
REVIEWS:LEGEND.OF.SHADOW:GAMASUTRA
INTROVERSION,MARKETING101:BRANDING DEV.MAG ISSUE 7 2006

ISSUE 7 2006
S

O
U

T
H

 A
F

R
IC

A
’S

 F
IR

S
T

 G
A

M
E

 D
E

V
E

L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

CONTENTS
REGULARS
03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
06 - ROACH TOASTER POSTMORTEM

SPOTLIGHT
08 - INTROVERSION

REVIEW
12 - GAMASUTRA

13 - LEGEND OF SHADOW

DESIGN
15 - QUALITY TOUCH PART 3: ADDING THE QUALITY

17 - BLENDER TUTORIAL: MATERIAL AND TEXTURE.

19 - PROJECT MANAGEMENT: PART 3..

21 - FRAMEWORKS: THE GAME LOOP

22 - MAKING 2D ASSETS WITH 3D SOFTWARE PART3

MOBILE
25 - GAME DEVELOPMENT IN JAVA: PART 5

TECH

31 - DATA STRUCTURES: PART 2

TAILPIECE
33 - MARKETING 101: BRANDING

COMIC
36 - DIGITAL MAYHEM

02 DEV MAG ISSUE 7 2006

05 0806 13 34

ED’S NOTE
Yes, rAge is here. Or already past, if you weren’t lucky enough to be at the

expo when you got this edition of Dev.Mag. If you didn’t go, I can only stress
that you make every effort to be there next year, because it’s a pretty big event
for anyone to miss out on!

You may have noticed that the recent Dev.Mag release schedule has been altered.
This was to accommodate for rAge, and after this issue you can expect us to return
to our normal routine.

In this issue we have something very special lined up for you. We were lucky
enough to get a hold of Introversion and interview them on their recent title,
DEFCON. For those of you who don’t know who they are you can start off by
climbing out from under your rock. Introversion is the company responsible for the
creation of Uplink and the award-winning Darwinia. You can nd the interview by
ipping just a few pages.

Keep an eye out for us if you’re at rAge!

Editor
Stuart “GoNz0” Botma

THE TEAM

RANKING OFFICER
Stuart “GoNzO” Botma

SECOND IN COMMAND
Rodain “ Nandrew ” Joubert

DESIGN SQUAD
Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

CEREBRAL SOLDIERS
Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairnswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Yuri “knet” Oyoko

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

Greg “Zphyr” Reveret

Geoff “GeometriX” Burrows

WEB WARRIOR
Claudio “Ch1ppit” de Sa

Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

To join, make suggestions or

just tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of

the NAG Game.Dev forum.

 Visit us at www.nag.co.za

All images used are Copyright and

belong to their respective owners.

If Chuck is reading this magazine:

All jokes within are for entertainment

purposes and should not be taken

seriously or acted upon ie: Please

don’t roundhouse kick us.

03 DEV MAG ISSUE 7 2006

04 DEV.MAG ISSUE 7 2006

DIGITAL STOMPIES

Blog: 3pointD

http://www.3pointd.com/

“The Metaverse and 3D Web, as blogged by Mark Wallace and friends”. Sounds
simple enough, but has a surprising amount behind it, including some really handy
and insightful looks at the world of computers and the Internet. Although not
exclusive to the art of game development, this blog does provide some handy tidbits
here and there, and merits a read for those interested in the greater IT world as
well. If you don’t fancy this stuff, give it a miss, but avid blog readers should enjoy
this one.

Games - Serious Business!

http://seriousgamessource.com/

For those who are interested in the
“serious” side of gaming and how
videogames can be put to practical
use, take a look at this site. Serious
Games Source is a place dedicated
to the coverage, discussion and pro-
moting games which are used for
training, medical, military, educational
and governmental purposes. This
includes news on Edinburgh Univer-
sity’s development of an “Anti-bully”
title designed to help children, fea-
tures on the latest war simulations
and reports on the Serious Game
Summits. This site provides an inter-
esting, and rarely explored, perspec-
tive on the world of video games.

Mobile Dragon

http://www.hitech.herocraft.com/
technology.htm

As the mobile gaming world expands,
so does the demand for mobile develop-
ment environment. Mobile Dragon is a
cross-platform 2D/3D game engine writ-
ten in C++, designed for use with PDAs
and Smartphones running any sort of
mobile OS. It includes all the necessities
for mobile game dev, supporting network-
ing, 3D environments, numerous input
systems and its own physics and math
libraries. The 1.0 beta release is cur-
rently available, complete with documen-
tation and several demo applications.

Game Career Guide

http://www.gamecareerguide.com/

A new site, afliated with Gamasutra, has
just recently launched for people who are
interested in learning about - and getting
into - the gaming biz. It’s already lled
with features such as how to apply for your
rst game development job, as well as
reviews of good game development books
and a convenient “Getting Started” section
for those who are new to the site. Round
this off with an all-important newsletter for
those who want to keep track of what’s
going on and presto, you’ve got a valuable
online resource that’s open to all.

N
E

W
S

05 DEV.MAG ISSUE 7 2006

Innovative mobile gaming

http://www.gamevil.com/eng_new/
game_view.jsp?game_id=4&category=1

Nom 2 has received coverage from
many gaming sites for its innovation,
style and fun. Developed by
Gamevil and priding itself on its “one
button” gameplay, this 2005 title is
a great example of how innovation
is denitely ourishing within the
mobile genre. For more info on this
game, visit the Gamevil website, or
check out the Gamasutra postmor-
tem at http://www.gamasutra.com/
features/20060908/shin_01.shtml.

FPS “Quantum Leap” awards

http://www.gamasutra.com/php-bin
news_index.php?story=10720

A recent feature on Gamasutra requested readers
to submit motivations for their all-time best FPS in
terms of how much it added to and pushed forward
the genre. Here’s the resulting lineup of the nal-
ists. Honorary mentions of typical favourites such
as Doom and System Shock did the rounds, along
with a few surprise entries here and there. It just goes to show how the bounds of the FPS genre can always be pushed back to
bring about something new and refreshing - and how rewarding creative thinking can be!

XNA Game Studio Express beta
release

http://msdn.microsoft.com/directx/xna/

Indie developers, rejoice! Microsoft has
announced the release of a brand-new
product that enables the average Joe
Developer to create games for the Xbox
360. The XNA Game Studio Express, while still in beta, already promises free game
development for the Windows XP and Vista environments. For an annual fee of $99,
these games can be shipped over to the 360 console as a perk of the XNA Creators
Club, which will be implemented when the full version of the studio is released.

Book: Articial Intelligence for Games

http://books.elsevier.com/us/mk/us/
subindex.asp?isbn=0124977820&country=
United+States

AI in games is not the easiest develop-
ment path to take, and with good reason.
Few good books exist on the subject,
which make gems in the series that much
more worthwhile. Articial Intelligence for
Games has recently been made avail-
able, and reviews promise that it’s worth
any aspiring AI programmer’s time to
look through. The book goes through the
AI process from beginning to end, citing
examples from actual games and provid-
ing snippets of C++ source code and a
helpful CD-ROM to assist readers.

Autodesk community portal available

http://area.autodesk.com/

The creators of 3D Studio Max have now
created a community portal known as
“Area”, designed to allow people to show-
case creations made with the full range
of Autodesk animating and rendering prod-
ucts. Not only does the site offer free
membership, but has quite a hefty amount
of perks associated with such membership
as well - including blogs, catalogues,
showcase areas and access to the local

forums. The site also contains news and tutorials for enthusiasts, making it a valuable
stop for anyone who works with Autodesk products or even 3D tools in general.

N
E

W
S

06 DEV.MAG ISSUE 7 2006

FE
A

T
U

R
E

It all started while watching the

daily news on TV. What I wanted

to recreate was a riot control

squad. The basics behind the

game detailed that you should

rst control a situation and then

exterminate it. We all wish we

could exterminate some rioters

every now and then, but it seemed

inappropriate. Due to some

unknown reason, I decided

to switch to a highly trained

team of militia that will try

to get rid of the neighbour-

hood’s roaches.

The name evolved from the

term “Roach Coach” taken

from a Powerpuff Girls epi-

sode (yes, that name sticks

in your head for a very long

time) to “Roach Toaster”, which

aptly ts the game’s premise.

I am very proud of Roach Toaster.

It is my most popular game and

has been received very well. It has

appeared on gaming magazines and

freeware games databases. Since

the download counter was initialised

on Roach Toaster in January 2006,

it has received 1000+ downloads. It

is at the current version of 1.2. Work

was started on version 1.3, but it was

scrapped for the sequel.

Here is what I learned and I hope it will

help you too:

Design everything from scratch

When I started development on Roach

Toaster, it was a sort of hit and miss

affair. I did not quite know how it would

turn out. This resulted in design prob-

lems that popped up during all stages of

development. The basic premise of the

game turned into something I did not

intend it to be. This luckily turned out

to be a good thing in a way, but I felt

that it was not what I wanted it to be,

which was control and then extermi-

nate. I had to dig up totally new game

mechanics to justify some design prob-

lems.

So, to avoid your game taking a turn

for the worse, remember to design

every aspect of the game and to play

every part of the game in your

head.Develop with the end in

mind. This might seem strange,

but it is wise to design the way

you are going to develop your

game also. When you start on

a game you do not expect your

current development to hassle

you later on, but believe me,

it does! Instead of starting with

parent objects, I made a sepa-

rate object for every unit. This

meant that I had lots and lots more to

do when I detected a general bug (no

pun intended and for hereafter) in the

units, and thus had to change “some-

thing” in every unit, which took quite

some time.

So my advice is develop with the end

in mind. You do not want to get stuck in

a situation like this.

Roach Toaster postmortem

07 DEV.MAG ISSUE 7 2006

FE
A

T
U

R
E

Resources (graphics and sound)

do matter:

I have always had the motto that

“gameplay is king”. In every aspect

I still believe it is true. What urges

people to download your game?

What little do they have to judge

your game upon? Screenshots. This

means that your game should also

look pretty and have eye-candy.

When people commented on Roach

Toaster I realised that if I had better

graphics I might have gotten a few

more downloads, and every down-

load matters. If I had better graphics,

the overall game would have been a

much more pleasant experience.

I will give you a perfect example:

When I rst released Roach Toaster

(version 1.0) to the Gamemaker

Forums, it received almost no down-

loads. The main menu was horrid

and it used resource pack sprites.

I changed the menu, spruced up

the graphics in some parts, and now,

on the 2nd time round, Roach Toaster

nabbed about 250 downloads just from

the Gamemaker Forums.

Sound is crucial too. If it is bad and

cannot be muted, people will stop play-

ing your game before they have even

started it properly. I got this comment

from another forum.

Develop for yourself:

One thing I noticed that some people

apparently disliked Roach Toaster

downright, while others praised it for its

“excellent design” and “awesome fun”.

When asked why, it came to the fact

that they simply do not like this genre, or

these types of games.

Since this a niche market, it did not get

as many downloads as, say, an action

title (although there are exceptions).

Thought has been put into making

Roach Toaster 2 more action-packed

for those people who like action, but I

decided against it.

I developed Roach Toaster because I

liked the concept and thought it would

be fun to play. If you develop games

that are fun for yourself, regardless

of how small the market is, there are

bound to be others who will enjoy play-

ing it just as much as you enjoyed

making it!

 TR00JG

Find Roach Toaster at Tr00jg’s web-

site:

http://www.shotbeakgames.za.net

A good strategy for getting the game

idea into the game is to prototype it

within the Game screen of the frame-

work. If the prototype takes too long

at least it’s already in the framework

and can be entered into the contest.

The prototype should include the key

design ideas of the game, this includes

all the ideas that will make the

08 DEV MAG ISSUE 7 2006

What advice do you have for bedroom programmers all

over the world?

Setting up your own company is extremely difcult and your

driving impulse must be primarily for the love of gaming and

creating games - although the money (once it comes in) does

help. Above all, you need to have the courage of your convic-

tions - we knew we had something worthwhile at Introversion,

strong games and unique ideas; we just needed the grit and

determination to see it through even when things got rough.

It’s probably not what anyone wants to hear but being part of

an independent developer involves a lot of hard graft and is

not even half as glamorous as it sounds! Or course, there are

enormous benets to being independent - primarily you can

do whatever you want! We own our own company, decide our

work hours, and we don’t have publishers breathing down our

necks telling us what to do next. This allows us pretty much

complete creative control but also means we have to remain

focused and disciplined - harder than it sounds, especially if

the cash ow is drying up. That said, we’ve had some great

moments here at Introversion, and our success at the IGF

awards this year made all of the blood, sweat and tears

over Darwinia seem worth it.

How do you see the indie industry at the moment?

Generally speaking, the biggest problem about being a small

 indie developer at the present moment is that you simply don’t

have the time and resources to compete with other much larger

developers in the making of certain types of games. Having

such a small dev team means that we struggle to produce

content, and a number of reviews said that Darwinia was too

short, but it had taken us 3 years to produce a game with

10 levels! Content production is the major time drain on most

games and we’d hoped to generate our levels automatically, but

we ended up building each level by hand which took a very

long time.

At Introversion, we have to make our small dev team an asset,

which is why we concentrate on producing the kinds of games

that are better suited [to us] - that is, games that are simpler

and purer but more able to experiment freely with ideas and-

S
P

O
T

 L
IG

H
T

Recently, Dev.Mag was privileged enough to gain an audience with the people at Introver-

sion - the self-confessed “bedroom programmers” responsible for indie gaming greats

such as DEFCON and Darwinia. TROOJG takes the helm and has a chat with them.

09 DEV MAG ISSUE 7 2006

innovations.The second major issue for indies at the moment,

or at least certainly when we started 5 years ago, is that

publishers aren’t really interested - that’s the bottom line and

it can be a real struggle to get yourselves noticed and taken

seriously. When Darwinia was released, we were big enough

to self-publish in the UK, but the US market is around ten

times larger and we just didn’t have the staff. It took a success

story like the Darwinia launch on Steam for publishers to sit

up and take notice and we were very happy to team up with

Cinemaware Marquee to launch Darwinia in US retail in early

July this year.

Where do you see it going in the future?

Here at Introversion we think that on-line distribution may well

be the saviour of computer games. Modern game develop-

ment costs millions of dollars that developers usually have to

seek from a publisher. In doing so, the publisher takes a

large nancial risk and as such the royalty payments made

back to the developers are not favourable. Once retail and

the distributor have also taken their cut a game needs to

be enormously successful before the developer actually sees

some prot. This is destructive as it means that developers

tend to shy aware from making innovative and creative games

and stick to what they are told to do by the publishers. On-line

distribution may provide a route by which a developer can

directly prot from each individual sale and cut out the mid-

dleman - thus requiring fewer sales to make a prot, thus

enabling them to be more innovative and take more risks.

Certainly our deal with Valve on Steam last November has

made our future prospects a lot brighter and allowed us to

continue making the kinds of off-the-wall games that we like to

create. We rst approached Valve when we originally launched

Darwinia but it wasn’t until we launched our second Darwinia

demo that they got in touch with us. As far as game sales go

- Steam was in a completely different league, giving us access

to a much wider range of gamers. We sold more copies of

Darwinia on Steam in three weeks than we’d managed to sell

ourselves via UK retail and the Introversion store during the

whole launch period!

What is your opinion on applications like Gamemaker, ie

Rapid Game Development kits?

It’s not something we would use, as we want the true freedom

to create new ideas. The problem with game development

apps, is that what comes out tends to be broadly similar to

other games produced with the same app, even if the underly-

ing idea is different. We’ve not had any experience of using

these systems - we just develop our own, as it’s easier and

quicker for us in the long-run.

Any hints on your 4th game?

I’m afraid we can’t divulge anything about this as present but

rest assured, as with all our games we guarantee to make it

exciting, unique and wholly different to anything else out there!

Check out www.introversion.co,uk for all the upcoming news

on Introversion projects.

How have your lives changed since winning so many

awards at IGF?

Winning awards at IGF completely changed things for us -

nally people are sitting up and taking notice of the games we

S
P

O
T

 L
IG

H
T

10 DEV MAG ISSUE 7 2006

are trying to produce and that is both incredibly gratifying and

rewarding for us - we have worked so hard to earn some merit

in this industry and it can be a very tough path. In addition to

this we have been able to gain much credible coverage and

exposure, something that is really important in the run up to

DEFCON.

We entered the IGF awards initially because we were encour-

aged by the fact that it was a games award ceremony for the

independents which meant that we weren’t trying to compete

with hugely successful mainstream titles by big publishers;

previous winners has included games like Terminus and Oasis

so we thought we stood a pretty good chance becoming a

nalist in one of the categories. We decided that if we could

win even a small prize it would add a lot to our credibility

in the industry and improve our prole. We’re also in favour

of any event that gives indie developers a voice - it can be

difcult to make yourself heard over the noise of the major

game developers.

What issues have you had (if any) with selling your games

online? What advice do you have for indie developers

who want to sell their games online?

Online price points tend to be driven cheaper than retail price

points by the platform holders - e.g. $19.99 for Darwinia on

Steam and $29.99 for Darwinia in retail. Retailers aren’t too

happy with that, so you need to work hard to keep retail happy.

Whilst digital distribution is great for us, you can’t ignore retail

as a large number of games are still bought through that

distribution network. We’d recommend that you nd someone

you can trust and then stick with them. What you don’t want to

do is to license the game to everyone, as you’ll start a price

war, and you’ll just erode your earnings. Also any deal you get

should be in advance of 50% return back to you…

Do you actively prototype ideas and see what is fun or is

it a natural evolution?

Ideas just occur randomly really, although we do get a lot of

inspiration from movies. We allow those ideas to mill around

in our heads, letting them develop for a while before writing

anything down. Months can often pass before we do actually

get round to writing anything down, primarily because if you

do this too quickly the idea can stabilize without having given

it a chance to expand. With Uplink and Darwinia, the design

process was on-going; we didn’t have a big design plan from

the start. (continued...)

“Setting up your own company is extremely difcult

and your driving impulse must be primarily for the

love of gaming and creating games “

.

S
P

O
T

 L
IG

H
T

11 DEV MAG ISSUE 7 2006

How do you process input from Beta testing?

We bug test and play test the games. The rst is obvious - the

latter involves sitting some players down and watching them

play the game. Usually at the beta testing stage the game

play is locked down, and we’re more concerned with the user

interface, and making the game easy to get into.

We used that process to make a much better Darwinia demo

second time around. The rst Darwinia demo we put out didn’t’

do the game much justice.

If you were to hire a new team member, what you look for

in that person apart from the obvious (ie, being good at

whatever he is doing)?

Talent aside, reliability is something we depend on when we

get people in to do work for us. The exibility of working at

Introversion is viewed as a denite bonus, we don’t set rigid

work hours or inexible project plans but at the same time we

have to trust that people will do the work that we’re paying

them for and that they will get the work in on time. It sounds

simplistic but trust is absolutely imperative to us because we’re

such a small tight-knit group and teamwork is essential.

Do you guys think there are lots of undiscovered indie

talent, or would you say cream oats to the top regard-

less?

We’d say there probably is a lot of undiscovered or at least un-

nurtured talent out there, but this is hopefully going to become

more and more a thing of the past. Tradtionally the indies’

main afictions have been the lack of nancial backing and the

limited opportunities available to getting your games noticed.

With the advent of digital distribution channels such as Steam,

Xbox Live Arcade and the increasingly avid support of journal-

ists and online bloggers the possibility for smaller developers to

get their work out there is much greater.

Thanks Introversion for your time! This is General Tr00jg

signing off… This article will explode in exactly 5

seconds…

 TROOJG

Check out www.introversion.co.uk for all the upcoming

news on Introversion projects.

S
P

O
T

 L
IG

H
T

12 DEV.MAG ISSUE 7 2006

R
E

V
IE

W

Gamasutra is run by the CMP

game group, an establishment

responsible for many gaming pub-

lications including Gamasutra and

its related sites. Gamasutra itself

is a professional and widely-recog-

nised site which has already been

in existence for several years,

backed by a lot of experienced

writers and professional IT journal-

ists.

News is provided on a daily basis,

and features concerning games,

gaming habits and game develop-

ment often crop up to interest and

inform readers. Want some very real

tips on what to do when designing

games? Take a look at Gamasutra’s

excellent and ever-growing repository

of game postmortems, where indie

and AAA titles alike are dissected,

examined and critiqued by the devel-

opers themselves, telling readers

where they felt the game went wrong,

where it went right and how it went

overall with regards to their initial

expectations.The site also serves as a

portal for far more resources. Content

includes job directories, product guides,

a place to upload your own resume,

newsletters and an all-valuable RSS

feed for those who need to keep in

touch with current events. One of the

biggest things about Gamasutra, how-

ever, is its extended family of websites

and resources. Gamasutra has aflia-

tions with places like the Game Career

Guide, Serious Gaming Source, Game

Developer Magazine, GDC Radio and

many more establishments. Recently,

podcasting has also reared its head

with Gamasutra, consisting of recorded

chats with game development gods and

other really, really smart people that

you can listen to at your own conve-

nience. Overall, you’ll be very hard-

pressed to nd a more comprehensive

source online for game development

needs - and even if you do, keep this

one in a special place anyway. Book-

mark it, RSS it, send it to your grand-

mother and do anything else to make

sure this doesn’t disappear from your

sight for too long.

 Gamasutra is the holy scripture of

gaming - a keeper for anyone who

wants to take their game development

seriously.

 NANDREW

Last known update: Continuous

http://www.gamasutra.com/

It’s a sorry gamer who hasn’t heard of Gamasutra. This website is one of the best resources out there
concerning the gaming industry, containing news directed at industry professionals, casual gamers,

market analysts and, of course, the aspiring game developer.

Gamasutra

13 DEV.MAG ISSUE 7 2006

R
E

V
IE

W

The game starts off very

quickly within the rst few

seconds a princess gets kid-

napped, you are in control of a

ninja and it seems it’s up to you to

rescue her.

The world has a scrolling view with

an oriental theme and pumping music

in the background. There are three

actions you can perform: jump, throw

a shuriken (ninja star) or swing your

sword. The height you can jump is

great and you usually nd yourself

able to gracefully jump from tree to

tree. Shurikens will be your main

source of attack and there are many

different powerups which will give

you new shurikens that have different

effects. These range from one that

will re a barrage of three shurikens

at once, to another type of shuriken

which, after being shot, will y back

and forth until it takes out an enemy

ninja.

All the usual features one expects

from a polished game are there, such

as conguring the controls or chang-

ing the resolution. Just about anything

you want to tweak is available.Levels

are structured in a fashion where you

start off at one end of an area and need

to make it to the other end all while dif-

ferent types of enemy ninjas will attack

you.

Every now and again a special “mini-

boss” appears which shoots deadly re

at you. Once you make it to the end

of an area you have to ght a boss

which will require a bit of puzzle solving

to nd their weak point. A nice touch

is how each level has its own theme

of scenery and different obstacles which

provide variety.

The only way to

describe the graph-

ics in this game

is: purely awesome!

They are some of

the best I’ve ever

seen in a 2-D game.

The animations are

top class, from the

motion of your char-

acter jumping, to

lightning going off in the background,

to the way bad guys y through the

air after you have killed them - it’s

all breathtaking. The sound effects are

great, realistic and really contribute to

the immersion of being a ninja. Noth-

ing bad can be said about the back-

ground music, it’s fast and energetic

which suits the gameplay.

Looking for a fast, frantic and engaging game with beautiful graphics? Well then, let me introduce
Legend Of Shadow

Legend of Shadow

14 DEV.MAG ISSUE 7 2006

R
E

V
IE

W

One of the downsides in the begin-

ning of the game is that it drops you

in the deep end and enemy ninjas

come at you from all directions while

you still don’t have any idea about

the controls or where to go. You

will denitely be seeing the “continue”

screen quite a few times while you

are getting the hang of things.

The whole downside of not knowing

where to go initally can be pretty frus-

trating and to be honest I spent ages

ghting ninjas in the same area wait-

ing for something to happen until I

eventually gured out that I was sup-

posed to be travelling to the left.

 At least in a later level an up arrow

gives you much-needed guidance. You

start off with only three bars of health

but thankfully there are powerups to

boost your maximum health which are

sneakily hidden along the way to make

your quest easier.

There are a few bugs in the game, such

as occasions when the frame rate slows

down to an unplayable 1 fps and can

force the user to restart the game.

Besides the intial steep learning curve

and minor glitches this game is a gem.

It contains a well-rounded package of

amazing graphics, sound and absorb-

ing gameplay. I positively recommend

that everyone give this game a try.

 INSOMNIAC

Legend of Shadow was created by

Darthlupi in 2004 and can be down-

loaded from:

 http://www.gamemakergames.com/

?a=view.download&id=1382

QUALITY TOUCH

PART 3:

early all of the items listed

below could be excluded from

a game and still allow the game to be

considered complete. A little bit of

extra work spent implementing these

suggestions will make the game

seem so much better than other

similar games. Some of these items

need a small amount of effort to add

into the game while others will need

complete rewrites to sometimes large

sections of the code. Each item will

make a small improvement in the

game, in some cases a single

change will not even be noticed by

the player, but taken as a whole

these small changes will improve the

overall impression the player has of

the game.

Most people that download a game

will run that game at least once. If

they find that they do not know how

to play the game in that first try they

are very likely to uninstall the game.

These players will often not first look

at the help page or tutorial when they

run the game. By displaying the

help screen automatically when the

player starts their first game the

chances are that the player will then

read the help and will therefore be

more likely to understand how the

game works immediately.

A large number of uninstalls are done

due to player frustrations with how

things happen within the game.

Taking time to decrease these

frustrations will result in more player

acceptance of the game. A key

method to decrease frustration is to

allow the player to start playing at

any level they have already had

access to, this is especially true

when the levels do not have a direct

impact on the game story line.

When the game ends an option to

restart the current level with a

zero score and a full set of lives

makes it possible for the player to

experience an uninterrupted playing

experience.

Displaying progress bars while

loading levels makes it clear that the

game is busy doing something and

therefore keeps the player's

attention on the game. Without a

progress bar, the player may think

the game is not doing anything while

he/she is sitting waiting and may

therefore terminate the program.

Another way to keep the player's

attention during screen or level

transitions is to use some sort of

effect between the screens such as

fading one screen into the other.

The more visual and audio

feedback that can be given for

player actions the better as it makes

it clear to the player that their

actions are being responded to by

the game. Perfect examples of this

N

Previously, this series of articles has touched on the various aspects a

game must have to be considered complete, as well as the options that

should be included in a game to improve the user experience. This article

ADDING THE QUALITY

Remember: your help screens actually have
to be helpful ...

15 DEV.MAG ISSUE 7 2006

D
E
S
IG
N

are the various effects that can be

implemented within the in game

menu. As the player moves the

mouse over a menu option the

image could fade slightly or even

change colour to indicate that it is

the currently selected option. In

addition, a chime could be used to

indicate that the mouse has moved

over a menu item. Similar feedback

could be used when the player

actually clicks the menu option. This

is an easy item to over-implement, a

nice balance must be found between

giving the player feedback and not

irritating the player with massive

animations each time they move the

mouse.

A player expects the game to

remember their current options

between games. By saving the

various options settings in a

configuration file and reloading them

when the game starts again the user

will see the game behaving the

same way during each session. This

can then be extended to support

multiple user profiles within the

game. This way multiple users of the

same home computer will be able to

set up the game in their own

preferred way without affecting each

other players’ experience of the

game. Many players would prefer for

these options to not be stored in the

registry, but rather in a game-

specific configuration file. Games

are often deleted from the windows

explorer leaving any registry settings

behind. By storing them in an ini file

or other text configuration file, the

file will be deleted along with the

game directory.

Only a few suggestions have been

made on ways to polish a game.

Each of these on their own will make

almost no significant difference to

the game itself. However, taken as

a whole these small changes will

make the game feel significantly

more polished and will therefore

improve the player's experience of

the game. When you are trying to

sell a game, the initial impression a

player has of the game will have a

direct impact on the sales figures of

that game.

CAIRNSWM, FENGOL

In some game titles, even level selection

Lots of things have loading bars. Why not

D
E
S
IG
N

16 DEV.MAG ISSUE 7 2006

Blender Tutorial - Materials and

Textures
or this tutorial, we will be

continuing from the scene we

created previously. If you would

prefer to use a pre-created scene

rather than the one you made in the

last tutorial, the scene is available for

download from the Dev.Mag website

under the content section.

(devmag.googlepages.com)

We’ll be improving this scene by

creating materials to give our objects

some variety and add colour to our

scene. This tutorial is far more technical

than the ones that have come before, so

if you’re not yet very familiar with the

controls and techniques we used it’s

best that you go back through the

previous instalments again, or at least

have them on hand.

First off – Material basics

Load up the scene you created earlier.

You should have a sphere object, two

light sources, and three planes that

make up the walls and floor. First off,

we’ll be editing the sphere object, so

select it with the right mouse button.

Make certain that you are in Object

mode. In the buttons window, select the

shading tab. You’ll remember that we

used this tab to modify the properties of

our light sources in the previous menu.

However, when you have an object

selected it will present you with different

options with regards to object materials.

At the moment, our sphere has no

material linked to it so the materials

panel is empty. Click the Add New

button to create a new material for this

object. The materials panels will fill with

new options and two new panels will

appear. For now, concentrate on the

materials panel which is used to modify

basic options with regards to your

material.

 The topmost box in this panel shows

the name of your new material. You can

leave it at the default value if you wish,

but it is often a good idea to name your

objects and materials. Below you’ll see

three rectangles, labelled ‘Col’, ‘Spe’,

and ‘Mir’. Clicking on the coloured

rectangles with your mouse will allow

you to change the colours using a colour

chart or by typing in the red, green and

blue values. Select a blue colour for the

base ‘Col’ field and a slightly darker blue

for the specular colour (The values I

used were R=0.25, G=0.25, B=1 for the

base colour, and R=0, G=0, B=0.95 for

the specular colour). We won’t use the

mirror colour just yet, so you can ignore

that for now.

Now we’ll look at the shaders panel.

Make sure the ‘Shaders’ tab above the

panel is selected. The drop-down

boxes in this panel represent the

shading and specularity methods that

will be used in rendering. The default

values should suffice for most uses, so

we’ll leave them as is. The first slider

marked ‘Ref’ represents how much

light the material will reflect. Higher

values make the surface brighter. Set

this to 0.9. The second two sliders,

‘Spec’ and ‘Hard’, affect the shine that

light’s have on the material. The ‘Spec’

value determines how large the

specular area is, and the ‘Hard’ value

determines the smoothness of the

shine. Set them to 1.75 and 225

respectively.

If you render the scene now, you’ll

notice two specular regions on the

sphere. This is because we have two

light sources in our scene. However,

this looks a bit strange because, if you

remember, we only created the ‘Hemi’

lamp to add ambient light to the scene,

so the two specular regions defy the

feel that there is only one light source

in the scene. To fix this, select the

Hemi lamp, and under the Lamp panel,

F

The 'material' panel. Change basic
material options like colour and name.

The 'shaders' panel. Change shading
methods and modify specularity and

reflectivity.

17 DEV.MAG ISSUE 7 2006

D
E
S
I
G
N

click the No Specular button to disable

the light from creating specular regions

on the object. Rendering the scene now

should present something like this:

Now we’ll give our floor and walls some

texture. With the floor selected in Object

mode, create a new material. We’re

going to create a cement floor look for

this object, so the default grey colour

should be fine. To give this object a

bump map we’ll need to create a

texture. You can use any image file for a

texture, but for the sake of this tutorial

we can use Blender’s procedurally

generated textures. While in the

Shading Tab, select the Texture Buttons

or press F6 to bring up texture panels.

Click Add New to bind a new texture to

the object. Select Stucci from the

Texture Type drop-down box. A Stucci

options panel will appear where you can

fine tune your texture. Select Hard Noise

from this panel, and change the Noise

Size and Turbulence values to 0.1 and

10 respectively (see below).

Now we need to set the texture to be

mapped as a normal map (i.e. bump

map). To do this, go back to the

Materials Buttons by clicking the red

sphere icon next to the Texture Buttons

icon, or press F5. The material texture

panel on the right is the one we’ll be

using to change how the texture will

affect the material. Make sure your new

texture is selected in the list, and then

select the Map To tab. Deselect the ‘Col’

button and active the ‘Nor’ button to

change the texture to map onto normals

rather than affect the material’s colour.

Set the Nor slider to 0.3 to change the

extent of the texture’s affect. Then select

the Map Input tab and change the SizeX

and SizeY values to 10 each to make

the texture tile (repeat) 10 times in the X

and Y directions.

Now that we’re done with the floor, we’ll

create another material for the walls.

Select one of the walls, create a new

material, and set the colour values for

base colour, specular colour and

reflective colour to R=0.8, G=0.6, B=0;

R=0.75, G=0.4, B=0 and R=0.35, G=0.2,

B=0 respectively. In the shaders tab, set

reflectivity to 1, and specularity to 0.

Now we’ll use the Mirror/Transparency

tab to make the walls slightly reflective.

Click the Ray Mirror button to enable

mirror effect with raytracing. Set the

RayMir slider to 0.2 to make the surface

20% reflective.

We’ll be using the same material for

both the side and rear walls, so it’s

best to name it. In the materials panel,

the top drop down box should read

something like MA: Material.003.

Change this to any name you wish.

Then select the other wall in the 3D

view, and in the material panel use the

drop down box to select this new

material.

 If you render the scene now, using the

reflections you can just make out that

there are no walls behind the camera.

Simply duplicate the existing walls with

SHIFT+D and drag and rotate them

into place. Top view (7) will be best for

this. You needn’t worry about the roof,

since it shouldn’t be visible in any

reflection. Your completed scene for

this tutorail should look something like

the following image and will be

available for download from the

Dev.Mag website’s content section.

Now that the tedium of learning all the

basics is out of the way, we can create

some more advanced things, so in the

next issue we’ll be having some fun.

Using all the skills you’ve learnt so far

we’ll create a new scene from scratch.

Until then, happy Blending.

CH1PPIT

The 'new
texture' panel.
Create new
textures and
modifies their

The 'map to' and 'map input' panels.
Change how textures are mapped onto

materials.

The Mirror/Transparency tab. Use to
allow materials to be tranparent or
reflective, and change related values.

18 DEV.MAG ISSUE 7 2006

D
E
S
I
G
N

Project Management:

Part 3
his month, we will examine the

content creation phase for your

game, as well as the maintenance

phase. Both of these are relatively

straightforward aspects, and require little

explanation, although there are certain

elements of both that you should pay

attention to.

Step 4 – Execute

It is critical that, before you begin this

stage, your design document is as

thorough and as detailed as possible.

You should be using it extensively until

the end of the development of your

game, and should continue to use it as

reference once your game is complete.

During this stage, you will be creating

the content for your game. You will need

to keep your design document as

reference during this entire stage, as

any drastic deviations from it will only

extend the development cycle, and

could create unforeseen problems.

As you create content, you will most

likely find that certain aspects you have

designed may need to change.

Prototyping and testing are bound to

reveal elements that may need

tweaking, rethinking, or completely

removing or adding. If you do choose to

change aspects of your game at this

stage, it is vital that you keep your

design document updated – a log of

version histories and changes will help

keep things organized.

Once complete, your game will be ready

for release. It is advisable to first release

your game to a small, select group of

people, as they generally could aid in

testing and evaluation with more

constructive criticisms than a larger,

typically anonymous, group would.

An essential element of any game is the

manual. This could be online, within the

game itself, a physical book or even a

simple readme. Regardless of which

type of manual you decide to use, you

will find the best source of information

for it in your design document. If your

design document has been kept up to

date and accurate, it should be able to

detail all the aspects of your game you

wish your player to know about.

Step 5 - Maintain

It is important to remember that although

your game is finished, its development

cycle is far from over. People, and

especially seasoned gamers, expect the

games they play to be as bug-free as

possible. There are also expectations for

certain types of games to be updated on

a regular basis. Most MMORPGs are

updated monthly, weekly or even daily

to keep their players happy and the

game’s intrigue fresh. You should

apply these same elements to your

game.

During this stage, you should be

approaching each update with the

same principles as your entire game.

Each update should be initiated,

planned, designed and executed.

Larger updates (especially expansions)

should even have their own

maintenance stage.

Once again, you should be updating

your design document as you update

your game. By keeping a constantly

up-to-date and well-organized

document, you have an easily

accessible summary of your game,

without having to sift through

mountains of code and images.

T

Most professional games are armed with a comprehensive
design document by the time they hit their execution step.

You should get into this habit for your products, too.

19 DEV.MAG ISSUE 7 2006

D
E
S
IG
N

Tools of the Trade

The Gantt chart

Developed by Henry Gantt in 1910, the

Gantt chart is a simple method of

determining a realistic timeline for

developing your game. Typically, it

comprises of a timeline along the X-axis,

and the procedures listed along the Y-

axis. Each procedure is then given it’s

own timeline. Using a Gantt chart will

help alleviate the difficulties in setting

deadlines, and will also give you an

estimated starting point for each activity.

See above for an example Gantt chart of

a specific portion of the design phase.

As you can see, the database design

can only take place once the core

mechanics have been designed, as is

also the case with the action sequences.

Designing the GUI can only take place

once the database design has

completed, yet is not affected by when

the action sequences have been

designed. Also notice the names on the

chart; this helps you to allocate

resources and people to specific tasks.

Using this tool will allow you to lay out

your goals in an easy-to-read format,

and will give you some perspective as to

how and when each goal will be

achieved.

The Work Breakdown Structure

This diagram, although simple, will help

to streamline the process of developing

your game. It allows each task to be

assigned a requirement (or multiple

requirements). Using this diagram, you

can plan the development of your game

by breaking it down into sections, and

breaking those sections down into

further sub-sections, if required.

The use of this diagram creates an

outline for the development of your

game, and will be especially useful

when creating a vast or complex game.

It allows you to stay in control of

development, by keeping all the main

aspects of your game in a single,

organized location.

With that comes an end to this brief

discussion on Project Management.

While there are many more aspects of

PM that warrant attention, I trust I have

given you at least an insight into the

principles behind it. I hope you will use

at least a few of the elements I have

mentioned to help streamline the

development of your games. In the

next issue I will be reviewing a new PM

application developed specifically for

the development of video games. Until

then – happy developing!

GEOMETRIX

THE GANTT CHART

THE WORK BREAKDOWN STRUCTURE

20 DEV.MAG ISSUE 7 2006

D
E
S
I
G
N

FRAMEWORKS - THE GAME LOOP

 game loop is actually difficult to

define as it is typically a very

small snippet of code, but it plays a very

important role in the program. Just like

the human brain cannot function without

a blood supply, a game will not deliver

functionality without a Game Loop. Just

as we consider the blood supply a minor

function of the human body the

importance of a game loop is often

underestimated. At its core, the game

loop controls when and in which order

the various main functions of the game

get called. As the game loop gets

executed in every iteration through the

code it can contain the functions that

need to be called regularly in the life of a

game.

The core functions of the game such as

AI engine, Input management, Sprite

movement and collision detection and

the actual graphical display are called

from within the game loop. Each pass

through the game executes each of

these functions from within the game

loop – however, each function may not

need to be called on each iteration.

Games typically need to run at 30

frames per second (FPS) and therefore

the Graphical Drawing function may only

need to be called on every third or fourth

iteration.

There are many different ways in which

a game loop can be implemented. The

easiest and most traditional way of

implementing a game loop is to

implement a loop that only exits when

the game state allows the game to end.

Within the loop the various game

functions get called one after another.

When the program execution point

reaches the loop it will continuously

repeat the series of commands one after

the other. Each of these functions

contains the game logic based on the

various state requirements. This

implementation makes maximum use of

the computer's processor and will

typically use 100% of the available

processing time.

Games can create an internal timer that

begins execution when the game starts

and processes the game loop whenever

the timer executes. This method is very

good for creating games that have a set

FPS that remains constant. However,

this method can cause very unexpected

results when each frame cannot be

completed before the next frame needs

to begin, such as on low spec machines.

Due to the amount of time the

application may sit idle between timer

executions, this method has very small

impact on the processor of the

computer.

Windows games are often created using

a windows GDI form. The windows

operating system includes a concept of

idle time. The game loop can be

implemented to execute whenever the

operating system encounters a period of

idle time. This implementation will give

more time to other processes executing

within the operating system and will

therefore not use 100% of the

processing power of the computer.

With the advent of more and more

powerful computers, programs are

moving toward a thread-based

development design. The beauty of

threads is that they can run independent

of the main game loop, effectively

outside the main game engine itself.

While the game loop is executing the

various input and display functions the

modules in the threads such as AI can

run uninterrupted. The game loop will

then take input from the threads during

each iteration and react on them as if

they were external inputs.

A basic game loop is easy to

implement, but as a game gets more

and more complex the design of the

game loop will also become more

complex. Certain decisions need to be

made on frequency with which

functions get called, which functions

get called based on the current game

state and the amount of time that the

game needs to sleep between display

frames to allow other applications to

run, while still displaying enough FPS

to appear fluid.

State management in the game can

often have a large impact on the

chosen method of implementing the

game loop. State management

systems that implement unique objects

for each state will manage the game

loop very differently from state

management systems that are built into

the implementation logic of the game

itself. State management is however a

topic in itself and will be discussed in a

future article.

When game developers move on to

creating their own game engines within

a traditional programming environment,

the first part of the game that needs to

be developed is the game loop, as it

defines the implementation methods

for the rest of the game engine. As the

game loop is defined and extended the

various functions needed in the game

can be added. Typically the graphical

drawing functionality is created first

and then extended as needed within

the game loop. In this article, a brief

discussion of the various

implementation methods has been

made, but each of these methods must

be extended for the game's needs.

CAIRNSWM

A

A game loop is a section of game code (or of code within a framework) that gets executed over and over

during the running time of the game. Graphical based games have since the beginning used a game loop

to control the inner processes of the game. Game loops can be implemented in many different ways, and

with the rise of modern windows compilers these methods have become very, very easy to use.

D
E
S
I
G
N

21 DEV.MAG ISSUE 7 2006

o make our object moveable in all directions, we will add

some simple functions to it. In its create event, add a

friction value to your liking. Now, for your turn left and right

keyboard events, add a “set a value of a variable” action with

the following values:

Variable : direction

Value : -3 (Positive for left, and negative for right)

Relative.

For your forward keyboard event add a “set the direction and

speed of motion” action. Set the values to such:

Direction : direction

Speed : 5 (Play around with this value)

Now duplicate the event for your reverse keyboard event and

change the speed value to a negative number. In the step

event add the following code:

{

 image_angle = direction;

}

This will make the image rotate as you turn left or right.

The orientation of your sprite is also important. My sprite

orientation was out by 90º and I had to rotate it in game maker

before it faced the correct direction.

Now that we have motion, we should create a room and place

our object in it. Test it out.

Now to add the shadow. Duplicate the object sprite, and

rename it to “objectname_shadow_spr”. Open the sprite in

game maker and go to the outline option. Make sure the

selected color is black, and the click outline. It will ask you if

you would like to delete the contents of the sprite, you answer

yes.

You should have something similar to the picture above. Now

flood fill the inside area of your sprite with black paint.

Create an object with the name “objectname_shadow_obj”.

Assign the new shadow sprite to this object. In its step event,

add the following code.

{

 x = (object.x + 10);

 // where above ‘object’ is your object name

 y = (object.y + 10);

 direction = object.direction;

 image_angle = direction;

}

The “+10” is to give a relative offset to your object so that it

looks more like a shadow. Also in the create event add the

following code:

{

 image_alpha = 0.7;

}

T

This month, we will be using our sprite we created last month, add shadows to it, use it in the Game Maker environment and even learn

how to create handy animated sprites. Open Game Maker, create a new object and add a new sprite. Load the sprite we created last month

as the new sprite, and centre the sprite's origin. Now assign the sprite to the object, and let the games begin!

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

PART 3PART 3PART 3PART 3

D
E
S
I
G
N

22 DEV.MAG ISSUE 7 2006

This will make the black sprite blend and look like a shadow.

Now add the shadow object anywhere in the room, and test it.

You should have something like this:

I’m sure this will have given you all lots of ideas on how you

could make shadows for almost any object in your game. Now

on to the next bit : making an animated sprite from scratch in

Max and getting it into Game Maker.

ANIMATED SPRITES

For my game Mech’s Destiny, I require a cursor for my menu.

This is what I will be making in this tutorial. First, we have to

make the model as always. I whipped up the model I wanted

to use and applied my materials. This time around, you should

not use a plane as a reference surface, as it would cause too

much post work on the shadowing. Instead, a handier idea is

to change the environment to a color not used in your model's

texture map. I used a bright green, and made my cursor a

metal/chrome color.

Next step is to animate your model in your 3D package, and

test the animation until you are happy. This is how my scene

ended up:

Now to set up Max to render the scene into loads of small

images – this will be used to make our animation in Game

maker. My rendering setup looked like the image below. Note

that the setup is set to active segment. My rendering resolution

is also set to a higher number than I need, so that I can always

reduce the quality if needed (you can never increase it if looks

bad, after all!).

I then set my render output settings to save a file called

cursor.jpg in a new empty folder. When I click “render”, it

actually creates 30 cursor.jpg files in that folder, named

cursor1.jpg – cursor30.jpg.

The rest of our work will be done in Paint Shop Pro's

animation shop. I open up the Create Animation Wizard. The

first question we are asked is if we'd like to resize the images,

or use the first image size. In most cases, using the same size

as the first image works the best. The second option asks us

what we want the default canvas color for the animation to be.

I normally use the opaque option. The next option screen is

applicable when you have differently-sized images and

concerns itself with how or if they should be scaled to fit the

animation size. We are not interested in this, as all our images

are exactly the same size. The next option screen gives us a

D
E
S
I
G
N

23 DEV.MAG ISSUE 7 2006

chance to set the animation speed of the animation. This is, in

fact, not that important, as you can set it in Game Maker as

well – but the “repeat the animation infinitely” option should be

ticked.

In the next option window, we have to go and add the files we

would like to include in the animation. Please take note that

the order is determined by how you select the images in the

window. You could always rearrange them afterwards, but try

and avoid any extra work if you can. Click on finish and you

should have something like this:

The animation shop has some great option you are welcome

to play with, but for this, all I am going to do is resize the

animation to 64x48 pixels, and resave it as a .gif file. The

options I choose for the quality of the .gif file always set it to

the highest quality. At the end you should have a small (64kb

or similar) animated .gif file of your model.

Now let’s get it into Game Maker and see how it looks. First, I

create a sprite and load up our .gif file. Make sure to set your

x, y position to correspond to your cursor's point. This can be

seen in the image below.

Now create an object and set the sprite to your newly created

mouse cursor sprite. This is where I notice that my green

opaque color isn’t working correctly. The green color isn’t

uniformly the same. This causes game maker to not see it as

transparent, which is a big problem. I have noticed that the

best way to avoid these problems is to use “pure” colors. What

I mean by that is to use pure blue, red, green, black or white

as your environment color in Max.

I quickly fix this problem by opening my saved Max file and

just changing my environment color to pure white. I then re-

render the images and remake my .gif file using the animator

software. My result looks much better.

Now, in the step event of your cursor object add the “jump to

the following position” action, and add the values for x and y

as seen in the image below. Alternately, you could add a piece

of code that looks like the code below into your step event.

{

 X =

 mouse_x;

 Y =

 mouse_y;

}

Lastly, change your

global game setting,

and deselect the “display the cursor” option. Add your object to

a room, and see if it works.

Hope to see you all at rAge this year, and if you see me there,

you are more than welcome to come and look at some of my

work, the assets I have made and the methods I use.

HIMMLER

D
E
S
I
G
N

24 DEV.MAG ISSUE 7 2006

25 DEV MAG ISSUE 7 2006

start between all the blocks. Note that nextElement

returns an Object, so we need to cast it before using

it.

In our run method, we now need to check for collisions

between the ball and blocks. Once again we iterate

over all the elements in the vector using Sprite’s handy

collidesWith method to check for bounding box colli-

sions. Once we have established that the ball has hit

a block, we can do line intersections with the top and

bottom of the block to determine whether we should

bounce along the X or Y axis.

Unfortunately java does not include any collision rou-

tines, so we have to implement one of our own. This

has been added as a separate method, intersect, to

keep things from getting too cluttered.

 We also remove the block we collided with from

blocks so it will no longer be rendered or checked

against. We’ll check the size of blocks to determine if

the player has won the game and if we should paint a

“well done” message.

Note that the lines adding the velocity to the speed

has also been moved until after the collision tests.

These changes are all in Listing 1 and when you

compile and run them, you’ll see we now have a (very

simple) block breaker game!

In this edition of the tutorial, we’ll jump right

in, nish off the core gameplay and add a few

little touches to our game.

Once again you need to exercise your artistic skills,

this time to create a image to represent the blocks

we’ll be destroying. Make it a 25x10 pixel image and

save it in your res directory as bar.png. As we need

to use a number of blocks, we will put them into a

new static variable blocks, which is a Vector.

Vector is a commonly used java class that can store

any number of objects (of different types if need be)

that can then be accessed directly or by requesting

an iterator with the elements method. It is sufcient

for our simple needs, however it can be quite slow

and in more complex situations you would be better

off building a custom link list or similar structure.

 It is part of the java.util package, so we add that

to our imports at the top of the le. In the TutorialCa-

nvas constructor, we load our new block image into

a temporary Image object and use that to create

enough sprites for four rows of blocks on the screen.

Also in the constructor, ballSprite’s starting position

is moved to the middle of the screen so it doesn’t

MOBILE GAME
DEVELOPMENT IN JAVA

PART 5 : DIE EVIL BLOCKS!

 M
O

B
ILE

26 DEV MAG ISSUE 6 2006

The call to playSound is where our static midlet vari-

able comes in handy,

we use Display.getDisplay(midlet) to get the display

parameter we require.

Now we add our score. This is also very easy; we’ll

add a score static variable to the canvas, and add

points to it every time the player destroys a block.

Finally, we display the score in a similar fashion to

the player lives. At the same time it makes sense to

move the lives counter (and score) to a location on the

screen that is not full of blocks. All of these steps, as

well as the sound changes, are shown in Listing 2.

At this point we have a simple, but quite respectable,

game. From this simple beginning it is a relatively

small job to add multiple levels to the game that allow

for different placement of blocks, or even different

types of blocks that take more than one hit or release

a power up. By now the game may have also have

started showing some signs of slowdown as more

sprites are shown on screen, and tweaking the speed

values for the ball and bat, or even building in a proper

timing loop- might be a good idea.

There are countless possibilities for improvement and

optimization, and I will leave it in your, very capable,

hands. Things are starting to get a bit messy because

it’s all squashed up in a single le, though, and it

would be nice to work in a more interesting environ-

ment; so, next time, we’ll move our code into a mobile

project in the NetBeans IDE.

 As mentioned in the rst instalment of this series,

NetBeans and its Mobility addon are available for free

from www.netbeans.org.

 FLINT

.

Now we’ll add simple sound, a score counter, and

rearrange the interface a little to suit the now-busy

screen. ‘Proper’ sound is one of the trickier things

to implement successfully in mobile games and

deserves an article of its own, but for our simple

requirements we will stick to the basics and just

use the phone’s default alert sounds. The rst thing

we need is a way to access the midlet from the

canvas, so we add a new static midlet variable to our

canvas as well as a midlet parameter to its construc-

tor. We simply store this object when the canvas is

constructed. Bear in mind that alert sounds can take

some time to play, so we don’t want to use them in

places that would interfere with gameplay (like every

time a block is designed).

We will rather just use them when the player has

lost all his lives, or has won the game. To do this, we

check after updating our objects if either condition

is true and call playSound on one of the AlertType

objects available statically through the alert type

class. For example, ERROR can be used for the

death case, and CONFIRMATION when the player

wins.

 M
O

B
ILE

It’s all coming together nicely!

27 DEV MAG ISSUE 7 2006

 M
O

B
ILE

Code Listings
Listing 1. TutorialCanvas after adding blocks.

28 DEV MAG ISSUE 7 2006

 M
O

B
ILE

29 DEV MAG ISSUE 7 2006

 M
O

B
ILE

30 DEV MAG ISSUE 7 2006

 M
O

B
ILE

31 DEV.MAG ISSUE 7 2006

T
E

C
H

In the previous article, we

touched on the basic concepts

and principles behind data struc-

tures. We talked about variables,

which are the building blocks of

data structures, arrays, which are

used to organise lists of data,

and structures, which are a way

of encapsulating multiple kinds of

data into a custom form that suits

your needs.

Now that you have a better under-

standing about what exactly data

structures are , we will move onto

a much more useful (although

complex) data structure known as

a linked list.

Linked Lists

Linked lists are probably the most

used data structures after variables,

arrays, and structures. They are used

in everyday game programming, and

most experienced developers con-

sider them essential for easy as well

as efcient data storage and process-

ing.

 Given the somewhat complex nature

of linked lists , it is vital that we call

upon the many topics covered previ-

ously in this series of articles, including

variables, structures, and most impor-

tantly, pointers.

The basic principle behind a linked list

is that each piece of data in the list

belongs to a node, and each node in the

list points to the neighbouring nodes in

the list (ie. the nodes directly before and

after it in the list).

The list itself is maintained by keeping

track of the node that is currently rst in

the list, as well as the node that is cur-

rently last in the list. These two special

nodes are normally referred to as the

head and tail of the list.

In order to visualize this better, imagine

a pearl necklace where each pearl is

attached to the next one in a linear fash-

ion. You can think of the pearl beside

one of the clasps as the head of the list,

and the pearl beside the corresponding

clasp as the tail of the list.

Each pearl in the necklace is only

directly aware of the pearls on either

side of it, or in the case of the head and

tail pearls, the fact that nothing exists

beside it in one direction.

Storing Data

As mentioned, data that is to be placed

into the list needs to belong to one

of these nodes. Nodes are usually

dened to contain a pointer to the data

that is to be added to it, as well as

pointers to the nodes that both proceed

as well as follow this node. Linked lists

such as these are generally referred to

as doubly linked lists .

THE TECH
WIZARD

Data Structures - Part 2 Linked Lists

List 1

32 DEV.MAG ISSUE 7 2006

T
E

C
H

why you would ever want to use a

linked list, as everything that has been

mentioned so far about them seems to

handled perfectly by arrays . However,

there is more functionality to linked lists

than merely the ability to store and

process data in a linear fashion.The

main advantage that linked lists have

over arrays is that arrays need to

be statically dened as a xed size,

whereas linked lists can change their

size dynamically as needed .

Once again, picture the pearl necklace.

Image if you could add or remove indi-

vidual pearls to or from any point on

the necklace. If you could, you would

see the length of the necklace grow

or shrink as you did, which is exactly

how adding or removing data to or from

linked lists works.

This can be accomplished by merely

changing the pointers of the affected

nodes, telling them that they should no

longer point to the nodes that they are

currently pointing to, but to instead point

to either the newly inserted node or the

node on the other side of the node that

has been removed.

C-Based pseudo-code for inserting

or removing a node in a linked list:

Conclusion:

Although they can seem quite daunt-

ing, linked lists are essential tools to

game programmers. They allow for

easy dynamic organization and modi-

cation of data, which is a core neces-

sity in development of even moderately

complex games.

The key to understanding how linked

lists work (along with how they are best

used) is to rst not only understand

how pointers work, but to become

comfortable using them.

Once pointers become second nature

to you, linked lists will follow suit and

become a welcome part of your pro-

gramming arsenal.

 COOLHAND

List 2

C-Based pseudo-code of the struc-

tures used to dene a linked list:

This structuring of linked lists allows

for very easy traversal of all data in

the list, similar to the way that arrays

are processed. Iteration is started at

the head node of the list, the data

contained there is processed, then

the iteration continues to next node

and the process is repeated until the

tail node of the list is reached.

C-Based pseudo-code of looping

through a list:

Why use linked lists?

At this point you may be wondering

//structure dening a single linked list node
struct
{
 ListNode *prev; //pointer to the node before
 //this one
 ListNode *next; //pointer to the node after
 //this one
 void *data; //pointer to the data at this
 //node
}ListNode;

//structure dening the linked list
struct
{
 ListNode *head; //pointer to the head node of
 //the linked list
 ListNode *tail; //pointer to the tail node of
 //the linked list
}LinkedList;

//linked list containing my data
LinkedList myList;

void foo(void)
{
 ListNode *curNode; //node used to “step” through
 //the list with

 curNode = myList.head;

 while(curNode)
 {
 //call a function to process the data at this
 //node
 ProcessData(curNode->data);

 //move onto the next node in the list
 curNode = curNode->next;
 }
}

//function to insert a node at the end of a linked list
void LinkedListInsertNode (LinkedList *list, ListNode *node)
{
 //tell the node that its previous node is the
 //currently set tail of the list
 node->prev = list->tail;

 //tell the node that it doesn’t have a next node as it
 is at the end of the list
 node->next = NULL;

 //tell the currenly set tail of the list that its next
 //node is the new node
 list->tail->next = node;

 //set the list’s tail to be the new node, as it is now
 the last node in the list
 list->tail = node;
}

//function to remove a node from the list
void LinkedListRemoveNode (LinkedList *list, ListNode *node)
{
 //tell the node’s current previous node that its next
 //node must point to the node’s next node
 node->prev->next = node->next;

 //tell the node’s current next node that its previous
 //node must point to the node’s previous node
 node->next->prev = node->prev;
}

33 DEV.MAG ISSUE 7 2006

TA
ILP

IE
C

E

These customers fall into tar-

geted segments that are

focused upon by the marketers.

Their job is to make these prod-

ucts look and seem more appeal-

ing to their chosen target market

than those products offered by

the competition. Now, how

does this all apply to gamede-

velopment, you ask? Well, I

recently listened to a very

interesting podcast on GDC

Radio http://www.gdcradio.net/2006/

08gdc_radio_presents_developers.

html.

These lecturers compare the role

of the marketing team to that of

the development teams, where

information can be misinterpreted,

therefore wasting resources, not to

mention the frustration of not being

able to synergise these two key busi-

ness units into one game production

powerhouse. According to these lec-

turers, there is constantly conict

between marketers and developers.

This proves an age-old saying that

assumption is the Big Mamma of all

mishaps. First of all, a “game plan”

is required to assist a marketing cam-

paign. This plan starts off with an idea

or concept of the game, which the

developers have hatched together with

the creative art and design teams. It

is important to have all the necessary

checks in place to make sure that this

grand plan can run to fruition from the

word go. At the base of this plan is

a message, a calling; something that

differentiates this game from the rest.

Something relevant and revealing. The

most primary message is found in the

game’s brand - its name, which, by def-

inition, has many different meanings.

However, I believe a brand is how the

consumer views your product in light of

all that they have heard, experienced,

and taken from the use of your prod-

uct. Branding is thus the name of the

game! (There’s a pun in there some-

where…)

Fantastic game brands that have

been built up over the years include:

Doom, Quake, Unreal, Ultima, Dun-

geons and Dragons, Warcraft, Halo,

Pacman, Sonic the Hedgehog, Mario

Bro’s, etc. Hmmm, you catch my

drift? Now what makes these brand

names so prominent and instantly

recognisable? Well yes, they are

all names of well-known and loved

games. But look deeper into what

messages they have conveyed over

the years and bear in mind that no

brand is made over night.

These brands names will also carry

a small “™” or ® which means that

they are bona de, certied, Regis-

tered Trademarks of that company’s

achievement through years and years

of hard work on developing the game

as well as the brand.Every little bit of

Since the dawn of modern industry, the practice of marketing has evolved into the money-making
merchandising machine that all companies rely on today. They sell, promote, advertise and ship their

product into the homes and into the hands of their potential customers.

Marketing 101 - Branding: “What’s in a name?”

34 DEV.MAG ISSUE 7 2006

TA
ILP

IE
C

E
information, both publicised and

spoken, about these games has

contributed to their unique brand

development. Every teaser advert,

demo package, add-on, sequel, web

page, blogspot, forum, good and bad

review, print and video advertise-

ments all play a part in building the

brand. In brand development there is

NO such thing as bad publicity. When

someone talks about your game, they

are spreading the word and opening

a doorway to further exploration and

tweaking of your curiosity.

 A great brand is an important - nay,

an essential - aspect of your game.

I hear you asking, “But surely the

gameplay, storyline, and characters

are the most important aspects of any

game?”. Well, yes they are. A good

brand name and an effective market-

ing campaign will never salvage a

weak or inadequate game. However,

a thousand words, ideas and sensa-

tions can be experienced from hear-

ing but one name: the brand. This

is what marketers will use when

designing campaigns and strategies

to sell the games by creating deep-

ened desires and wants within their

target market (Xbox 360, anyone?).

Now one could go deeper into the whole

psychology of branding, such as colour

usage, shape and logo design, but I do

not wish to bore you just yet with all

that kibble. Just know that when you get

people talking, you get them excited.

Look at all the hype that the marketers

of NC Interactive / Guild Wars have

managed to create with their ever-

expanding credo of player classes.

Also take note of what new engines,

reworked network interface and killer

marketing has done for the Warcraft

brand. WOW! (Sorry, I really can’t help

myself) A brand is a game’s identity, and

conveys a message to the consumer

from their rst encounter with the game.

This identity needs to be maintained

throughout the game in the form of

gameplay, weapons, baddies, storyline,

as well as any complimentary, visual,

eye-catching “merch”, such as pack-

aging, limited edition box sets, action

gures, in store displays, and booth

babes. YAY!

However, it all has to start somewhere

- and how do we turn an unknown

name an international phenomenon?

Let’s put it this way: First, one needs

to educate the target market and

establish brand awareness. This is

achieved through exposing key deci-

sion makers to the game. These would

include members of the press, retail-

ers, celebrities, distributors and VIP

gamers.

This awareness can be brought about

through a supportive and informative

advertising campaign, as well as direct

response mediums such as discount

coupons, trade specials, online book-

ings and registration, and, everyone’s

35 DEV.MAG ISSUE 7 2006

TA
ILP

IE
C

E

favourite: competitions. Public Rela-

tions activities or stunts are also used

to attract attention. Now that we have

the consumers’ attention we need to

give them reason. By this I mean we

have to give them some “bang for

their buck”. Why should they choose

our new release over that of a rival

game house?

Well, quite simply, we need to give

them a “value proposition”. Such a

proposition will add quality to our

offering and, as value is intangible,

the proof is very much in the pudding.

In other words, if our game makes

use of the latest Pixel Shader 3.0

technology and it looks breathtaking

on a HDTV, then the public has a

right to know. This will then add to

the positive way in which our target

market perceives our game.

We would therefore have added an

element of quality to our kick-ass nal

offering. This will, in turn, cause a

favourable attitude towards our brand

and start to solidify our brand repu-

tation, thus growing and developing

our brand or game into a household

name. Ultimately, we’d like to estab-

lish a fan base from which the con-

cept of brand loyalty is derived. If we

can establish a loyal fan base, then

we will have to spend much less on

advertising and other marketing com-

munication mediums.

The reason for this is the same as

reason why two opposing fanboys will

spend hours aming each other on a

forum or chat room. Preference.

So, to you developers out there, I can

only but ask that you begin to familiarise

yourselves with the inner workings of

marketing in business and what the

marketing team requires from you in

order to generate the sales and make

your games even more appealing by

focussing on the subtleties that you

technical wizards often take for

granted. Building a game is one thing.

Keeping that game in demand for a

sequel and beyond is another. I’m talk-

ing about building a brand, a legacy, a

milestone in cyberspace.

 BURNABIS

DIGITAL MAYHEM

36 DEV.MAG ISSUE 7 2006

C
O

M
IC

Presents

IT Intellect Durban are hosting Miktar and Danny Day for a weekend of

Game Maker MADNESS...Come and learn from two of South Africa’s

leading authorities in local game development...

DATE: 10 - 12 November 2006

PLACE: IT Intellect Durban

 Shop 405b, Level 3

 Musgrave Centre

 KwaZulu-Natal

For more info call: 031 277 2000

BOOKINGS ESSENTIAL!!!

O N L I N E

www.devmag.org.za

