
PROJECT
MANAGEMENT
PART 2

BLENDER
TUTORIAL: PART 2

QUALITY TOUCH
THE USER EXPERIENCE

MOBILE GAMES:
HOW TO CREATE GAMES
USING JAVA PART 4

REVIEWS : SULACO FEATURE : MAKING A GAME
IN 48HRS OR LESS. SEPARATIONISM RANT

DEV.MAG ISSUE 6 2006

ISSUE 6 2006
S

O
U

T
H

 A
F

R
IC

A
’S

 F
IR

S
T

 G
A

M
E

 D
E

V
E

L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

BubbleBee QuickType by Smallfry Mobile (www.smallfrymobile.com)

CONTENTS
REGULARS
03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
05 - MAKING GAMES IN 48HRS OR LESS

SPOTLIGHT
07 - MATT BENIC

REVIEW
10 - NEHE OPEN GL

11 - SULACO

DESIGN
12 - QUALITY TOUCH PART 2: USER EXPERIENCE

14 - SEPARATIONISM RANT..

16 - PROJECT MANAGEMENT: PART 2..

18 - BLENDER TUTORIAL: PART 2

MOBILE
20 - GAME DEVELOPMENT IN JAVA: IN CONTROL

TECH

22 - DATA STRUCTURES: PART 1

TAILPIECE
24 - ITS RAGE BABY!

COMIC
25 - DIGITAL MAYHEM

02 DEV MAG ISSUE 6 2006

05 12 18

ED’S NOTE
RAge is only a month away. This will mark a considerable change in the

focus of this month’s issue towards rAge and the game development talks
being hosted there. With a large proportion of our staff being presenters at

the event it’ll denitely be worth your time. So make sure you read the write-up
(Nandrew’s article) of what to expect there, and don’t miss out.

NAG’s Game.Dev Comp 10 begun on the 1st August. The goal: Create a simple,
yet fun, management game. With everyone attempting to get their grubby hands
on the R5000 (1st place prize) it’s got the makings of a great competition. If that’s
not enough to tickle your taste buds, then there’s also the R1000 cash prize to
the best new entrant. (‘New’ meaning anyone entering the Game.Dev competition
for the rst time)

Best of all it’s free to enter, so make your way over to the Game.Dev section of the
Nag forums! (www.nag.co.za)

Editor
Stuart “GoNz0” Botma

THE TEAM

RANKING OFFICER
Stuart “GoNzO” Botma

SECOND IN COMMAND
Rodain “ Nandrew ” Joubert

DESIGN SQUAD
Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

CEREBRAL SOLDIERS
Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairnswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Yuri “knet” Oyoko

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

Greg “Zphyr” Reveret

Geoff “GeometriX” Burrows

WEB WARRIOR
Claudio “Ch1ppit” de Sa

WEBSITE
devmag.googlepages.com

To join, make suggestions or

just tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of

the NAG Game.Dev forum.

 Visit us at www.nag.co.za

All images used are Copyright and

belong to their respective owners.

If Chuck is reading this magazine:

All jokes within are for entertainment

purposes and should not be taken

seriously or acted upon ie: Please

don’t roundhouse kick us.

03 DEV MAG ISSUE 6 2006

04 DEV.MAG ISSUE 6 2006

DIGITAL STOMPIES

http://www.garagegames.com/

GarageGames has recently updated its
Torque Game Builder software, bringing it
up to version 1.1.1. Torque Builder is a 2D
game framework which has the capability
of running games on PC, OSX and even
Xbox360. Although the $100 price may
be a bit much for some casual developers,
the software is of a professional standard,
is easy to use and requires no royalties
should you decide to distribute or sell one
of your creations.

http://www.gamasutra.com/php-
bin/news_index.php?story=10450

Gamasutra brings us a postmortem
from the person behind Stubbs the
Zombie, Alex Seropian of Bungie
(the name behind Halo). Seropian
explains how he set out to create
Wideload after leaving Bungie, what
he wanted to achieve with the com-
pany and what sort of command-
ments were essential to professional
and personal happiness. It also goes
into great detail on the design pro-
cess of Stubbs the Zombie, some-
thing which is denitely a worthwhile
read.

http://www.agdinteractive.com/

Anonymous Game Developers Interac-
tive (AGDI) is a game development
group working on remakes of the classic
Sierra adventure games. If you haven’t
heard of them already, head over to their
website, take a look around and be sure
to download their very own versions of
King’s Quest 1 and 2. The team uses the
highly popular Adventure Game Studio (
http://www.adventuregamestudio.co.uk/)
to create their games and are using it for
their upcoming Quest for Glory 2 remake
as well.

http://www.garagegames.com/mg/
snapshot/view.php?qid=1123

Indie games can make it next-gen too!
Marble Blast Ultra, a new Xbox360 title
designed to take advantage of its multi-
player capabilities, was developed for the
console by GarageGames and has already
received decent reviews from many online
sources. Marble Blast Ultra in centred
around trying to navigate your marbles
through vast 3D levels, using the terrain
and obstacles to collect gems and reach
the exit as fast as possible. It also features
competitive online play and leaderboards

N
E

W
S

05 DEV.MAG ISSUE 6 2006

FE
A

T
U

R
E

Well it’s certainly possible

to get a complete game

out within the 48 hours you may

have left. To make a very rapid

game development project a suc-

cess you need a plan, the impor-

tant steps you will need in your

plan are highlighted in this article.

As indicated before (Dev.Mag issue

3), a game framework is critically

important to very rapid game devel-

opment. There is no reason you

should be spending time working out

how to create a splash screen for your

game when you only have 48 hours to

do the complete game. Of course you

need to know the structures and rules

of the framework to be able to use it

properly. Grab your favourite framework

and start your project. In fact a splash

screen is a really good place to start

developing until you have an idea of

what you actually want to do.

In many ways a game consists of two

clearly different aspects. There is the

core gameplay and then the peripheral

extras like splash screen, credits etc

(Refer to Quality Touch - Dev.Mag no 4

for a full list). If the theme of the

contest doesn’t immediately give you

a Genre dening game idea, spend

some time getting the peripheral

screens complete. Create some

generic theme images and add them

as backgrounds while creating a quick

menu system (quick because the

basics are already in the framework).

Start working on the Help screen, you

can always populate the contents once

the game works. Another thing to do

while waiting for an idea is to start

working on backgrounds and even

theme relevant images that you might

be able to use later, for example for

So suddenly today you’ve found out about the latest and greatest Game Development Competition
(speaking of that, have you seen the NAG Game.Dev contest number 10 yet?) and now you need to

get a game out as quickly as you can.

Making games in 48 hours

Your Framework is your friend.

Everyone starts from Nothing.

06 DEV.MAG ISSUE 6 2006

FE
A

T
U

R
E

a dragon theme make a small dragon

sprite, you might only use it for the

games icon but it is an asset you’ll

already have.

Getting a great theme based idea

is often the hardest part of the

very short contests. Some themes

may give you immediate ideas, while

others may take some time to give

you ideas. The most important thing

about whatever idea you get is that it

must be do-able. When you get your

idea ask yourself, “How long will this

take to do?” Just remember that you

should at least double, triple or even

quadruple your time estimates to get

a better idea of how long its actually

going to take! If the answer is more

than the time allowed you may need

to simplify it. Complex ideas can

often be simplied, for example that

cool RTS idea could be turned into a

turn-based game instead.

A good strategy for getting the game

idea into the game is to prototype it

within the Game screen of the frame-

work. If the prototype takes too long

at least it’s already in the framework

and can be entered into the contest.

The prototype should include the

key design ideas of the game, this

includes all the ideas that will make

the game fun, and must be clearly

linked to the contest theme. Unlike

normal game prototyping where you

only need graphics once the game

play is ready you should be including

the graphics as you develop the pro-

totype. Once the prototype is done

your game should be playable, it

should clearly comply to the theme of

the contest and have the key aspects

of the game play. Typically at this

point you could stop working on the

game and still submit it to the contest

as a complete game. Once the basic

ideas of the game are working complete

the peripheral screens. Finish the help

screen, the splash screen and the

default values for high scores. It is

important to remember that the com-

pleteness of the game is heavily

impacted by the quality of the other

screens and not only of the game idea

you are implementing and you should

therefore complete these screens

before polishing your actual game.

Based on the time left in the contest you

need to decide if there is time to polish

the game play, adding all the little extras

that will earn you bonus brownie points,

or if it’s time to sleep. Typically by this

point you’ll be pretty sick of playing and

replaying your game, you are getting

tired from not enough sleep and your

family is probably wondering where you

are. If you submit your game at this

point you’ll probably be in the middle of

the pack. Spending some time to add all

the polish extras could lift you out of the

pack and make your game something

special.

If you decide you have enough time left

to make improvements on the game,

and you really can go the full 48 hours

without sleep, it is time to add some

polish. Spend your time wisely as you

want to make as many very visible

changes as you can, with the least

amount of work. Good places to nd

these sort of changes are, improving

the background images, better special

effects, more sound effects and pos-

sibly adding a credits screen if you left

it out earlier. Another good idea for

polish is to spend some time making

the game more intuitive. Make menu

options more logical, make better tran-

sitions between the game states and

even spend some time allowing the

player to set more and more options.

When it comes to polish you really

do not want to optimise code, or nd

better ways of doing things that already

work. In a contest the only polish that

counts is the bits that the judges will be

able to see and feel in the game.Bugs

are a terrible reality in all computer

software development and in game

development they can be terribly elu-

sive to nd. Whenever you reach a

point in your game development where

you have a stable, working game you

should make a backup. The number

of people who have wanted to enter

a contest and didn’t because their last

change broke something is very high,

don’t fall into this trap. Whenever you

encounter a bug while play testing the

game, you must try and sort it out as

quickly as possible. If trying to x the

bug takes too long, rather roll back and

recode the latest idea. As a great mind

once said “If its complicated to code,

its even more complicated to debug!”

Entering extremely rapid game devel-

opment contests is great fun. You know

you are competing against people with

similar limitations as yourself, and the

winners are typically the people that

know their tools the best. By entering

these contests you are pushing your

limits and abilities. Success in these

contests comes from knowing your

tools and having a good understanding

of the frameworks you have available.

 CAIRNSWM

Everyone starts from Nothing.

07 DEV MAG ISSUE 6 2006

Who is the Smallfry Mobile team?

Currently the core Smallfry Mobile team consists of myself

and Chris Tsimagionnis. We share programming and design

responsibilities, while I also handle the business side of things.

In addition, Diorgo Jonkers creates our art assets and plays a

large part in the design process.

What inspired you to start Smallfry Mobile?

About 3 years ago I got a new cellphone and was amazed at

the quality of the games available for it. At that stage I started

looking into what was involved in developing such games.

When Chris and I left I-Imagine the next year to go into more

‘traditional’ jobs, we both knew we needed to keep doing some

kind of game dev to stay sane. We decided to start doing

mobile development as it seemed like the most practical way

to develop something marketable with such a small team and

with so little time available

Could you tell us a bit about the games you’ve made?

At this stage the only game we have created as a team and

released is abYss, an old-fashioned side scrolling shooter. In

the game you pilot a submarine through the depths of the

ocean, facing deadly robotic sealife as you persue a mad

scientist out to ood the world. Chris, Diorgo and I have all

been gaming for ages, and enjoy ‘old school’ games, so we set

out to create something old school with abYss. We settled on

the underwater theme for abYss because, quite frankly, space

and war shooters had been done to death. It also allowed us

to make use of a unique and colourful look that really makes

the game stand out from similar titles.In addition to abYss,

we promote and sell Diorgo’s game Demolish, which is an

action platformer that casts you as a lone warrior out to retrieve

a magical artifact stolen by an evil wizard. We will soon be

releasing a colourful typing game called BubbleBee QuickType

that should appeal to the SMS-mad masses. It is a relatively

simple typing action game, but it looks great and is devilishly

addictive. BBQT will also be our rst game to feature online

high scores, and we’re hoping to keep that as standard func-

tionality in upcoming titles.

When designing a game for a cellphone, what elements

have to be approached differently that most people would

never even think about?

For me, the biggest issues are the controls and screen size.

There have been systems before in which developers had to

nd ways around resource size limits and limited hardware

so the solutions to these particular challenges have basically

been solved, but cellphones are not designed for gaming,

and game designs really have to work around that by being

economical with screen space and having well thought-out

control schemes.Another big element is the wide range of

phones out there, each with their own quirks and issues, not

to mention different screen sizes. Games should ideally be

designed to minimize the impact of such designs.

S
P

O
T

 LIG
H

T

Smallfry Mobile is a South African-based cellphone game developer. They started in 2005

and have released two games, abYss and Demolish, that are sold in many countries

around the world ranging from South Africa to America, Australia and more. Dev.Mag recently

interviewed Matt Benic, one of the creators of Smallfry Mobile, to nd out more

M
att B

enic

ISSUE 6 2006

What was the most difcult part in getting started?

Getting started was the easy part, keeping going is what’s

tough. We both have ‘day jobs’ and wives, and nding the

time to spend on game dev is not easy. In the end it takes

dedication and passion to keep going and a bit of mutual

encouragement doesn’t hurt. You have to be realistic about

what you want to achieve, and how much of your time you can

allocate to achieve it.

What tools do you use?

In software terms, everything we use (other than the operating

system) is free. We develop in Java, which is available from

Sun and uses the NetBeans IDE. NetBeans is a fantastic

piece of software, easily rivalling paid-for IDEs in terms of

functionality and usability. The phone manufacturers also pro-

vide emulators of their devices which integrate into the IDE

in most cases. Our art assets are all created in Gimp, which

is an extremely functional art package that more than meets

our needs.On the hardware side, we need to have a variety of

phones to test on, and of course these are denitely not free.

We get phones on upgrade when we can, and take advantage

of everyone we meet that has some unusual model that we’ve

never tested on. An online testing service called GetJar has

also proved very valuable

What has been the best moment from getting the com-

pany off the ground to where you are today?

I always get a kick out of seeing people having fun playing our

games, and that has to be the best part of it. I think another

great moment, in a strange way, was nding a thread on a

Russian site where a guy was looking for a warez copy of

abYss. Something about the fact that people liked the game

enough to try and pirate it was just cool. :)

 How have the local and global markets responded to your

games?

That’s extremely difcult to gauge, since we don’t interact

directly with the customers but rather sell through third parties.

What player reviews we have seen of abYss have typically

been extremely positive. Sales have not been what we would

have liked, but we feel that’s largely due to the structure of the

mobile games industry and the fact that we don’t have the kind

of time we need to really push the games.

What approach did you take towards marketing your

games?

We don’t sell to gamers, but rather to distributors. The big

platforms for games (cellphone networks, big web portals)

never deal directly with developers, but rather with publishers

or distributors that have a large catalog of games.

Do you think the current state of the cellphone game

market has any more room for growth and innovation?

There is always room for growth and innovation. In the case of

the cellphone game market, I think we are still waiting for the

‘killer app’ that will really represent the format. The market is

currently saturated with retro remakes, licence tie-ins and ports

of varying quality. There is a desperate need for original game

ideas that really take advantage if the format’s strengths, such

as mobility and permanent connectivity.

Are there any useful words of advice you’d like to share

for aspiring indie developers who want to start their own

company one day?

Be realistic. It doesn’t matter if you are planning to make

cellphone games or more traditional games, be honest with

yourself about what you can achieve and do that to the best of

S
P

O
T

 L
IG

H
T

08 DEV MAG

ISSUE 6 2006

your ability. You don’t need to build the next Quake or Half

Life to be a good developer, in fact if that’s your ambition

you’re wasting the freedom to innovate that being an indie

[developer] affords you!

What are the future plans for Smallfry Mobile?

In the short term, we’re hoping to release BBQT very soon. We

also have another puzzle game in the works that should be

available before year end. In the longer term, we would love

to make Smallfry a full-time endeavour, but it’s not feasible

right now

Thanks for sharing your wisdom. Dev.Mag wishes you the

best of luck in the future.

It’s a pleasure, and thanks

To nd out more about Smallfry Mobile, visit

www.smallfrymobile.com or wap.smallfrymobile.com from

your cellphone, where you can download a demo of abyss

and a beta demo of BBQT

S
P

O
T

 L
IG

H
T

09 DEV MAG

10 DEV.MAG ISSUE 6 2006

R
E

V
IE

W

Yet, convenient as it is,

OpenGL still needs to be

learned. In this regard, there

are few places out there on the

Internet which are comparable to

the NeHe OpenGL tutorials as far

as catering to beginners is con-

cerned. NeHe Productions deals

with everything OpenGL-related,

placing special emphasis on tutori-

als and other learning tools..

Although not strictly game develop-

ment, any 3D devver wanting to get

started with this would be crazy to

skip out on such a treasure mine of

tutorials - NeHe has almost 50 highly

detailed and well-commented lessons

which allow easy understanding of,

and progress through, the mechanics

of OpenGL. Even more impressive,

however, are the 30+ programming

languages that each tutorial is avail-

able in, meaning that people using

anything from Python to Code War-

rior can learn in an environment that

they’re comfortable with.

NeHe has been around for a few

years already and still gets updates.

An announcement in July revealed their

plans to revamp the old lessons with

easier, clearer ones, courtesy of a

highly skilled team that’s recently been

assembled to manage the site. Addi-

tional advanced lessons are also in the

works, with a focus on making them as

cross-platform as possible to stick with

their cosmopolitan approach to teach-

ing. Of course, the tutorials aren’t the

only good thing about this site.

 A series of about 20 articles on topics

such as matrices, skeletal animation

and particle systems are all available

for easy viewing. Between these and

the regular lessons, the lives of many

newbie 3D programmers are bound to

be made easier. Be sure to pop in at

this website if you ever decide to dis-

cover the joys of OpenGL usage - you

won’t regret it.

 NANDREW

Last known update: 07-07-2006

http://nehe.gamedev.net

Although DirectX is the cool thing to be coding in nowadays, OpenGL still serves as a handy introduc-
tion to programming with 3D - short of all the painful base-level maths which early 3D gurus had to

work in.

NeHe OpenGL

11 DEV.MAG ISSUE 6 2006

R
E

V
IE

W

Sulaco is a South African

OpenGL site that’s been run-

ning since 2001, containing a great

deal of intermediate and advanced

tutorials on a wide range of topics.

The site is run by two individuals,

but tutorials are submitted from a

much broader community, mean-

ing more content for the user!

Learn how to use skeletal ani-

mation, project shadows, load up

Quake 3 BSP les and even have

a peek at the source code for Sula-

co’s Rage 3D engine.

All projects are created with Delphi

and OpenGL, but programmers of

other languages shouldn’t have too

much trouble adapting the code if

they’re already familiar with OpenGL

itself. For beginners, there is a

set of more basic tutorials available,

although these are again restricted to

Delphi and those who use other tools

may have trouble learning. However,

these lessons closely follow those

of the famous OpenGL Programming

Guide (more commonly known as the

“Redbook”), making them relatively

handy for beginners who do happen to

work in Delphi/Pascal.

 As mentioned already, this site is very

much community-based. Advertised is

Quake To Delphi, a joint effort with

sourceforge.net to convert the original

Quake source into Delphi code. Links

to indie websites, OpenGL resources

and forums also feature, making this a

comprehensive place for most newbies

to start.

At its heart, however, this site was

built for power players, and power is

what you’ll get if you look around here.

Some of the stuff featured is truly

impressive, and it would be a shame if

any OpenGL programmer was to skip

over this handy local site.

 NANDREW

Last known update: 07-07-2006

http://www.sulaco.co.za/

Already mastered the basics of OpenGL? Fancy a bit of advanced development? Need a bit of local
avour? Head on over to Sulaco and see what sort of goodies are up for grabs!

Sulaco

12 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

The points raised in the rst

article of the Quality Touch

can be considered as “Must

Haves” for creating a complete

game. In this article we’ll look at

“Should Haves” to allow user to

control his own experience which

will immerse the player further into

the game. Games that are easy to

play and give the player a number

of options to make their experi-

ence better are more likely to be

successful.

Controlling the user experience

means allowing the user to manage

the audio and visual outputs of the

game, as well as the inputs which

he uses to play the game. Not all

players are created equal and neither

are the environments in which they

play, nor are the specs of the PCs on

which your game will be played on.

These selections are typically cong-

urable within an options screen within

the game.

Our rst look is at audio which can be

broken into direct sound (also know

as sound effects) and ambient sound.

Direct sound can be classied as

sounds made by object interactions

between the player or other elements

of the game; they give audible con-

rmation of what is happening in the

game. Ambient sound are sounds

which give tone to the game and help to

immerse the player in the world. Back-

ground music is ambient sound and

ambient sounds play regardless of what

the player is doing.

The player should be able to manage

the volume of direct and ambient sound

or turn either one of them off if they

become a distraction or make the

game unpleasant to play. Tastes vary

between players (and often between

game developers and players) and an

unpleasant audio experience will nd

the game in the recycle bin. The oppo-

site can also be true, if the player

wants to immerse himself deeper into

the world he might want to set ambient

sound louder than the direct sound to

hear what’s going on.

The second look in this article is at the

visual outputs of the game and since

this is where generally most of the

processing power of player’s machine

goes, the rst thing the game should

have is to allow the player to improve

speed performance by switching off

graphical features. This could be

dynamic lighting, shading effects and

QUALITY TOUCH
PART 2:

THE USER EXPERIENCE

13 DEV.MAG ISSUE 6 2006

D
E

S
IG

N
particle emission. In fact (and speci-

cally with 3D games) at installation

and conguration time the game

should test for graphical support and

turn off features which aren’t sup-

ported on the player’s graphics card.

The number of ambient objects in

the game can also affect how well

the game performs (ambient objects

are objects in the game which don’t

impact the game-play or objectives of

the game) and the player should be

able to control how many or how few

he wants to have.

Another visual output to consider is

the brightness or gamma control in

the game. The real life environment

around the player plays reects light

onto the screen and can darken what

he sees. By allowing the player to

adjust the brightness of the game,

the player can counteract the lighting

in his physical environment and see

what’s going on within the game.

An easy option to give the player is

the choice to play the game in

a window or as a full screen application.

Some players might prefer one over the

other. Having the option in-game is also

possible but not a necessity.

The last thing covered in this article

is player input. Changing the key

mappings, swapping devices and allow-

ing the player to set device sensitivity

ensure that the player can provide as

much feedback into the game as pos-

sible. The game should allow player to

re-assign keyboard controls.

Laptops especially have keys in differ-

ent places which can make the game

difcult to play. The player should also

be able to manage mouse (or other

devices) sensitivity to correctly relate

physical movement into game space.

The player should be able to swap an

input device for another one to create a

different feel for the game.

This could be a gamepad, joystick or

game wheel and peddles.

While the last Quality Touch article

listed a set of minimum requirements

a game “must have” to be called com-

plete, this months article lists a number

of things that will start making a game

seem polished and professional. While

a game can certainly be called com-

plete without these items, they will cer-

tainly improve the players experience

and therefore encourage him to play

again and to tell his friends about the

great new game he discovered.

 CAIRNSWM, FENGOL

14 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

We’re the problem?

Yes, we are. It’s something we do,

instinctively as people brought up in

SA, it’s a part of our culture. We want

independence.

It’s true that in some cases being

independent is a wonderfully good

thing, it’s just that when it comes to

growing an industry, skill-base, inves-

tor-base, favourable public opinion

and a market at the same time (as we

game developers have to do here)

that it’s an issue.

So?

The reason it’s a problem is simple:

As soon as someone gets an idea for

a cool game or a great mod, they go

off and start their own forum/website/

fanbase/circle and don’t bother talk-

ing to anyone else who already

knows what’s going on. Those of

us who have been watching all the

attempts over the years have seen

this pattern play itself out time and

time again: some guy with a bright

idea decides to set off on his own jour-

ney through game development, doing

all the hard work along the way of set-

ting up his own forum (with hundreds

of sections, each devoted to a single

aspect of the eventual game) and creat-

ing his own website to wow people into

contributing art, time or money to his

idea in the hopes of making it a reality.

Newsash - that doesn’t work. If it did,

we’d have hundreds of games popping

up out of the net-dreams of each geek

with webspace. Heck, we wouldn’t have

to talk about things like growing a game

development industry in SA because

there would already be one, with tons

of games!

Here’s why it doesn’t work: you’re wast-

ing effort maintaining and running a

website, effort that isn’t going into your

game.

But wait, you’re running your own site

so that other people can help you,

except that so few people are going to

see your brand new site that you’ll get

so little help and thus won’t get much

that’s useful. Finally, even though you

think you’re keeping the game “yours”

and not giving it away to anyone,

you’re still relying on other people to

help you make it.

Building a game is a lot of hard work.

You don’t want to be working on things

that don’t help you get your game n-

ished, fun and playable. Yes, there’s

a place for websites devoted to com-

pleted games (especially if you’re sell-

ing them), but having hundreds of

armchair developers all screaming at

people to “come to my forum, come to

my forum!” isn’t going to make any one

of them successful…

But aren’t independent
developers a good thing?

The “independent” in indie, refers to

independence from publisher money

to make games. Just like indie lms

don’t have big-time Hollywood produc-

ers funding them, or indie rock bands

don’t have deals with record labels that

pay their bills.

We have a problem and it’s time we dealt with it.
For some reason, there’s an insidious issue gnawing away at game development in South Africa. No, it’s not Telkom, high

software prices, terrible console distributors or even overseas publishers who aren’t comfortable paying African companies
… it’s us.

SEPARATIONISM

RANT

15 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

Being indie simple means that you

don’t owe your game to a publisher

because they paid you to make it.

Technically, all the game developers

in SA that have made a game are

indies, except maybe the big places

like I-Imagine and Devon Systems

(depending on if the guys in PE have

a publisher or not).

Being indie is not about being
alone

There are communities out there

that can help you. Places lled with

people who have exactly the same

want to run a game company and to

make the coolest games ever, except

they’re not under the delusion that

they’re going to be “the rst in SA” to

do so.

We need to destroy the desire to

be isolated so that we can remain

in charge of our games and our

ideas, 99.9% of isolated developers

fail! Nobody is going to steal your

idea if you talk about it in something

like Game.Dev, instead they’ll help

you make it better. Nobody wants

to “take over” your game, but if you

go where the developers, artists and

designers are instead of insisting

 that they come to you, they’ll offer their

assistance where they can…

In the end, we’re a small portion of a

small group of society in this country:

gamers that want to make games.

There’s no reason that we should all

insist on being kings of our own little

patches of mud with pretty concept art.

There’s every reason to band together

and share our experiences, knowledge

 and skills while we all make our dream

games. The only way forward for our

industry is to kill the separationist atti-

tude once and for all - if isolation

worked, you’d all have jobs making

games.

 DISLEKCIA

SEPARATIONISM

RANT

“ We need to destroy the desire to be isolated so that we
can remain in charge of our games and our ideas, 99.9% of

isolated developers fail! ”

16 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

This month in Project Manage-

ment, we are going to be look-

ing into the most important stage

in the development of your game.

Before I begin, I feel it is important

to mention something that sep-

arates PM in game development

from regular PM. In game design,

it is often difcult to determine

exactly how your game will play.

It’s easy enough to write out its

gameplay dynamics, but one never

can tell if these will truly work the

way one intends them to.

I give you the art of iterative develop-

ment. What this means is that you will

be developing your game in waves.

This process involves laying down

the groundwork rst, then developing

that groundwork practically (actually

creating it). Once you are happy that

the foundations of your game are in

place you can continue.

By following this system, you are

ensuring that your game will, most

importantly, have solid gameplay. It

also means that future coding and

bug xing will be simplied, since you

can easily detect at what level in

your development the problems are

occurring (if you encounter a bug in

the third iteration, you know that the

problem will most likely be in the

second or third iteration).

There are many advantages to itera-

tive development, but ultimately it is up

to you how you decide to create your

game. You could even use a combina-

tion of iterative and incremental (build-

ing one full piece at a time) techniques.

With that said, let us move on to the

third part of project management.

Step 3 - Design

The design stage will determine exactly

what happens in your game. It is during

this stage that you will design your

levels, enemies, NPCs, dialogue, items,

quests, and anything else in your game.

Bear in mind that this stage is still not

practical and you should be doing all of

this on paper.

Having said that, I feel it is important to

address the issue of prototyping versus

traditional development. In prototyping,

the developer will rapidly create small

sections of the game and will either

continue to build on those sections,

or will throw them away and begin

again. Prototyping can be suitable for

certain parts of development, espe-

cially aspects such as interface design,

gameplay balancing, and timing-critical

situations. Traditional development is

more suited towards building the core

of your game, as well as developing

supporting mechanics.

Whether you choose prototyping or tra-

ditional development, it is important

that you follow the stages presented to

you in these articles. Prototyping may

seem like an easier and more enter-

taining way to develop, but bear in

mind that each phase of prototyping

should be made up of its own 5 stages.

Ultimately, it is best to choose a

method best suited to both your

game’s genre, and your own person-

ality. You could, for example, design

incrementally using prototyping if you

are creating a simple, linear, action

game, or you could design iteratively

using traditional development if you are

creating a complex, non-linear RPG.

Project Management:
Part 2

17 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

The Hook

When designing your game, you

should create certain goals that you

would like your game to achieve.

Examples of such goals could be to

have the player completely enthralled

by the sheer scope of the game (an

example would be the Elder Scrolls

series), or to have the player spend

hours making decisions (the Civiliza-

tion series), or to have the player

scared witless after playing the game

(the Doom series); it could even be

something as simple as the rich,

tangible feeling of games like Loco

Roco.

If you keep these goals in mind

during the design of your game, it

will help you to create a particular

avour for your game, something that

will remain with the player long after

they turn off their machines and will

keep them coming back for more. It

is, however, important not to force the

player into any such situations. Since

each gamer is unique in their approach

to any game, it is unwise to limit their

options when playing just so they can

get to “that scary part” of your game.

Linearity versus non-linearity

Certain games require linearity while

others are nothing without the scope

of choice they give their players. Linear-

ity is a valuable tool, as it simplies

the development cycle, while creating

an interactive “movie” for the players

to indulge themselves in. The problem

with linearity comes into play where the

game’s core mechanics are not inter-

esting or dynamic enough to keep the

player involved in the game. This can be

caused by insufcient change or choice

in the game, which leads the player to

keep on a straight, often boring, line and

will suffocate their game play experi-

ence. Choice can still be present in a

linear game, but a ne balance must be

achieved to give the player an impres-

sion of scope, while at the same time

leading them to a predetermined goal.

An excellent example of linearity that

creates the impression of non-linearity

is the Grand Theft Auto series.

When creating a non-linear game, it is

vital to have the groundwork perfected

before you begin designing the possible

paths a player can take. It is also impor-

tant to give the player sufcient goals or

rewards depending on which path they

choose. Many management or simula-

tion games follow a non-linear design.

When looking at a game like The

Sims, one can see that the fundamen-

tal mechanics driving the game, such

as the family or gene systems, have

been designed, created and tweaked

until perfection.

Above all, when designing your game,

irrespective of the approach that you

choose, it is important to remember

one thing: your game must be fun to

play. It’s senseless designing hundreds

of resource gathering options if the

only reason to gather resources is sta-

tistics. People play games for pleasure,

sport, pure time-wasting or a combi-

nation thereof. Whatever your target

market is, you must make your game

enjoyable for it to be successful.

Next month, we will examine stages

4 and 5, which will nally see you

creating content for your game. Enjoy

designing your game!

 GEOMETRIX

18 DEV.MAG ISSUE 6 2006

D
E

S
IG

N

For this tutorial, we won’t need

that old cube, so let’s start off

by removing it. Select it with your

right mouse button and, making

sure you’re in Object mode, click

the object menu at the bottom of

the 3D view and click delete (or

press ‘X’) to remove it from the

scene.

Now, let’s have a look at the 3D

cursor. The little cursor is shaped like

a targeting crosshair and it dictates

where a new

object will

appear in

your scene.

Clicking the

left mouse

button allows

you to move

it around. It’s often easier to work

using the grid, so let’s snap the

cursor to the gridlines to make our

lives easier. Press Shift + S to bring

up the Snap To menu, and select

Cursor to Grid. This option is also

available in the Object menu under

Snap.This menu can also be used to

snap objects and even vertices to the

grid, so it can come in handy. Use it if

your objects become misaligned.

Adding things

Press the Space Bar to bring up the

add menu. From here you can add

items to the world and have access to

various editing functions. Objects are

also aligned based on your current

viewpoint, so be careful of which angle

your looking at your scene when you

add items. Making sure you’re in object

mode and Top view, click Add, Mesh,

Plane. This will add a at plane to the

world. Press S and move the mouse

outwards to scale the plane. Watch the

numbers in the bottom-left edge of the

screen to see the degree of the transfor-

mation. You can type in numbers using

your keyboard if you want to be precise,

or hold in CTRL to constrain to xed

units. Scale the plane to 3 times size.

Now that we have a oor, let’s add a

rear and side wall. Switch to front

view (Numpad 1) and, in Object

mode, add another plane. Scale this

one to 3 times size as well. Move

this new plane to the rear edge of

the existing

oor plane

and align it

neatly. You

may need to

move the

view around

using the

middle

mouse

button, and

switch between front, side and top

views to make sure it is placed cor-

rectly. Remember to hold CTRL to con-

strain the movement to grid units. This

will make moving things a lot easier.

Since our side wall will be the same

proportions as the rear wall, we can

simply duplicate the rear wall rather

than creating it again. Select the rear

wall in object mode, and click Object,

Duplicate (Or press Shift+D) to create

a double. Align this new wall to the

edge of the oor and the existing wall.

Blender Tutorial - Making a simple scene
In this second installment of the Blender Tutorial, we will learn how to create new objects, learn about different kinds

of lights and make a basic scene.

The 3D cursor is where all
new objects will be added.

The editing panel.

 Make sure you’re in object
mode when adding meshes

through the add menu.

19 DEV.MAG ISSUE 6 2006

D
E

S
IG

N
You’ll need to rotate the object with

R to do this. Once you’re done, your

scene should look similar to this.

Let’s add something slightly more

interesting to the scene now. In

top view and object mode, add a

UVSphere mesh from the Spacebar

menu. Accept the default values of 32

for segments and rings. Switch to the

front view, and move the sphere so

that it rests neatly on the oor. Also

check in all views to make sure the

sphere is near the middle of the oor.

You may need to move the camera

object so that the scene is clearly

visible in the render. Remember that

CTRL + ALT + NumPad 0 will move

the camera object to match the view

of the 3D window. Rendering the

scene now should result in an image

similar to this.

You’ll notice that the sphere in the

render doesn’t really look round due

to all the individual faces being

distinctly visible. To remedy this we’ll need

to use the buttons window at the bottom of

the screen. With the sphere selected

in Object mode, click the Editing button or

press F9 to change to the Editing Panel.

Click the ‘Set Smooth’ button in the Links

and Materials tab to smooth out the ball

and make it look round.

Lighting

The lighting in our scene leaves some-

thing to be desired. To make things look a

bit nicer, we’ll change our simple lamp into

a spotlight. Select the lamp, and change

the shading panel by clicking the shading

button or pressing F5. In the preview

tab, click spot to change the lamp’s type

to spotlight. You’ll notice the lamp now

shows a cone shape when selected. This

is the direction in which the light beam

is focused. Check the top, side and front

view to make sure the sphere lies in this

cone. If it does not, rotate or move the

spotlight until it does. You can also change

the size of the spotlight beam by adjusting

the SpotSi value in the Shadow and Spot

tab. I set it to 45 degrees for a more

focused beam. Experiment with different

values and see which outcome you prefer.

Also, make sure the light is casting

shadows using a shadow buffer instead

of raytracing. This creates faster, softer

shadows ideal for our low polygon

model. Click the Buf Shadow button in

the Shadow and Spot tab to change

to buffered shadows.Now your scene

will have a more focused light source,

but some areas are totally black. Let’s

create another light to create a little bit

of ambient brightness. In top view, add

a Hemi light to the scene. This kind of

light will create a 180 degree directional

light source. It will not cast shadows,

however, so it is ideal for adding a

little bit of extra lighting. Drag it above

you scene so that you can have some

light shining from above. In the Shading

panel again, look in the lamp tab for an

energy value and change it to about 0.4.

This will make hemisphere light dimmer

than the spotlight.

After I had done a little bit of tweaking

with the light angle and placement,

repositioned the camera, and resized

the walls and oor, my nal scene

looked like the following. You can save

this le through the main Blender menu

by clicking File, Save. We’ll continue

from this scene in the next tutorial when

we’ll use materials give our items some

texture. The le will also be available for

download from the Dev.Mag website’s

content section.

 CH1PPIT

The shading panel.

The shadow and spotlight tab. Change various
lighting and shadow related settings here.

20 DEV MAG ISSUE 6 2006

barSprite, initializing it and placing it at the bottom of

the screen in the same way as ballSprite.As before,

we render this sprite in our doPaint() method. In the

run method, we determine what keys are held down

using the built in getKeyStates method.

This method must only be called once per game loop,

so we cache the results in the local variable keyStates.

We can check this result against convenient denes

like LEFT_KEY to check what keys are active and

move the bar with Sprite.move() if it is not against the

edge of the screen. All of these changes can be seen

in Listing 1.

I’d like to start this instalment of the tutorial off

with some clarication on Java versions and

which are applicable to us, since some readers

have apparently had a problem with this.

Because the latest stable release of the WTK is ver-

sion 2.2 (2.5 is only available in Beta), we are using

that. As this version of the WTK only supports the

Java 1.4 JDK, that is what we use.Those of you that

do other Java development and are concerned about

downgrading your Java version, you need not worry

because the two can happily coexist on a single

machine. If you have any questions regarding this

or any other issue related to these tutorials, please

don’t hesitate to contact me through the NAG forum.

The link pages to the versions you require may be

found at:

JDK 1.4: http://java.sun.com/j2se/1.4.2/download.html

WTK 2.2: http://java.sun.com/javame/downloads/index.jsp

And without further ado, let’s add a player controlled

sprite and some control elements to our game. First,

use your art package to create a block image 50

pixels wide and 10 high (feel free to make it as fancy

as you like) and save it in the same place as your

ball image as bar.png. We use this image by creating

another Sprite object in our Canvas class called

MOBILE GAME
DEVELOPMENT IN JAVA

PART 1: IN CONTROL

 M
O

B
ILE

Keep the little bugger on the screen or you’ll lose a
life!

21 DEV MAG ISSUE 6 2006

In this case we specify false to tell the method to

not check pixel level collision. Finally, in our doPaint

method, we add text displaying the number of lives

remaining, as well as text telling the player the game

is over if they are out of lives. For all intents and

purposes, we now have a game! It may be a very

simple game, and probably won’t hold anyone’s atten-

tion for very long, but it is a game nonetheless. At

this point you may already suspect exactly what kind

of game we’re gearing up to create, next lesson we’ll

be rounding off the basic gameplay and learning a bit

about Java Vectors in the process.
FLINT

Now that we have player input, we’ll get the bar and

ball interacting and give the player a couple of lives

to look after. First of all, we add another variable to

keep track of the lives (suitably named lives) and

initialize it to 3 for the sake of tradition. We place our

sprite movements inside an if construct that checks

for remaining lives so that when the player loses

all of their lives, we don’t still have a ball bouncing

around on screen.The ball movement is updated so

that instead of bouncing off the bottom of the screen,

the player loses a life and the ball is reset if the ball

falls through the bottom of the screen. We also check

for collision between the ball and bar using Sprite’s

very useful collidesWith method.

 M
O

B
ILE

Listing 1. TutorialCanvas after the player controlled bar
has been added.

Listing 2. TutorialCanvas after player lives and sprite
interaction has been added.

class TutorialCanvas extends GameCanvas implements Runnable
{
 ...
 static Sprite barSprite;

 //Constructor
 public TutorialCanvas()
 {
 ...
 try
 {
 ballSprite = new Sprite(Image.createImage(“/ball.png”));
 barSprite = new Sprite(Image.createImage(“/bar.png”));
 } catch(Exception e)
 {
 e.printStackTrace();
 }
 ballSprite.setPosition(1, 1);
 barSprite.setPosition((getWidth()+barSprite.getWidth())/2,
 getHeight()-barSprite.getHeight());
 }

 //run the game loop
 public void run()
 {
 while(!exit)
 {
 //update our bar position
 int keyStates = getKeyStates();
 if ((keyStates & LEFT_PRESSED) != 0 &&
 barSprite.getX() > 0)
 {
 barSprite.move(-1, 0);
 }
 else if ((keyStates & RIGHT_PRESSED) != 0 &&
 barSprite.getX() + barSprite.getWidth() < getWidth())
 {
 barSprite.move(1, 0);
 }
 ...
 }
 }

 //paint the canvas
 protected void doPaint(Graphics g)
 {
 ...
 barSprite.paint(g);
 }
}

class TutorialCanvas extends GameCanvas implements Runnable
{
 ...
 static int lives = 3;

 //Constructor
 public TutorialCanvas()
 {
 ...
 }

 //run the game loop
 public void run()
 {
 while(!exit)
 {
 if(lives > 0)
 {
 ...
 int ballY = ballSprite.getY();
 if(ballY < 0)
 {
 ballVY = -ballVY;
 }
 else if(ballY + ballSprite.getHeight() >
 getHeight())
 {
 lives--;
 ballX = ballY = 1;
 }
 else if(ballSprite.collidesWith(barSprite, false))
 {
 ballVY = -ballVY;
 }
 ...
 }

 ...
 }
 }

 //paint the canvas
 protected void doPaint(Graphics g)
 {
 ...
 g.setColor(0x0000ff);
 g.drawString(“LIVES: “+lives, 10, 10,
 Graphics.TOP|Graphics.LEFT);
 if(lives == 0)
 {
 g.drawString(“GAME OVER!”, getWidth()/2, getHeight()/2,
 Graphics.HCENTER|Graphics.TOP);
 }
 }
}

22 DEV.MAG ISSUE 6 2006

T
E

C
H

They range from simple meth-

ods of merely storing data,

to complex systems that can be

used for such things as accessing

specic data quickly or easy man-

agement of dynamically changing

data.

Variables

The base method for storing informa-

tion in computer memory is the vari-

able, which is a representation of a

single piece of data. While different

programming languages have their

own implementation of variables, the

standard variable types that exist in

most of them are bytes , integer num-

bers (ints) and oating-point numbers

(oats).

As their name implies, bytes are used

to store information that is up to 1

byte in size. Ints generally store infor-

mation that is up to 4 bytes in size,

however some languages and plat-

forms support 2, 8, and even 16 byte

integers. Floats are also generally

used to store up to 4 bytes of data,

but like ints, also have language and plat-

form specic implementation that can pro-

vide storage for either 8 or 16 bytes of

data.

C-Based pseudo-code of some simple

variables:

Arrays

However, most games are complex

enough that they need methods of storing

many pieces of similar or related data in a

way that is easy to manage.

Most languages accomplish this by simply

evolving a variable into what is called an

array, which can be best described as a

list of variables of the same type, that is

of a xed length, and is stored linearly in

memory.

(In many languages, bytes are

referred to as characters or chars)

They are perfect for storing large

amounts of similar data when you

know the maximum number of items

that you will have.

However, they should only really be

used in cases where you will not need

to discard items from inside of list, as it

is usually quite inefcient to keep track

of any empty list positions other than

the current end element of the array.

Arrays are also great when it comes to

storing data that needs to be iterated

through, as you only need to increase

your current index into the array to

obtain the next value in the list.

Not only is iterating through an array

quite easy, but it is also efcient as

you are working in the same area of

computer memory due to the linear

nature of an array.

Data structures are the foundation for computer programming, and are especially important for any kind
of meaningful game development. Their use is exactly what the name implies: structures or systems

used to store and / or manage data.

THE TECH
WIZARD

Data Structures - Part 1

char character; // stores a single alphanumeric
 // ASCII character

int objectID1; // stores a single object ID
int objectID2; // stores a single object ID
int objectID3; // stores a single object ID

oat x; // the x element of a vector
oat y; // the y element of a vector

23 DEV.MAG ISSUE 6 2006

T
E

C
H

C-Based pseudo-code of
some simple array usage:

(Each item of an array is generally

referred to as an element. It is

often quite inefcient in terms

of memory cache usage to jump

between different areas of com-

puter memory)

Structures
While arrays are great for storing

large groups of similar data together,

there are many times when different

types of data, requiring different

types of variables, needs to be

grouped together. Generally these

types of data structures are called,

quite simply, structures .Structures

are probably the most commonly

used type of data structure, as well

as the most helpful. The idea behind

a structure is that it can be used it to

create custom variables that can be

made up of both basic variable types

(ie. bytes, ints, oats, etc.) as well as

other user created structures. Once

created, a structure can be used just

like any other variable .

The versatility of structures makes them

invaluable to game development in par-

ticular. Almost all areas of game program-

ming require that various types of related

data be grouped together, even if the

types of data are different. Usually this

is down to management purposes, and

is technically not necessary as a game

could be created by only using single

variables. However, doing so would make

working with those variables very difcult,

not to mention incredibly messy. In prac-

tice, once structures are used properly,

there is no substitute to them for easily

managed data storage.

C-Based pseudo-code for dening a

simple game object with structures

(The name does vary between pro-

gramming languages, although the

implementation remains relatively

the same For instance, an array of

any structure type can be created

for use if required)

The proper use of data structures is

important in not only creating efcient

code, but easily managed and main-

tained code as well.

 As is the case with many areas of

computer programming, understanding

what the various types of data struc-

tures are and how they can be used

takes precedence over knowing how to

implement them properly, as only once

you understand how they work will you

best be able to judge which ones are

best suited for a given task.

These are but a few of the types of

data structures available for computer

programmers to use. In Part 2, we will

move on to more complex systems that

will allow for even easier code man-

agement and efciency.

 COOLHAND

char lename[64]; // lename string of up to 63 ASCII
 // characters
 // (+1 for the terminator value)

int objectID[100]; // 100 entries to store used
 // object Ids

oat vector[2]; // 2 oats used for the x, y
 // elements of a vector

InitialiseFunction()
{
 int i;

 //store the name “pic.bmp” into the lename array
 lename[0] = ‘p’;
 lename[1] = ‘i’;
 lename[2] = ‘c’;
 lename[3] = ‘.’;
 lename[4] = ‘b’;
 lename[5] = ‘m’;
 lename[6] = ‘p’;
 lename[7] = NULL;

 //initialize array of object Ids
 i = 0;
 loop(100)
 {
 objectID[i] = i;
 i = i + 1;
 }

 //initialize the vector coordinates
 vector[0] = 10.0;
 vector[1] = -10.0;
}

//2 Dimensional Vector Structure
structure
{
 oat x; // X position of the vector
 oat y; // Y position of the vector
}Vector2D;

//Rectangle Structure
structure
{
 int top; // top coordinate of the rectangle
 int left // left coordinate of the rectangle
 int bottom; // bottom coordinate of the rectangle
 int right; // right coordinate of the rectangle
}Rect;

//Graphic Image Structure

structure
{
 char lename[64]; // name of the le that is
 // loaded for the image
 int width; // width of the image
 // (in pixels)
 int height; // height of the image
 // (in pixels)
 byte *imageData; // pointer to memory that has
 // been allocated to store the
 // pixel data for the image
}Image;

//2D Sprite Structure
structure
{
 Int ags; // bit ags for the sprite
 Rect source; // rectangle dening the area
 // within the parent image that
 // represents this sprite
Image *image; // pointer to the image that
 // the sprite is referencing
}Sprite;

//Simple Game Object Structure
structure
{
 int objectID; // id of the object
 int ags; // bit ags for the object
 Vector2D position; // position of the object
 // in the world
 oat rotation; // rotation of the object
 Sprite sprite // sprite representing
 // the object
}GameObject;

24 DEV.MAG ISSUE 6 2006

TA
ILP

IE
C

E

Marketing hype aside, rAge

really is the biggest thing

to hit SA in terms of gaming, so

it comes as no surprise that the

art of game development rears its

head there too. That’s right. In

a way that previous incarnations

have never seen, this year’s rAge

is going to go all-out on its

game development section, com-

plete with stands, keynote speak-

ers, free stuff, prizegiving events

and, of course, your friendly local

Dev.Mag. Want to learn more?

Well, here’s ve things to remem-

ber when you go devving at rAge

this year:

Dev.Mag!
The event of the year just wouldn’t

feel complete without the presence of

the writers, designers and marketers

responsible for your favourite monthly

e-zine. Expect members of the mag

to y, drive, walk and crawl their way

to rAge, just for their loyal readers!

That, and the free t-shirts they get

so that you can identify the team on

the exhibition oor! Most of us will

be around for the whole rAge event,

doing promo work, distributing copies

of the mag, managing stalls or help-

ing out with some sort of menial task

or another. Send them a “Howzit!” if

you run into any of them!

Free Stuff!
Right, so free copies of the mag aren’t

the only thing. We’ve archived the

entire set of magazines onto promo-

tional CDs lled with game development

resources, projects, tutorials, links and

other handy tools for any wannabe

game maker to get his or her teeth

into. Look out for ashy posters

and people wearing the Game.Dev /

Dev.Mag t-shirts to make sure you get

in on the action! For those of you enter-

ing NAG’s comp 10, we’ll be handing

out some sweet amounts of cash at the

rAge prizegiving to those entrants who

managed to get themselves in one of

the top positions.

Education!
Throughout the expo, the gaming devel-

opment crew will be running hour-long

sessions consisting of either talks or

workshops. Speeches consist of indus-

try professionals (some of them from

amongst the ranks of the Dev.Mag writ-

ers) delivering talks on a wide range

of game development topics, such as

frameworks, development communities,

prototyping, evolution of game making

and more. When there isn’t a speaker

at work, audiences will be sure to nd

an engaging workshop to get involved

with.

Game Dev Idols!
Nope, this is not a national sing-off

(or code-off, or design-off, or whatever

takes your fancy). We’re talking about

industry professionals and big names

coming to tell us what-for and how they

see the game industry today. Pick

up some courage, ask them questions,

show them your ideas. It’s bound to

be rewarding, as long as you don’t

do something creepy like tattoo their

names onto your body. They will, of

course, be involved with the talks and

workshops.

Your Place in the Limelight!
Yep, you read correctly - come show

us what you’ve done and we’ll give you

a projector time to show everyone. No

catch. These local dev spotlights will

be running in between the workshop

sessions and are a great way to not

only advertise your projects, but get

real face-to-face feedback and attract

a few “oohs” and “aahs” at the same

time. So start preparing something

now to bring to the table when rAge

arrives.

If you weren’t going already, make sure

you haul yourself to this mega-event at

the end of September! We’ll be waiting

for you!

 NANDREW

Keep an eye out for general rAge

info on the following sites:

www.nag.co.za

www.gamedotdev.co.za

www.arena77.co.za

Right. So you know about rAge? Of course you do. It’s the single most important gaming event in the world, bringing

inconceivable joy to billions upon billions of people and is, in fact, considered a key element to nally obtaining world

peace. Or something like that.

It’s rAge, baby!

DIGITAL MAYHEM

“Abstract, isn’t it? This comic has a deep, hidden
meaning which can only be truly discovered if

you’ve played Prehysteria (www.prehysteria.org).
That’s right -- if you don’t play Prehysteria, your

life will remain forever meaningless. We are
indeed truly shameless.”

www.prehysteria.org

25 DEV.MAG ISSUE 6 2006

C
O

M
IC

In a rst for South African game development, NAG magazine is sponsoring

R10 000 in prizes for a local game development competition. Run by

Game.Dev, a local developer support community, the competition

asks entrants to design and build a management game over the

course of two months. This is the tenth competition Game.Dev

has held in two years, but never before have such large amounts

of money been up for grabs.

MAKE A GAME AND WIN

For more information on the

competition and instructions

on how to enter, take a

look at the sites below:

(http://www.nag.co.za)

(http://www.gamedotdev.co.za)

