta is released.

(Taken straight from the Microsoft website)

Games built with managed code

are not slower than game written in

C++ because they are just-in-time (JIT)

complied into native code when it is

initially loaded by a process, prior to

execution, and this allows hardware-

specic optimizations unique to the PC

and Xbox 360 architectures. Only the

most intensive games would benet

from being written in C++. The three

most notable features when using the

It’s all about XNA!
I am very excited to tell you about XNA Game Studio Express; Microsoft’s offering to students and hobbyist game

developers for building games on Windows AND the Xbox 360.

“ XNA Game Studio Express;
Microsoft’s offering to stu-
dents and hobbyist game

developers for building games
on Windows AND the Xbox

360.”

07 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

XNA GSE (which, at time of writing,

is currently in beta) are device cre-

ation, game loop and game compo-

nents. As soon as you start your

project you can run your game and

see the default cornower blue back-

ground that has become the hallmark

of the DirectX tutorials. You don’t

need to spend time writing code

just to get a handle to the graphics

device; and you can manage the

device’s properties at design time

through a property window.

There’s also a built-in game loop

done for you so that your rst lines

of code are related to your game

concept and not to the mechanics

involved in making it run. Using prop-

erties in the designer you can even

set a xed time step (used to create

a framerate) and sync it to the vertical

retrace if required (don’t have worry if

you don’t understand what I’m talking

about, the power of the toolset is that

the best defaults have already been

set for you).

Thirdly (and my favorite feature) are

game components, which allow you

to break up your game into physical

and logical parts and to manage them

like you would custom controls on a

windows form. Drag-and-drop your own

game components or ones built by third

parties onto your game and they’re exe-

cuted and managed automatically with

properties developers can manage at

design time. Game components can be

connected together by marking relevant

properties in the component as public

and assigning them to other game com-

ponent properties in the visual designer.

Game components help move technical

designs to a Service Orientated Archi-

tecture by being loosely coupled and

autonomous.

There are lots of opportunities with the

XNA Framework for developers who

enjoy building their own frameworks

and engines. Developers can focus on

building unique game components (like

physics, scene management or game-

genre specic helper functions) which

will plug easily into other game develop-

ers’ projects with affecting or dictating

how game developers make games.

Now for the bad news – at the time of

writing this, you can’t develop games

for the Xbox 360, that’s coming out

when XNA goes live (for security rea-

sons Microsoft does not release beta

software on the console). Game

developers wanting to run their games

on the Xbox 360 platform will have to

join the Creator’s Club (estimated at

$99 a year) and download and install

the XNA Framework on their console.

The XNA Framework makes use of a

custom, native implementation of the

.NET Compact Framework 2.0 CLR on

the Xbox 360; debugging on the con-

sole is supported through a remote

debugging connection from a Windows

desktop running XNA GSE. Sharing

your newly developed games on the

Xbox 360 will also not be immediately

available. Users wanting to play your

Below: Graphics Device

08 DEV.MAG ISSUE 8 2006

FE
A

T
U

R
E

games will also need to have an

active subscription to the Creator’s

Club and have the XNA Framework

installed on their consoles. They will

also need XNA GSE installed on a

connected desktop because sharing

of binaries is not supported and they

will have to compile your source code

themselves to debug on their box.

Eventually, you’ll be able to distribute

you game to other Xbox 360s, open-

ing up a unique publishing avenue

which will democratize game devel-

opment on consoles (Another direct

take from the Microsoft website), and

Dev.Mag will do a write-up of devel-

oping games on the Xbox 360 when it

becomes available.

Other companies are also making use of

XNA GSE and the XNA Framework to

build feature-rich tools for game develop-

ers. For example Garage Games (cre-

ators of Torque Game Builder and games

like Marble Blast and Puzzle Poker)

are porting key portions oftheir 2D and

3D technology and tools to XNA so

that enthusiasts, indie developers, educa-

tors and commercial studios can develop

games for the Xbox 360 using their

tools (www.garagegames.com/products/

torque/x/). Their tools include an environ-

ment for non-developers to make games,

artist-friendly shader support, physics and

collision detection.

Various communities devoted

to XNA have also popped up

with forums, tutorials, sam-

ples and articles on the sub-

ject. Microsoft also has a

vibrant forum on MSDN (http:/

/forums.microsoft.com

/MSDNShowForum.aspx?F

orumID=882&SiteID=1) which

the XNA project team and

various MVPs (Microsoft’s

Most Valued Professional)

monitor and help with bugs,

issues and problems.

The XBOX 360 Homebrew

community...

(http://xbox360homebrew.com/)

even has a competition to

build a game using the XNA

Framework with rst prize being one

year’s subscription to the Microsoft

Creator’s Club.

So to summarize the XNA GSE and

XNA Framework are more productive

to work with and easier to get into than

previous versions of DirectX. The use

of the XNA Framework in other pro-

fessional toolsets and engines means

wide support for game developers at

any technical level. The game com-

ponents provide powerful design and

functionality possibilities, especially for

building your own engines.

There is a growing community base

using the technology and the ability

to develop games for the Xbox 360

will open new avenues of creativity,

allowing game developers to reach

eager audiences and bringing about

the potential for building a viable nan-

cial revenue.

 FENGOL

“The game components pro-
vide powerful design and func-

tionality possibilities,
especially for building your

own engines.”

Below: Sample code

09 DEV.MAG ISSUE 8 2006

R
E

V
IE

W

Well, this website provides a

denite “yes” as an answer

– backed by the power of an awe-

some little tool known as Pygame.

Pygame is a Python module which

dedicates itself exclusively to the

development of games. All the

resources which you need to

establish Win32- or Unix-based

game applications are at your dis-

posal, including tools for graphics,

sound, timers and everything else

that just isn’t accessible through

the core language. Combined with

the ever-handy py2exe module

(for compiling the code into a

runnable, standalone program),

Pygame has allowed its users to

produce games of an impressive

quality where none seemed pos-

sible before.

The website dedicated to this par-

ticular kit doesn’t come entirely

unequipped, and it’s complete with

the standard news reports, tutorials

and all-important downloads which a

user would normally expect. However,

one is truly blown away by the list of

projects in development as well as com-

pleted games which get released on a

regular – sometimes daily – basis, and

the competitions as well as “Pygame

Weeks” that get run frequently serve as

a motivation to draw in more enthusi-

asts and curious developers. An impor-

tant thing to note for Python users is

that as of writing this review, the latest

version of Python did not have a cor-

responding version of Pygame which it

supported. Should this be the case

with you, revert to the Python 2.4 ver-

sion and keep developing with that

until Pygame support is brought for-

ward. Take a look at this website, and

make sure you get your hands on that

Pygame module! After that, it’s happy

game development all the way.

 NANDREW

Last known update: Continuous

www.pygame.org

Some of you out there have probably used the Python programming language before. It’s great and
easy to use, provides excellent cross-platform support and automates a lot of tasks which program-

mers usually have to grieve over. But is it a suitable game development language?

Pygame

10 DEV.MAG ISSUE 8 2006

 R
E

V
IE

W

Author: Eric D Grebler

Title: 3D game programming for teens

Publisher: Thomson Course Technology

Category: Development/Programming

User-level: Beginner/Intermediate

ISBN: 1-59200-900-X

Average Price: R 350 - R 380

Available from: Exclusive books , Larger

book retailers

Without experience in game

development, programming

and 3D graphics, this book will teach

you to create a 3-dimensional game

in as long as it takes you to under-

stand and complete the training that

this book offers. In short, the book

covers everything in the game devel-

opment process, from the beginning

stage of acquiring the knowledge and

the skill involved, to creating a full 3D

game. As a relatively cheap computer

book, it was quite surprising to see

the range it covers, all with examples

and free software to learn with. The

book deals its content in 3 sections,

the rst being a theory based section

about the tools, skills, and a brief history

of games. In the second part, the

actual understanding and programming

is taught making mini-programs along

the way, and nally in the last part creat-

ing a game based on the mini-programs

you already have created.

The book itself is a good start for game

developers who want to make that step

out of game maker into the program-

ming of full 3D games, even 2D games

of course as it goes through all the

phases using tools such as Blitz3D,

3Dstudio Max 8 and Corel Draw, which

all come with the book as a starting

point to creating functional 3D games.

The trial versions of the software are

quite functional considering the price

of the book, and the content starts at

the very beginning of game creation, all

the way to creating a rst person style

game with the free tools, all while teach-

ing the principle of creating games in

3D, from scratch.

With an interesting history on games

and the development of games, it goes

on to explaining gaining skills game

developers usually have, such as pro-

gramming, graphics, team, math as well

as communication. Diving into game

design theory and teaching with some

examples, it goes from there straight

into the anatomy of a game, and sub-

sequently starts teaching you to use

the tools provided to create a game. It

covers 3D modelling, 3D theory, graph-

ics theory (such as transparency, tex-

tures and coloring) and on the game

side lls in the details regarding lights,

cameras, game control, collision detec-

tion, sounds and music, physics, timing

and other game creation techniques,

all instantly codeable into the blitz3D

engine supplied. The later chapters

cover programming, the fundamentals

behind creating working code and pro-

gramming concepts, and nally using

the rest of the knowledge to create a

fully functional game in the last chapter

of the book.

This book is recommended for begin-

ners who are interested in creating

3D games, but dont have the time

or resources to learn one of the very

technical languages or frameworks 3D

games usually use, and you as a

reader can start creating games right

away.

At beginner level this book is a worth-

while buy, but if you have had experi-

ence coding games in any language,

and understand theory behind creating

games, then this book might be a little

primitive for your taste. As a game

maker enthusiast who would like to get

a 3D game under their belt and grab

the reins right away, this book is a

great start, and provides the tools to

get going.

 FUZZYSPOON

3D Game Programming for Teens

11 DEV MAG ISSUE 8 2006

What were your intentions regarding The Game Maker’s

Apprentice?

We wanted to create an engaging and accessible beginners

guide to game development. There are a number of books

out there that claim to offer this, but we didn’t feel it had

really been achieved yet. We went to great lengths in order to

create something that people would really enjoy owning, with

colourful artwork and games that were actually fun to play. We

were very pleased with the way it turned out and it ultimately

exceeded both our expectations.

Are there any useful things in it for the expert Game Maker

user?

We hope so. The game design chapters in particular are the

combination of years of experience that we think would be

useful to everyone. It’s already been used as part of a Masters

level course in the UK and we know it is being used in other

university courses too.

What version comes with the book? 6.x and registered or

not registered?

6.1A unregistered. We’re currently considering hiring a blimp

to display that answer on.

What market is the book aimed at?

Beginners of all ages, although you do need to able to read

the book. To quote the introduction: “This book is not speci-

cally for the young or old, but anyone who loves computer

games and wants to have a go at making them for them-

selves. We’ve all painted a picture, written a story, and made

a wobbly piece of pottery at some point in our lives, so it’s

now time to embrace the art form of the future and try making

computer games too.”

.

S
P

O
T

 LIG
H

T

For those who are new to the world of Game Maker, or who have more experience but

want a more detailed look at what this package can offer, a new book entitled The Game

Maker’s Apprentice serves as a great resource for not only people looking to learn Game

Maker, but also those who want game design hints and tricks in general. TROOJG has

a chat with Jacob Habgood, co-writer of the book alongside Mark Overmars, so that our

mag can pick his brain a bit...

“ We went to great lengths in order to create

something that people would really enjoy owning,

with colourful artwork and games that were actu-

ally fun to play.”

Jacob H
abgood

12 DEV MAG ISSUE 8 2006

What was the best part of writing the book?

The best part is actually getting feedback that shows you that

you’ve created something that people appreciate. It makes all

the blood, sweat and tears that bit more worthwhile.

Any planned future collaborations?

We did consider writing a follow up at one point, but it’s difcult

to see how either of us would ever get the time.

What you do for a living?

I’m currently writing up my PhD thesis in “The Effective Inte-

gration of Digital Games and Learning Content”. It marks the

end of a three-year career break for me, and I’m returning

to the games industry as a Project Lead for Sumo Digital

in a couple of months (Virtua Tennis, Outrun 2006:Coast 2

Coast, Broken Sword). Sumo are doing lots of cool stuff at

the moment and I have some interesting projects lined up for

when I get there.

What games have you guys developed?

Micro Machines (2002), Infogrames

Hogs of War (2000), Atari Europe S.A.S.U.

Premier Manager 2000 (2000), Infogrames UK Ltd.

Actua Soccer 3 (1998), Gremlin Interactive Ltd.

N2O Nitrous Oxide (1998), Gremlin Interactive Ltd.

Actua Soccer 2 (1997), Gremlin Interactive Ltd.

Judge Dredd (1997), Gremlin Interactive Ltd.

Re-Loaded (1996), Interplay Entertainment Corp.

Greenies (1995), F1 Licenceware

Do you guys still develop games?

Certainly will be.

Favourite next-gen console? Why?

Has to be the Wii, despite the name. Nintendo games rock.

What impact does products like Game Maker have on the

game development industry?

Interesting question. Probably not a great deal to date, but

some of us are trying to change that. Have a look on Gamasu-

tra or GameCareerGuide and search for articles by Jacob…

Where do you see the game development industry going

in the future?

India, probably. :-) No idea what will happen really, but it

would be nice to see more of an innovative casual gaming

scene. Cheaper, shorter games where developers are able to

take risks with gameplay. XBox live is an excellent idea in

principle, and it’ll be interesting to see how it plays out. Fewer

MMORPGs too – if you have a hole in your life that big then

you should do something constructive like developing your

own games instead. Game Maker beats being an Elf any day

of the week!

 TROOJG

S
P

O
T

 LIG
H

T

MOBILE GAME

DEVELOPMENT IN JAVA

BLENDER TUTORIAL PART 4

his part of the Blender tutorial

will use all the skills we’ve

learned before to create a new scene

from scratch. If you are not familiar

with everything we’ve covered

before, I advise you go back and do

the previous tutorials again. The

scene we will be making is a

checkerboard.

The board

We’ll start off with the board itself. For

the sake of detail, we’ll be modelling the

blocks individually. Delete the original

cube, switch to top-view, and create a

plane. The default 2x2 size will suit us

perfectly.

To give out block some depth, we’ll be

using a modelling technique known as

extrusion. Extrusion essentially takes

the selected faces and pushed them

outward, giving them depth. Switch to

side- or front-view and zoom in closer to

the block. In edit-mode, press ‘E’ or

select Extrude from the Mesh menu to

bring up a pop-up menu. Select Region

from the pop-up menu to start the

extrusion process. Move the mouse

upwards 0.2 units and click to accept

the changes. We’ll also taper the edge

a bit, to make it look smoother. To do

this, extrude the top vertices again, this

time 0.1 units upwards. Accept the

changes and then scale them down to

0.9 size. It should look like the following

image when you’re done.

Now is a good time to mention the two

different duplication methods available

in Blender. Pressing Shift+D, or

selecting Duplicate from the Object

menu, will make an exact, but

independent double of the object.

Pressing Alt+D, or selecting Duplicate

Linked from the menu, will create a

duplicate that is linked to the original.

Therefore any changes you make to

one of the copies will affect all the

duplicates. This includes changes in the

model structure and texture, but not

scaling and positioning.

To create the whole board, we’ll need to

do some duplication. Bear in mind that

every alternate block is a different

colour, so we’ll need to be careful how

we duplicate the blocks. Select the

block in object mode, and create linked

duplicates of the block until you’ve filled

every other block of an 8x8 grid. Now

create an ordinary duplicate of one of

those blocks, and place it in one of the

open spaces in the board. Now create

linked duplicates of that block until the

entire board is full.

The pieces

Now we have a board, but what about

the pieces? We’ll be making simple

round pieces to populate our board, so

start off by making a circle in Top-View.

32 vertices should suffice. Place the

piece over one of the existing blocks

and scale it until in fits neatly inside the

block. I found a 0.6 scale value worked

perfectly. Then in front view, place it so

that it rests just on top of the block.

Extrude this block upwards 0.2 to give it

depth. You’ll notice that there is no

‘Region’ option when you extrude these,

so select ‘Only Edges’ in this case. This

happens because the circle Blender

makes isn’t filled by default. We’ll fill it in

once we’re finished with it.

 13 DEV MAG ISSUE 8

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

T

A checkerboard block. Not much.

Half the board pieces are not filled in.

MOBILE GAME

DEVELOPMENT IN JAVA

Now we’re going to give this block a

little notch in the middle. This is easier if

you activate wireframe mode with the ‘Z’

key. Still in front view with the top

vertices selected, extrude the vertices

again but do not move them.

Immediately press ‘S’ and scale the new

vertices to 0.9 size. Extrude these new

vertices downwards by 0.02. Now we fill

these vertices to create a new face.

Press Shift+F, or select Faces, Fill from

the Mesh menu. You can repeat this

entire process to create a notch for the

bottom edge too if you wish, but it is not

necessary because it won’t be seen in

our scene. You can simply fill it with

Shift+F and leave it at that.

The piece will still have rough edges in

the render though, so, in Object Mode,

select Set Smooth from the Editing Tab.

However, rendering the image now

displays in some strange results.

This happens because the flat surfaces

in our model do not respond well to Set

Smooth. To fix this, we’ll have to set the

individual flat faces in our model to

solid. So switch to Edit Mode again, and

front- or side-view if you aren’t still

there. We’ll use face selecting instead

of vertex selecting for this because it will

make our job a bit easier. Click this

button on the 3D view menu to change

to Face Select mode.

We’ll need to be careful to select the

correct faces for this operation, and

we’ll be using box-select (‘B’)

extensively for this. All our horizontal

surfaces are the ones that need to be

solid, so carefully draw a box around

the squares representing the four layers

of horizontal surfaces. You may need to

zoom in a lot to do this. Your selection

should look like the following when

you’re done:

Now that you have the correct faces

selected, simply click the Set Solid

button and the problem should be

solved. When you’re done, you can

change back to vertex selection mode.

Finally, by using the same duplication

procedure described before, place the

pieces on the correct places while

remembering to make linked duplicates

of the appropriate pieces.

And that’s all I have space for this time.

We’ll finish off this scene next month by

adding textures and cleaning up the

lighting. In the meantime, feel free to

play around with the scene on your own

using the texturing principles learned in

Part 3. As always, the completed scene

will be available from the Dev.Mag

website at www.devmag.org.za

 CH1PPIT

 14 DEV MAG ISSUE 8

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

The Vertex-Selection, Edge-Selection
and Face-Selection buttons.

Ooh, now that's not supposed to
happen, is it?

Above: Selection

Above: What the scene could look like when we finish with it

PART 4 :

Adding the Quality Touch 2

Mouse Control

By adding mouse control wherever

possible, the user needs little effort to

get immersed in the game. Allowing the

user to use any input device of their

choice will also make it easier for players

to jump right in and play the game. While

the player may not realise the effort that

has been put into the game to allow this

freedom of choice, they will be able to

choose the input device they prefer to

play the game with.

Pausing

A player who is busy playing may be

disturbed by other members of their

family -- in this case, they may just

pause the game and come back to it

later. By stopping all animations, game

progress and time-based action within

the game, the player can return to find

the game in the same state as when

they left it. A nice addition is to pause

the game as well as the in-game music

and sound effects when the game is

minimised. This allows players to spend

a small amount of time over a long

period in the game. This will often allow

people that are working from home to be

involved in the game during their breaks

and their time on the phone.

Friendly Environment

The game controls should impact the

players experience as little as possible.

The control panel and score display

should never obscure the player's view

of the game. By fading or moving the

control panel as the players units come

near it the player will always be able to

control their units on the screen. Another

method to ensure the players experience

is as easy as possible is to enable an

autofire feature on the players units,

this basically means the player does

not have to continually bang away at

the keyboard while playing.

Sound Issues

A good rule of thumb is to never have

multiple copies of the same sound

effect playing at maximum volume at

the same time, this creates a sound

effect overload and will drown out other

sound effects that might be relevant to

the player in the game. Another

mistake often made when polishing a

game is to not fade out music between

state transitions. While

the game may fade

between the relevant

screen in an effective

way, the music in the

game continues loudly

throughout the transition.

By fading the music

along with the screen a

more consistent and less

intrusive effect can be

created.

THE QUALITY TOUCH

A well-polished game stands out when it is played. Not just because of the obvious things that have been added

to the game through the implementation of a proper design, but also because of the time and care that has gone

into making the game a pleasant experience for the user. Often these little things are unnoticed by the player but

their very presence in the game makes the player more comfortable and secure in their new environment.

 15 DEV MAG ISSUE 8

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

Difficulty Settings

Every person that plays the game will

have a different skill level. Certain

players just don't do well in games, and

other players just seem to know how the

internal functioning of the game will

affect their play. By implementing

numerous difficulty levels into the game,

all different levels of player can be

accommodated. This can be done by

allowing the player to select the speed of

the items in the game, or by affecting the

AI opponents' levels of intelligence.

There are also players that would prefer

being able to beat the game regularly on

the easiest level than having to learn

how to beat the top level AI. Don't forget

a good Kiddie difficulty level, where

enemies are very easy to beat a lot of

extra pickups with amazing effects are

implemented.

Other Players

A really well polished game will include

little things like network play or a

cooperative level of some form that will

allow multiple players to sit together and

play the game. Other ideas to keep in

mind are autosaved games at specific

points or time intervals, adding a sound

effect to every in game action no matter

how trivial, game progress indicators

such as a map showing completed

levels, in game customization of the

players units, names and symbols, or

even renaming other in game objects.

Nagging

Shareware games should also include a

finely tuned demo restriction and nag

screen to get people to buy the game. A

nice feature is to have the "No thanks"

button disabled for a while to encourage

the player to spend the time to buy the

game. Shareware games should also

make it very clear to the player what

additional features the purchased game

will have over and above the features

available in the demo version. By

demonstrating and detailing the

additional features the player will be

encouraged to spend the money and

purchase the full version of the game.

Very few free and even many

shareware games do not have all the

features mentioned in these articles. As

such it is understood that all these

features are not truly needed in a

game. However, by adding some or all

of these features the quality of the

game will be increased and therefore

the chance of retaining the player's

attention for long periods of time is

increased. By extending the player's

interest in the game, the chance of

getting the same player to spend some

money on the game is increased.

Polish is not easy to quantify, but when

you sit down in front of a game, the

level of quality within that game is

immediately apparent. Quality games

improve player satisfaction and as a

game designer, the higher level of

player satisfaction you can achieve, the

better chance you have of turning the

game you make into a source of

income.

 CAIRNSWM

 16 DEV MAG ISSUE 8

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

17 DEV MAG ISSUE 8 2006

Simplicity

At all times, your interface should be simple and

easy to understand. This means that your interface

must be intuitive – in other words, if users can’t

nd something via instructions, they should be able

to nd by making a logical, educated guess. Don’t

confuse users with jargon, and make sure everything

is labelled neatly. You don’t want buttons with a

random picture on them and no

explanation of what they do.

Structure

Always design your interfaces

to be logical. It is important to

be consistent throughout your

design if everything looks and

functions in a similar way then

users can understand the inter-

face based on previous experi-

ence. Use colour appropriately

and consistently, you don’t want

 D
E

S
IG

N

overload your design with bright colours that don’t

go well together. You must also keep your colour

scheme consistent and always keep the contrast rule

in mind, since you always want everything to be

clearly visible. Try to keep everything aligned, as bad

alignment makes interfaces harder to understand. You

must always try to group similar things in groups so

that it easy for the user to nd something according

to the group it should logically belong to. If you are

Good User Interface Design
Let’s take a look at something that can often make or break a game or application. User interface
design is vital to not annoy the living daylights out of users. A well-designed user interface is designed
on three principles: Simplicity, Structure and Tolerance.

18 DEV MAG ISSUE 8 2006

designing an application, it is important to dene the

rules of how the interface works clearly. Relating

back to simplicity, never create busy interfaces. Clus-

ters of random buttons will chase people away.

Tolerance

A user interface should always give the user feed-

back in terms of what the user has just done, is

about to do and can to. A good example is to make

menu buttons glow when the mouse is over them. An

 D
E

S
IG

N

interface should always be forgiving, so you should

have things such as an undo and redo. If the user has

done something wrong, let them know what they did

and how they should do it in the future.

Your interface should never be cumbersome – a slow

interface is one of the worst things you can put into

a game. A good example of a cumbersome interface

would be the Startopia menus that play a long annoy-

ing animation whenever you change an option.

Now that you know the basics of making an effective

user interface, go out and make games with annoying,

crowded, ugly menus! Also have a look at this for

some more great pointers. http://www.ambysoft.com/

essays/userInterfaceDesign.html

 SQUID

 designing ood example of a cumbersome interface

would be the Startopia menus that play a long annoy-

ing animation whenever you change an option.

Now that you know the basics of making an effective

user interface, go out and make games with annoying,

crowded, ugly menus! Also have a look at this for

some more great pointers. http://www.ambysoft.com/

essays/userInterfaceDesign.html

19 DEV MAG ISSUE 8 2006

Welcome to the rst installment of my new series

of articles, where I document the trials and strug-

gles I encounter as I (and two of my buddies)

build and nish our new and exciting title, Nonex

2. The plan with this is that new developers can

learn from our experiences, and possibly inspire

others to do the same.

Unfortunately, it will be impossible for me to docu-

ment absolutely everything we do, but we will at least

cover the most fundamental areas as well as the

areas where we struggled the most. So where to

begin? Well, you need a plan of action. A certain

 P
R

O
JE

C
T

S

order in which you want, or need, to do things. So,

I had to make my plan for Nonex 2. In the past I

usually found myself eager to climb straight into the

coding and graphics, and before I knew it I had a half

nished game that looked kind of good, but lacked a

lot of depth and quality.

My last gaming effort, “Team Boss” was the exception

to the rule. I rst made a game design document, then

made layouts and concept art. The result is that my

game had all the planned elements in it at the end of

the day. Granted, the game wasn’t that great, but it did

exactly what I wanted it to do.

The making of Nonex 2: Part 1

WORK IN PROGRESS

20 DEV MAG ISSUE 8 2006

Using this new-found knowledge, I set out to plan

this venture. In an order of steps I planned the sys-

tematic creation of my game.

1 Game design document. (Wish list)

2 Game requirements document.

3 Storyline document.

4 “Make the game work on paper” document

5 Concept art.

6 Level design and level concept art.

7 Character development

8 Environment and villain development.

9 Final game design document with all concept art

and character sheets included, that conforms to the

game requirements document.

10 Creation of game engine.

11 Creation of assets. (Game graphics and sound)

12 Asset implementation.

13 Beta testing. (Ofcial game testers)

14 Bug xing.

15 Beta testing. (Ofcial game testers)

16 Release demo.

17 Market full version game.

18 Final game testing (Ofcial game testers)

19 Bug xing.

20 Release full game for purchase on portal.

This doesn’t just look like a handful – it actually is.

Steps 1 – 9 are indeed the most important steps

of any game making experience. They will most de-

nitely determine the quality and the style of your

P
R

O
JE

C
T

S

game. And the more time spent on this, the better.

You can also see that I do in fact plan to sell this

game when it is released. This means that the game

must be of such a standard that I myself would want

to buy it.

So what is my game going to be about? Well, I have

forced myself to describe it in one paragraph.

“Nonex 2 is a top-down space arcade shooter with

an RPG factor which includes 3 different ship classes,

each with its own skill tree. You will gain levels and

will be able to buy and sell items at vendors, and loot

some in the process of ridding the universe of evil

forces.”

Sounds complicated doesn’t it? Well imagine Nonex 1

(For those who haven’t played it can download it from

my website http://www.apfstudios.com) with a DOTA

bar at the bottom. A bigger inventory and skill tree

than DOTA, but less than Diablo 2. And with ships

that cast “spells”. All this with a 2 – 4 player co-op

multiplayer mode, for added fun.

The game should be replayable and team oriented.

But it must be playable and fun single player as well

(unlike DOTA). Now, that is a description, next month

you can expect a full Design document and Require-

ments document for your reading pleasure.

 HIMMLER

21 DEV MAG ISSUE 8 2006

I’ve played a lot of management games, but to

be honest, the thought of actually making one

never occurred to me until it was announced as

the genre for the NAG Game.Dev Forum’s tenth

competition. Historically, I’ve had an eye on the

goings-on there, but my involvement has typi-

cally been fairly limited.

When news came in that there was money to be

made from game development, the greedy bastard

within was motivated enough to allow the other part

of me, which wanted to make games just for the sake

of making games, to get along long enough to nally

sit down and put forward a proper attempt at making

a game. I had no idea what I was going to make, but

by God, I was going to make it.

It may be surprising, but the concept of fast food

in space is no stranger to me. It’s been sitting in

the back of my head for years ever since I had an

idea for a shooter game in which the protagonist

is desperately trying to defend his killed-by-pirates

parent’s fast food delivery company from evil space

pirates. That game never happened, but ideas like

that have a habit of lurking about until the right

opportunity arrives for them to unfurl their wings.

After musing over a variety of options, I arrived at

the idea of making a management game based on

running an intergalactic fast food restaurant empire.

P
R

O
JE

C
T

S

The Design Process

The design of FFS was a rather interesting pro-

gression. My original idea (heavily inuenced by my

RTS obsessions) was to have an inner ring where

you make buildings, and an outer ring populated by

resources which you harvested in order to have the

necessary supplies to run your restaurants. The idea

of resources was dropped completely once I got it

through my thick skull that in this context, there was

absolutely no fun to be had of constantly building

resource collection ships and dealing with supply

shortages. Unfortunately, that took with it an interest-

ing offshoot idea where you would be able to design

“It’s a little known fact that there are trafc circles in
space”

FFS! (Fast Food in Space!)

POSTMORTEM

22 DEV MAG ISSUE 8 2006

different meals based on the food resources you had

available, but in retrospect, there probably wouldn’t

have been time to implement that feature properly

in any case.

Soon after the core gameplay mechanics had been

established, Louis got involved with the project,

though I don’t remember exactly how. One minute it

was just me working away on it, and the next, Louis

was there, exuding enthusiasm and just being gener-

ally interested. That rumour people pass around that

two heads are better than one certainly proved true.

We had countless debates on various aspects of the

gameplay. These debates helped to eliminate many

crazy unworkable ideas that we would independently

come up with, and generally pushed the game’s

design to a level that simply would not have hap-

pened if it had only been me working on the game.

 P
R

O
JE

C
T

S

Game World Implementation

Creation of the game world itself went brilliantly.

Implementing the planets, star lanes and background

tiles went very smoothly. The ship movement was not

easy to implement, but drawing from prior mathemat-

ics experience gained on a 3D Game programming

course, I managed to put it together precisely as I’d

seen it happening in my head, which in my experi-

ence, is a pretty rare thing.

The game’s design document

“One minute it was just me working away

on it, and the next, Louis was there,

exuding enthusiasm and just being gener-

ally interested. That rumour people pass

around that two heads are better than one

certainly proved true.”

 Louis comes to terms with algebra

23 DEV MAG ISSUE 8 2006

The Engine

The engine that FFS uses is a custom built 2D

game engine that I’d pieced together from the vari-

ous games I’ve worked on over the years. I had

recently upgraded its core to an event driven archi-

tecture. In the rst few weeks of development,

I implemented a whole bunch of concepts that

I’d been struggling with for years, for instance, a

centralised component for creating, managing and

destroying game objects. It was hacked together in

two days, and it worked far better than I could have

hoped. Overall, the functionality of the engine had

far more pros than cons. There were many things it

could not do, but what it could, it did well, and didn’t

fall short as the functional requirements of the game

became more complex.

Game Data Abstraction

One of the strongest points of FFS’s design is

that every single game variable that mattered was

abstracted to a denitions le. This made the task

of balancing the game much easier. Louis, whose

last major programming achievement was changing

a mouse pointer green, was able to balance the

game by editing values contained within a single

le… eventually.

Crunch Period

The nal 72 hours of development was a blur of

frenzied activity. Considering we cut things so late,

this nal push could have easily ended in disaster. A

record number of energy drinks were consumed as

we nalised the core gameplay, xed bugs, created

P
R

O
JE

C
T

S
graphics and balanced the game. In the lead up to

cut off time, I was hacking in the game menu and

credits while Louis was attending a family braai. He

did however, come back afterwards and performed

some truly Herculean last minute gameplay balancing

with the assistance of my “why didn’t I also get a

mention for Herculean last minute gameplay balanc-

ing too?” brother Byron who acted as the ofcial game

tester and coffee maker.

What went wrong?

Interfaces!

If anyone ever tells you that making decent interfaces

for a management game is easy, they’re probably

Having lost the use of his other nine ngers, ET pressed
on!

24 DEV MAG ISSUE 8 2006

getting theirs done by cheap Indian labour, and have

no idea of the complexities and problems than can

arise. No doubt I’m being over dramatic, but I’d been

blithely building the game, thinking that adding the

interfaces would be a simple matter, and would take

no more than a couple of days. Fate being the ckle

wench that she is, threw me multiple curveballs of

doom™.

Finding ways to get game data into the interface

controls, and ensure that the data stayed up to date

ended up being hacked directly into the interface

objects themselves. That combined with a hastily put

together hierarchy of interface controls resulted in

an enormous amount of bugs and difcult to trace

performance issues.

 P
R

O
JE

C
T

S

On the up side, I’ve learned many lessons and now

have a far better ideas of how I’ll be making interfaces

in future.

unDelphiX

Using the unDelphiX graphics library was both a curse

and a blessing. The library is fast, fairly well struc-

tured, and works on pretty much every machine I’ve

ever tested it on. (With the exception of ones with very

old graphics cards) A week into development, I went

looking to see if there had been any new develop-

ments happening with the library. A newer version had

been released, which I downloaded and installed. Two

sentences back, I’d made a terrible mistake.

 Do not under any circumstances, during the develop-

ment of a project, trade a code base which you know

to be working for one which claims to be newer, better,

faster. I lost about a week of development discovering

that the new version had some major bugs, previously

working functionality just stopped working completely,

causing a number of things in the game to break.

In the end, I rolled back to the previous version and

continued development from there.

The unDelphiX library is basically a hardware acceler-

ated version of the original DelphiX, and unfortunately,

the conversion has many holes in it, and a number of

inconsistencies. I would spend hours pouring through

the game’s code searching for a bug, only to nd the

problem originated from an unDelphiX function.

This little retelling should not be viewed as a black

mark against unDelphiX, it’s still a good library despite

its aws. Every graphics library I’ve ever worked with

had its own set of problems and quirks.

Finding that conventional techniques failed, ET tried
other methods of persuasion

25 DEV MAG ISSUE 8 2006

Gameplay

Why is the gameplay in the “wrong” section? Surely

the game that won the competition shouldn’t have to

worry about such things? Wrong. The debates that

raged between Louis and myself were epic in scope

and gargantuan in beer consumption terms. Jokes

aside, there are two major reasons that gameplay

ends up here.

A: Insufcient Game Testing - There simply wasn’t

enough time to play-test and balance the game due

to many core elements being implemented so late.

As a result, the gameplay is not as balanced as it

could have been.

B: Gameplay at line - The gameplay in FFS

reaches a plateau within about 30 minutes. The

design did not include enough diversity to allow for

the game to remain engaging for the full duration of

a game.

P
R

O
JE

C
T

S

 Louis turned to performance enhancing drugs

No explanation necessary.

26 DEV MAG ISSUE 8 2006

Time vs. Features

We had a little less than two months to create the

game. I thought the people complaining that it was

too much time were crazy. The amount of dropped

features was extensive, and the number of elements

that simply should be in a complete game, such as

saving and loading, or sound and music, just aren’t

there.

In Closing

Overall, Louis and I had a great time developing

FFS, and we’re extremely proud of what we man-

aged to achieve.As for the future of FFS, we view its

win as an indication of a successful prototype. The

 P
R

O
JE

C
T

S

game is certainly not complete, neither in features,

nor in gameplay. The design for the next version is

fully underway, and it will be simply bigger and better

in every way. There are also plans in the works to

have the completed game published. Let’s see how

that goes…

 EVIL_TOASTER

No explanation necessary.

 Another satised alien customer

FAST FOOD IN SPACE! in action!

27 DEV.MAG ISSUE 8 2006

T
E

C
H

Pathnding is one of the build-

ing blocks of AI program-

ming. Whether it’s a bunch

of ying monsters coordinating

themselves with one another in a

3D labyrinth or a couple of ene-

mies nding their way to the hero

in a Pacman clone, working a way

around obstacles as opposed to

through them is an important task

for any reasonably smart enemy.

 Although there are many tech-

niques for pathnding, this arti-

cle will focus on a simple – yet

still highly effective – algorithm

designed for the job: A*.

Overview of the algorithm

A* (pronounced “A-star”), also occa-

sionally known as Floyd’s Algorithm,

is a simple pathnding technique

used by many programmers to

acquire suitable pathing in any grid-

based obstacle course. It involves

a breadth-rst search of the maze,

starting with the entity’s grid location

and then proceeding to “ood” the

grid blocks around it. The blocks

themselves are elements of an array

(which is essentially our grid), and the

values assigned to these are steadily

incremented each time the ooding pro-

cedure is run on the grid.Each block can

only be assigned a value once – thus,

by the end of the routine, these blocks

should have a value corresponding to

the number of steps required to get from

the entity to any given block, and from

here it’s easy to get the AI to do what

you want with regards to pathnding.

Building a simple A* algorithm

To demonstrate the basic workings of

A*, we’ll use a 2D maze, a generic AI

entity to use the code on and a generic

target which this entity needs to reach.

Obstacles will be thrown into the maze

to make sure that only a smart path will

work for the entity. Since this is just

an introduction to the algorithm, we’ll be

using a static 10x10 integer array for

our maze.

int grid[10][10];

The array elements should be initialised

to zero. Throw in a few walls by chang-

ing the value of some elements to -1.

Get a value for the entity and the target

(use negative numbers, such as -2 for

the entity and -3 for the target). Repre-

sented as a picture, your array should

now look something like this:

Now that it’s initialised, we can take a

look at messing about with its values to

get ourselves a path. In other words,

we run our rst “ood” iteration. For

this, we’ll need to set up some loop

structures:

i = 0;

while s = true

{

i = i + 1;

 for x = 0 to 9

 for y = 0 to 9

 {

 //code to check array at position [x][y]

 }

//additional code follows as necessary

}

THE TECH
WIZARD
An introduction to pathnding

28 DEV.MAG ISSUE 8 2006

T
E

C
H

Variable “s” is any sentinel value ini-

tialised as “true”, to make sure that

we run the ood as many times as

we want. “x” and “y” are grid co-ordi-

nates. “i” keeps track of how many

iterations of the ood we’ve made

already.As you may have guessed

already, the rst part of our code

checks every block on the grid, from

position (0,0) to (9,9). Since this

is the rst iteration, we want to be

checking for a -2 (the grid position of

our entity). Once that happens, we

want to be checking the blocks imme-

diately around it. In this example, our

entity (red block) is at position (7,5).

This means that we want to check the

blocks (6,5), (8,5), (7,4) and (7,6).

 If there is a zero in any of these

blocks, it means that this block hasn’t

been touched by the pathnder yet,

and we can give it the value of i,

which is in this case one. This indi-

cates how many steps need to be

made to get from the entity to the

given block, and the number repre-

sented by i will increase every time

the ood procedure is run. If a

block already has a non-zero value

(such as -1 for a wall), there is no

new value assigned. Your rst step

should end with the array looking like

this:

The second time you run the ood, your

i variable will be increased by one, and

from here on you’ll be searching for

blocks with the value of (i-1). Thus, on

the second iteration, i will have a value

of 2 and you’ll be looking for blocks with

the value of 1. Each block you nd

will have the four surrounding blocks

checked for zeroes, and will have the

value of 2 assigned if any are found.

The same holds for the next iteration,

except that i will be 3. Here’s what your

ood should look like after the next few

loops:

See what we mean by “ooding”? As

the loop keeps iterating, the numbers

will keep expanding across the grid

until they reach their target, like so

(keep in mind that the whole ood isn’t

shown here):

Note that throughout your loops, you

should be searching for the target

when checking block numbers. Here,

when i = 13, we’ve managed to nd

it. Thus, we save the coordinates of

the target we’ve hit, terminate our main

loops by switching the sentinel value

“s” to false and entering a new section

of code.

After this, things are easy – starting

at the target block, search for a block

next to it which has a value of one

less than variable i (ie. 12). Store

that block’s co-ordinates for use later

(preferably in a list structure) and then,

using it as a reference, decrease i by

one and repeat the process so that

you’re looking for 11.

Keep going until you reach the original

block. And yes, this process works –

there are multiple paths that can be

taken, but all are of the same length:

29 DEV.MAG ISSUE 8 2006

T
E

C
H

And that’s it!

You’ve just learned how to use a simple

implementation of the A* pathnding

algorithm.

Using the principles here, it’s easy to

create your own pathnding bot and

expand upon it to make it more sophisti-

cated.

This was a very simple example, and

improvements could be made in the fol-

lowing areas:

– allowing for variable maze sizes

(use of non-static structures or

dynamically declared arrays)

– assigning “checking” co-ordi-

nates to lists so that you don’t have

to check the entire grid on each iter-

ation

– catering for multiple targets, pre-

ferred targets or unreachable tar-

gets

– anything else that you’ll need!

Good luck, and happy coding!

 NANDREW

30 DEV MAG ISSUE 8 2006

Working in a simple text editor with basic

compilation tools is all good and well,

but the development world has mostly moved

on from that ‘primitive’ approach (with the

exception of a few hardcore masochists, of

course). Modern toolkits include richly featured

Integrated Development Environments (IDEs)

that incorporate syntax highlighting, debuggers,

resource managers and more. This all sounds

really fancy and expensive, doesn’t it?

Well, the good news is that in the development world

some of the best things really are free. One of them

is the NetBeans IDE, which we will be using from

now on. This edition of the tutorial series will focus

on moving our project so far into NetBeans, so it

won’t involve much coding.

If you have not already done so, download and

install NetBeans 5 and the NetBeans Mobility Pack

from www.netbeans.org and install them. The instal-

lation process is simple, just run the installation exe-

cutables and follow the instructions. If you do run

into problems, the mailing lists to be found on the

NetBeans website provide excellent support.

Now run NetBeans (the Mobility components will

automatically be loaded). To invoke the wizard con-

MOBILE GAME
DEVELOPMENT IN JAVA

Tooling up with NetBeans

 M
O

B
ILE

veniently provided to import WIK projects, choose

New Project from the File menu. Select Import Wire-

less Toolkit Project from the Mobile group and click

Next. Ensure that the correct location of your Wireless

Toolkit is specied (typically C:\WTK<version>),

choose our Tutorial project in the list and click next.

On the Name and Location page you may want to

change the name of the project to simply Tutorial, and

note the location in which the project will be created.

Note also that your source les will not be moved to

Above: Import Wizard

Above: WTK Project Select

31 DEV MAG ISSUE 8 2006

this location, this is just where the NetBeans project

les will be created; if you had to create a new proj-

ect from scratch, your source les would be placed

in the same location as your project les. Make sure

the Set as main project check box is ticked and click

Finish. You will now see the Tutorial project in the

project explorer in NetBeans, expand <default pack-

age> node to reveal your java source le. If you keep

expanding the tree and double click on any of the

elements you will see that this view allows to to jump

to source les, classes, or even individual methods

and member variables.

Now that we are using a tool that makes it easier

for us to navigate les and classes, lets move our

TutorialCanvas class into its own Java le, since

this is proper Java practice. To do this, right click

on <default package> in the project explorer, and

choose New->Java Class. Call the class TutorialCa-

nvas (remember it’s case sensitive) and click Finish.

NetBeans creates a simple class for you with a con-

structor, but we will just replace it with our own

class. Double click the TutorialCanvas node under

TutorialMIDlet.java to nd our implementation. Drag-

select all the code dening the class (from the class

keyword up to and including the last closing brace)

and cut it from that le (Ctrl+X). Now go back to

TutorialCanvas.java, delete everything in that le,

and paste what you just copied (Ctrl+P). You will

now see many red blocks appear next to the source

code.

If you click on any of these, they will take you to a

line underlined in red. This is the IDE at work, identi-

fying errors in your code before you even compile it-

you have to admit, that’s pretty cool! But didn’t this

code work before we moved it? Yes it did, however

 M
O

B
ILE

that was in a le that had its imports declared, so now

when this le is compiled, Java won’t know where to

nd classes like Graphics and Canvas. This is easily

xed, just go back to your MIDlet java le and copy all

the import statements from the top of it (Ctrl+C).

Now go back to the Canvas java le and paste them

at the top of the le, before the class declaration.

Within a couple of seconds, all those angry red lines

and blocks will disappear. These early indicators are

extremely useful, so get used to using them early on.

Now that we’ve neatened things up a bit, let’s make

sure everything still works. To run the MIDlet in debug

mode, press F5.

Below: Project Tree

“NetBeans allows us to

specify les, folders or jars

to be included in our MIDlet

at build time. “

32 DEV MAG ISSUE 8 2006

All les will automatically be saved and your project

will compile and build and the familiar emulator will

pop up ready to run your game. Close the emulator

and lets do some nal poking around in the IDE.

We’ve had a look at the source code, and it’s obvi-

ous where you need to look for those, but what

happened to our sprite images? NetBeans allows us

to specify les, folders or jars to be included in our

MIDlet at build time.

This is useful for including third party libraries as well

as for image, sound and other resource les. Right

click on the Tutorial project and select Properties

to open the project properties window. As you can

see there are loads of options but for now open the

Libraries and Resources page under the Build group.

You will see that the import process automatically

added your res folder to be included in the project. At

this point feel free to explore the settings available

 M
O

B
ILE

to you in the properties window, and see if you can

gure out what some of them are for. If you manage to

‘break’ something, you can always delete the project

and re-import it. There is also context sensitive help

on each of these options, just press F1 at any time to

see help relevant to what you have selected.

That’s all for this tutorial. Next time we will try our

hand at the debugger, and have a look at how

NetBeans makes it easier to target your game at

the many different cellphones that are out there

(including the one you carry with you). In preparation

for this I would suggest you download the SonyErics-

son SDK from http://developer.sonyericsson.com/site/

global/docstools/java/p_java.jsp, and possibly what-

ever emulator matches your own cellphone.

Until then, enjoy digging around NetBeans to see

what it offers.

 FLINT

Above: Libs and Resources

33 DEV MAG ISSUE 8 2006

There were people. There were games.

There were competitions. There were Game

Devvers.On 29th September to 1st October, rAge

struck. This was the biggest, baddest gaming

and technology expo to hit South Africa this year,

and Dev.Mag was all a part of it. Three days

of blood, sweat and considerable amounts of

tears went into making rAge 2006 a special event

for Game.Dev, with this year sporting a bigger

stand, bigger prizes and ... well, heck, a bigger

everything, really. And as it turns out, bigger

denitely equals better.

Getting started

 As early as three days prior to rAge, members

of the Game.Dev and Dev.Mag crew were busy set-

ting up the stand. This sweet deal sported a fancy

projector, some kindly sponsored computers from

IT Intellect and, of course, some all-important bean-

bags for people to crash on when they weren’t busy

running about and looking important. It was awe-

some seeing an event like this building itself from

scratch, especially when one had a role in setting

it all up!

The morning of the 29th arrived, and we were still

frantically getting our gear organised when the doors

of rAge burst open and the people ooded forth in

TA
ILP

IE
C

Ea torrent of anime lingo and game-themed t-shirts.

Fortunately, those amongst our crew already present

were hardy enough to withstand the storm, elding

the rst few individuals who staggered over to this

mysterious “Game.Dev” stand and telling them about

the wonders and joys of making games (while doing

their utmost to show off the wicked Game.Dev shirts

provided by Luma).

 Technical issues at the stand were resolved just in

time to meet the greater ood which soon descended

upon us, including the arrival of most of the rest of our

team. Introductions and horried realisations (“Oh my

word, you’re actually a guy?”) left quite a few of the

Above: Danny “ Dislekcia” Day

rAge report!

34 DEV MAG ISSUE 8 2006

 members occupied for a while – especially owing to

the fact that Game.Dev consists of members hailing

from all sorts of places around the country. The

surrounding chaos made the meetings a little bit less

heartwarming, but still got people motivated to work

together on some of Game.Dev’s projects at rAge:

Talk, talk, talk ...

Game.Dev hosted at least a dozen talks and semi-

nars throughout the course of rAge, delivered by a

variety of people on a massive range of topics –

these ranged from postmortems of locally-produced

AAA titles to talks on the advantages of frameworks

and even a seminar displaying the power of rapid

game development tools such as Game Maker.

 Big names who did some chatting in this regard

were Dale Best and the fellows from Luma (respon-

sible for Club Silo), I-Imagine’s Dan Wagner and SA

Developer .Net’s Andre Odendaal. Of course, the

rest of the crew and even the audience were allowed

to join in when the discussion panel came around for

people to get involved with.

 While discussing how to move game development

forward in South Africa, the microphone was passed

back and forth like a hot potato, with experts

giving their views on the topic – right alongside the

not-so-experts (the esteemed author of this article

included), who spent their time trying to tread intel-

lectual water and somehow managed to sound smart

in the process. Aside from the ofcial talks, there

 TA
ILP

IE
C

E

were also countless impromptu sales pitches con-

cerning the Game.Dev and Dev.Mag brands offered

to clusters of excited newcomers, and many others

were given hands-on presentations of how neat Game

Maker was, or even got to see just how awesome

some of the community’s games really were.

35 DEV MAG ISSUE 8 2006

Fun with the Xbox 360

Game.Dev (along with your ever-reliable Dev.Mag

journalist!) naturally wasn’t too busy to pass up the

opportunity of checking out the big hoo-hah sur-

rounding Microsoft’s brand new console. Aside from

a very fancy and very exclusive launch party at

rAge’s Dome itself (which follows the law of all exclu-

sive parties – the less people allowed to go, the

better the party has to be), there was the actual

BT Games launch of the console at midnight on the

29th. This included giving away a nice big stack

of premium 360s, free of charge and soul-binding

contracts!

 Of course, the game developers simply had to put

their own spin on the 360 launch, and a demonstra-

tion of the new XNA toolkit – a means of easily

developing games for both the PC and 360 platforms

– was delivered by Game.Dev to anybody who was

interested in learning about it. This talk was given

by an actual Microsoft rAge exhibitor, adding sig-

nicantly to the “ooh!” factor of the display. Next-

generation stuff doesn’t have to be complex when

you know what tools to use!

Free stuff everywhere

No exaggeration. From itty bitty baby ITI pens

to unwittingly “given” posters (yeah, they were that

good), we had our hands full in the freebies depart-

ment. This included fresh-from-the-oven Game

TA
ILP

IE
C

E

Development DVDs, burned at the event itself and

going like hotcakes whenever people passed by.

These weren’t harmless little DVDs either – each

had over 4 gigs of indie games, educational videos,

podcasts, websites, resources, toolkits, engines, sam-

ples, tutorials and crocheted sweaters at the wannabe

game developer’s disposal for absolutely no cost.

36 DEV MAG ISSUE 8 2006

Giveaways of a competitive nature were also prev-

alent. One such event offering these was the

Game.Dev Idols competition, in which several game

development books sponsored by Intersoft were

given away to people who could step up and relate

plans for clever and original games which they’d

come up with.

There was a surprising supply of ideas – concepts

such as an inverse system of Lemmings and a multi-

player point-and-click adventure were thrown at our

panel of game industry experts. Throughout the pro-

cess, ideas that were genuinely interesting, original

and applicable reared their heads, and their creators

were duly rewarded. Creativity and inspiration is

denitely alive and well in the local community, it just

needs a platform to work from!

 The big brother of the pack was, of course, the

prizegiving for Game.Dev’s Comp 10, for which par-

ticipants were required to create a management

game with whatever tools they had handy. There

were some genuinely astounding entries, coupled

with some genuinely astounding prizes – R10 000

was sponsored by NAG for this competition. Serious

business!

 The ceremony took place on the rAge main stage,

which made the whole thing really slick, fancy and

important-looking – as if the prospect of winning all

that money wasn’t important enough already.

 TA
ILP

IE
C

E

The prizegiving for Game.Dev Comp 10 sponsored by NAG

37 DEV MAG ISSUE 8 2006

In closing

The presence of Game.Dev at rAge has massively

increased since last year, and more events (includ-

ing next year’s rAge) are already in the organisa-

tional pipeline for both Game.Dev and Dev.Mag. It’s

amazing fun taking part in the Game.Dev activities,

and hopefully some of you are reading this after

hearing the good word at the expo.We’re continuing

our efforts to expand and make game development TA
ILP

IE
C

E

even more awesome for South Africans out there,

so if you’re interested in advertising, sponsoring or

assisting Game.Dev or Dev.Mag in any future endeav-

ours, be sure to visit www.gamedotdev.co.za or e-mail

Dev.Mag at devmag@gmail.com. As for rAge – if you

saw us there, we hope you had an awesome time!

If you didn’t go, then make sure you do next time

around, when it’ll be bigger, better and even more

devvy!

 NANDREW

Comp 10 announced its winners at rAge 2006, in front of many enthusiastic game developers and

general rAge attendees. Giant cheques were a feature, although they weren’t quite as cool as the R10

000 in cash prizes that got handed out! The winners were as follows:

Best new entrant (R1 000)

Hotel manager – Darth Penguin and CiNiMoD

Third place (R1 500)

Cyberworkz – kRush and Geometrix

Second place (R2 500)

Fantasy Land – Cairnswm

First place (R5 000)

Fast Food in Space -- Evil_Toaster

UNTIL NEXT YEAR... GAME ON!

DIGITAL MAYHEM

38 DEV.MAG ISSUE 8 2006

C
O

M
IC

O N L I N E

devmag.googlepages.com

www.devmag.org.za

