
ON THE BACK
OF A NAPKIN:
PART 4: TRANSPARENCY,
TRANSLUCENCY AND
 BLENDING

GAMEPLAY:
INNOVATION VS FRILL

MOBILE
GAME
DEVELOPMENT
IN JAVA:
PART 3 SAY IT WITH
SPRITES

REVIEWS : PREHYSTERIA, BALL FALL
FEATURE : I.T INTELLECT LAN
FUNDAMENTALS OF 3D/BLENDERDEV.MAG ISSUE 5

S
O

U
T

H
 A

F
R

IC
A

’S
 F

IR
S

T
 G

A
M

E
 D

E
V

E
L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

ISSUE 5 2006

PREHYSTERIA BY DION SCHER AND EVAN HURWITZ

CONTENTS
REGULARS

03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
05 - I.T INTELLECT LAN

SPOTLIGHT
07 - DION SCHER AND EVAN HURWITZ

REVIEW

08 - PREHYSTERIA

09 - BALL FALL

DESIGN

10 - GAMEPLAY
11 - BACK OF A NAPKIN PART 4: TRANSPARENCY,
 TRANSLUCENCY AND BLENDING
13 - POSITIVE AND NEGATIVE FEEDBACK
14 - FUNDAMENTALS OF 3D AND BLENDER
16 - 2D ASSETS WITH 3D SOFTWARE: PART 2

17 - PROJECT MANAGEMENT PART 1

MOBILE

19 - GAME DEVELOPMENT IN JAVA
 PART 3: SAY IT WITH SPRITES

TECH

21 - A LITTLE BIT ABOUT COMPUTER MEMORY
SYSTEMS

TAILPIECE

23 - POEM

ED’S NOTEED’S NOTEED’S NOTEED’S NOTE

I would first like to take this opportunity to apologize for the lengthy delay

that was experienced with the release of our last issue. Due to certain

errors and problems in the design process, the issue was held back.

Now for good news, everyone! From this issue onwards, you can expect a

new issue of Dev.Mag to be released on the last Saturday of every month.

Additionally, and in keeping with tradition, we once again have something

new to offer: This month sees GeometriX joining the team with the

beginning of his episodic series on project management in game

development.

rAge is on the horizon and it has the full attention of the Dev.Mag team

who are preparing for the trip to South Africa’s largest electronic and

gaming expo. It’s going to be a fun-filled trip where we’ll be pushing

Dev.Mag around and discussing its future. I personally can’t wait and I

hope to see you there.

Editor

Stuart ‘GoNz0’ Botma

THE TEAMTHE TEAMTHE TEAMTHE TEAM

ENIGMATIC EDENIGMATIC EDENIGMATIC EDENIGMATIC ED

Stuart “GoNz0” Botma

DASTARDLY DEPUTYDASTARDLY DEPUTYDASTARDLY DEPUTYDASTARDLY DEPUTY

Rodain “Nandrew” Joubert

DILIGENT DESIGNERSDILIGENT DESIGNERSDILIGENT DESIGNERSDILIGENT DESIGNERS

Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

JUBILANT JOURNALISTSJUBILANT JOURNALISTSJUBILANT JOURNALISTSJUBILANT JOURNALISTS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Yuri “knet” Oyoko

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

Greg "Zphyr" Reveret

Geoff "GeometriX" Burrows

WIZARDLY WEBSTERWIZARDLY WEBSTERWIZARDLY WEBSTERWIZARDLY WEBSTER

Claudio “Ch1ppit” de Sa

WEBSITEWEBSITEWEBSITEWEBSITE

devmag.googlepages.com

To join, make suggestions or just

tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of the

NAG Game.Dev forum. Visit us at

www.nag.co.za

03 DEV MAG ISSUE 5 2006

GAME DEV ADVICE FROM

PENNY ARCADE

http://www.penny-arcade.com/2006/07/05

Penny Arcade, a popular webcomic and a

great source for gaming news as well,

recently released an article written by Chris

Avellone of Obsidian Entertainment (a man

who's worked on big titles such as

Neverwinter Nights and Knights of the Old

Republic). Avellone gives advice regarding

the gaming world and how aspiring game

developers can get into it -- he even makes

mention of Obsidian currently needing to

hire some more designers. Any takers?

2006 PGD ANNUAL ‘THE BIG BOSS’ COMPETITION

http://www.pascalgamedevelopment.com/competitions.php?p=details&c=1

This Game Development competition, centred around development in Pascal and

Delphi, recently announced the winners of this year's event, themed ‘The Big Boss’.

Entrants were required to design a game featuring bosses to challenge at the end of

each individual level, with progress being monitored on a regular basis and

intermediate deadlines being set to encourage development “road-mapping” and

working on a regular design schedule. The winning games as well as prize-clinchers

in various other categories can be downloaded and played from the competition's

main page.

QUAKE WARS DEV DIARY

http://pc.gamespy.com/pc/enemy-territory-

quake-wars/717741p1.html

Gamespy is hosting a series of articles on

the development of the highly anticipated

Enemy Territory: Quake Wars, written by

the game's designers themselves. Part

one focuses around the dynamic of

balancing an FPS containing asymmetrical

teams, each with its own unique units and

different game objectives. Definitely a

significant issue within the game,

especially if it wants to get into the

competitive arena.

‘BAD GAME DESIGNER, NO TWINKIE!’

http://www.gamasutra.com/features/20060710/adams_01.shtml

Now in its seventh installment, this

popular series highlights common

issues with games and why the people

behind such titles can be considered

bad designers. Flaws such as

inadequate feature spreading or a lack

of subtitles are critically analysed, sometimes even using highly popular titles to show

examples of bad design behaviour. An interesting feature of this series is that all

'twinkie denial' cases are submitted by readers, so if something grates you about

games today, be sure to write to notwinkie@designersnotebook.com

THE CORPORATE ABUSE -- I’M LOVIN’ IT

http://www.mcvideogame.com/downloads-eng.html

Yep, it's the McDonalds game by MolleIndustria, designed as a satire against the major

fast-food company and easily downloadable for your enjoyment. Flash games don't

often cause such a stir -- but

this one manages to do so, not

only due to its controversial

nature but because its fiendish

difficulty is only matched by the

equally fiendish addiction to

play it. A prime example to

Flash developers out there who

want to make a game that

people will enjoy.

04 DEV MAG ISSUE 5 2006

N
E
W
S

I.T INTELLECT LAN

 mpty… Unless you count me,

....Nandrew, and the dude who saw

the LAN advertised on www.langame-

s. co.za. Slight panic began to sneak

in. There were moments where I

dreaded the worst case scenario

which would see the 3 of us locked in

a battle of awkward silence, much

like a scene from Napoleon Dynamite.

Fortunately, this was not to be. The

cavalry started to arrive, bringing with

them their weapons of war. Armed to the

nines with high end graphics cards,

gaming laptops and laser mice!. It then

dawned on me that we had the makings

for a small LAN party. I then did what

any mediocre LAN organizer in my

position would do: push play and kick-

start the afternoon’s proceedings with a

thumping base line.

All over the room we had Dev.Mag

posters plastered and placed, as, at the

core of this massacre, there were 2

simple goals: To generate awareness

and promote the Mag to the public.

Dev.Mag: the brand, the image, the

coolest online-focused game

development magazine around; a

magazine for the people, by the people!

VIVA! The second goal was to generate

funds so that we can start marketing our

fantastic Mag to the people. That was

my mission for the afternoon, and if I

could have some fun whilst punting

Dev.Mag, then why the hell not? I also

learnt a lot from the gamers present,

including that Counter-Strike can

become very repetitive if you are one of

the unfortunate n00bs who continuously

gets head-capped first in your team.

Quake is an awesome pick-me-up from

an hour-and-a-half long DotA mission.

Free coffee is always a

welcomed sleep suppressor,

and you can often get lost in

a conversation over Protoss

and Zerg strategies, or

about which hero was the

worst in the last round of

DotA. Yeah! All and all the

evening turned out to be a

fun, fanatical, frantic frag

fest. [Alliteration FTW! –

Eds] I was also privy to a bit of

underground “indie” game-

development when our very own

Nandrew showed me his work on Line

Wars, a mixture between your pre-

school art lessons and The Matrix

which makes for addictive shooter

action.

This is the ITI Dev.Mag LAN story. The date: 8 July 2006. The time: 14h00.

F
E
A
T
U
R
E

F
E
A
T
U
R
E

F
E
A
T
U
R
E

F
E
A
T
U
R
E

05 DEV MAG ISSUE 5 2006

E

As the LAN carried on into the night we had attracted the

interests of some guys that passed by. They must have heard

the thumping Infected Mushrooms soundtrack playing and

decided to investigate this small phenomenon. Needless to

say that they were blown away by what they saw when they

entered the room: An episode of Bleach projected on the wall,

music pressure-cooking the atmosphere to boiling point, and a

room full of eager dudes, kicking a little bit of ass! Laughter

and cries for mercy filled the air. It was electric, for lack of a

better word.

The venue was awesome, and it really was a pity that, due to

circumstances beyond our control, we had a smaller turnout

than expected. However, a lot of good also sprung up from this

experience. The players saw the potential and value of ITI as a

venue for gaming and will definitely return for future LANs.

This is wonderful news for the Dev.Mag marketing team, as

we will be able to kick-start some form of tangible “merch” for

the team and supporters alike. A new domain is also on the

cards and definitely something to look out for in the months to

come. I feel that this is the beginning of something big for

Dev.Mag and I look forward to watching our valued readership

grow until we eventually catch the eyes of some new sponsors

in the not-too-distant future. “A journey of a thousand miles

begins with one step.”

Be on the lookout for the Dev.Mag LAN promotional video

on the website!

 BURNABIS
F
E
A
T
U
R
E

F
E
A
T
U
R
E

F
E
A
T
U
R
E

F
E
A
T
U
R
E

06 DEV MAG ISSUE 5 2006

How long have you been working on the project?

[Dion] We actually had the idea 2 years ago and have been

talking about it on and off for a while. Last year in December I

decided to start working on it properly and I asked Evan to help

with the documentation and calculations.

What research have you done for Prehysteria?

[Evan] We used our own personal experience from playing

games like Kings of Chaos, Hell Wars and Darkthrone.

In terms of game-play, what has been your biggest

challenge? How did you overcome it?

[Evan] Dion has spent too much time playing as a Game

Master in roleplaying games and tends to like hurting players

more than necessary. Game balance and fine tuning is our

biggest challenge.

[Dion] We’ve got Evan debugging 100% and writing the help

file to help players in difficult areas. We also believe team-play

is very important in our development, and we meet once a

week in official meetings and spend up to 3 hours on the phone

each day discussing ideas and plans.

Do you belong to any game development communities?

[Evan] No, but we’re both active gamers and belong to local

LAN and gaming groups.

Do you think there’s any value in a game development

community?

[Dion] Yes and no. While development communities provide

valuable resources, opinions and good reviews, I worry about

the politics that generally surrounds these groups. I’m also

worried because of the heavy focus of designing into oblivion

and losing momentum.

When we go Beta we will be jumping on communities like

Game.Dev to ask what people think and getting people to play-

test the game.

When you go live what will you use for subscription

payments?

[Evan] Paypal! It’s been available in South Africa for awhile.

What technologies are you using in Prehysteria?

[Dion] ASP.NET 1.1, Javascript, SQL Server 2000

Are you going to be looking at any Web 2.0 technologies?

[Dion] Not at this moment, it’s not important to the game.

You’ve built an MMO but the inter-player communication is

rather weak (no trading resources, no collaboration except

for premium species and no communication with lower

ranked players), are there plans to improve this?

[Dion] We’ve tried to build an office game that only takes a

couple of minutes a day to play. Collaboration would require

more of the player’s time plus collaboration would make it

difficult for starting players. It also doesn’t fit into the theme of

the game; species don’t mingle well.

What is your message to other game developers in South

Africa.

[Dion] It’s a good idea to let ideas mature between coding

periods. Breaks are important to let ideas grow. You must

also have an Outcomes Document so that you know where you

going and can tick off what you’ve finished. It’s very important

that you finish your product.

[Evan] Like Nike, ‘Just Do It!’ Set real deadlines and don’t be

afraid to make mistakes.

For more info about the game,

check out our Prehysteria

review in this month’s

issue.

P
rehysteria is a new online strategy game in which players fight, evolve

and eat their way to supremacy. FENGOL has the lucky honour of

calling Dion Scher (left, 32) and Evan Hurwitz (right, 27) good friends, and

when they released Prehysteria as Alpha, they invited him to play-test it.

Now, with the release of the Beta version, he decided to go interview them.

This is what they had to say.

PREHYSTERIA WIZARDS

S
P
O
T
L
I
G
H
T

S
P
O
T
L
I
G
H
T

S
P
O
T
L
I
G
H
T

S
P
O
T
L
I
G
H
T

07 DEV MAG ISSUE 5 2006

he premise to this whole game is

startlingly simple. Eat whatever

you can get your hands on (kinda like

the French), and use this to increase

your armies, buy more workers, create

more structures or acquire all-important

evolutions that will help you defend

yourself against all the nasty sharp-

toothed critters out there.

 Competing against other players

quickly makes things a lot more complex

though, and soon you have to make

critical decisions with your limited

supplies – do you purchase additional

defences to protect you against that

annoying, aggressive mammal who

keeps attacking you, or do you enhance

your breeding capability so that your

armies can grow quickly enough to

smack him about later? What about

getting a spy network to set up snares

and traps for the

next time

someone decides

to stomp over

and take a bite

out of you? Add

to this the additional 'resource' of

hatchlings per day for the colony and

suddenly you have a game where quick

adaptation to ever-changing situations is

the key to survival.

 Prehysteria is still in beta, meaning that

the game world is currently going

through a lot of interesting changes to

experiment with new ideas or appeal

more to players. Of course, this has

both its advantages and its drawbacks –

some balancing issues are still being

addressed by the developers, and some

chosen lifestyles seem to be more

difficult to play than others. However,

this does mean that designers are very

much open to feedback on their title,

allowing you to shape

further development of

the game yourself and

even score a few free

hatchlings if the developers like your

idea!

 Prehysteria currently boasts at least

fifty active players, all gathered during

its first couple of weeks in existence,

and it's growing fast. It's fun, takes up

only a few minutes of your day and is

easy on any system or connection. So

go ahead! Signing up is free, and so is

eating your friends! Play Prehysteria

now!

NANDREW

T

FIND IT!

http://www.prehysteria.org

Prehysteria takes place through a simplistic, 56K-friendly series of

management screens, similar to other games of its genre.

Prehysteria is an online, browser-based strategy game which pits you against other

players in a turn-based eat-or-get-eaten “Prehystoric” world. After creating your own

unique species, you have to hunt, forage and evolve your way to the top of the bone

pile while making sure that you don't end up as somebody else's supper!

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

08 DEV MAG ISSUE 5 2006

BALL FALL
all Fall takes a relatively simple

concept and turns it into a

really addictive and fun game. The

goal is to keep the ball on the board

for as long as possible, with every tile

on the board falling down when you

pass over it and returning after a few

seconds. The longer you stay on the

board, the higher your score is. An

array of powerups are thrown into the

mix to keep things interesting

The game seems a little daunting and

confusing the first time you play it but in

no time you'll understand what's going

on. Soon, you'll be hooked and will keep

trying to break that elusive 10000-point

barrier. The powerups add a lot of depth

to the gameplay and are activated by

passing over colourful, flower-shaped

objects. Different colours do different

things – for example, red will stop all

blocks from falling for a brief period,

while blue will create a spiral flame

which keeps growing bigger until you

touch the centre of the flame – the

bigger the flame is when you do this, the

higher the score bonus you receive.

Overall, it's a polished and great

experience. The menu is simple and

effective, and you get a clear

explanation of the object of the game

and what the different colour powerups

do. There are also options to turn sound

effects, music and fullscreen mode on or

off which is a welcome touch. The

background music is a midi version of

the song Track 2 by Blur and doesn't get

too annoying in the background – but if it

does, then you can easily turn it off.

Unfortunately, while the game is really

addictive and fun at first, after a while it

becomes a bit repetitive. It would be

great to see more levels which

incorporate puzzles or a new challenge

to add depth and longevity to the game.

Aside from this particular shortcoming,

it's a great game which takes a simple

concept and executes it well.

Everyone should give it a try.

 INSOMNIAC

B

Ball Fall was created by Brian Elting

and can be downloaded from http://

www.gamemakergames.com/

?a=view&id=184

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

09 DEV MAG ISSUE 5 2006

GAMEPLAY

his isn't working like it should.

Usually, more is better best

described by the term "the more the

merrier" – but let me explain what I

am trying to say.

Lets take a basic retro game as an

example: Tetris.

Apart from the Russian music backtrack,

Tetris was insanely addictive. It lived

around the core gameplay of fitting

blocks neatly into place. That is all. No

other frills, just good plain addictive

russian block-fitting!

Now, let's take a modern game ... I am

going to suggest Black and White 2.

It is almost exactly like the first. The

things that made it great return in the

sequel, but what did the developers to

do improve it? They added more stuff.

Increased villager interaction, more

spells, etc. What they dont realise is that

they are just adding things on the side

without any worth to the core gameplay.

As you all know, Black and White 2 didnt

score as well as the first. It wasn't as

'special' as the original. Why? The core

gameplay remained exactly the same.

The other added stuff did not add to the

core gameplay.

Now, let's get back to Tetris. Let's say

Tetris' addictive design is 'rediscovered'

now. This is how it would turn out.

"Tetris! From the critically acclaimed

AAA comes a new title so addictive you

will want to go to Russia! It has an

amazing unique backtrack done by the

impeccable Yun Kamagi and totally

awesome graphics."Right, nothing

wrong with the above, but here comes

the twist.

"Tetris not only has block fitting galore,

but there is a deep system behind the

block fitting. Small people known as

Tetris-ians command the blocks to the

bottom! If you do not keep them happy,

you will lose money. The management

behind the Tetris-ians requires

impeccable skill to contain them and

keep them happy. Tetris is awesome!"

Well, I tried to explain, but I hope by

now you understand. Developers add

things that do not add to the core

gameplay.

The way to go? If you design games,

more isn't always better. If you add

something new, think about it. Does it

add to gameplay or is it just frill?

 TR00JG

Most triple-A games these days really don't live up to their expectations. They try to be too ambitious (even at that level)

and fail horribly. What I have discovered is that developers want to improve their games by adding more. More eye-candy,

more gameplay elements, more Chuck Norris.

10 DEV MAG ISSUE 5 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

T

ON THE BACK OF A NAPKIN:
PART 4: TRANSPARENCY, TRANSLUCENCY AND BLENDING

Transparency, the first method

Back in the day when people manually blitted their sprites to

screen memory (if you’re too young to know what blitting

means, Google can help with that curiosity), they used to pick

a specific colour in the sprite and simply not draw anything to

the screen when they encountered that colour. Thus a

technique called chroma keying was born!

Nowadays graphics APIs support chroma keying without the

whole manual pixel colour check thing, which to be perfectly

honest was a bit annoying to do. However, chroma keying

does have a downside in modern applications: Things like

bilinear filtering (remember last month’s texture filtering

article?) will “blur” individual pixel colours together, so you’ll

end up with the edge pixels in your texture having some of the

chroma colour bled into them, giving you a nasty “halo” around

your transparent object.

Translucency and the alpha channel of doom!

Hopefully many of you will have heard of the idea of “alpha”.

When we talk about textures and transparency, alpha refers to

an extra channel per pixel. We already have red, green and

blue channels that define the colour of a specific pixel in a

texture or sprite, if we add another channel to that we can

really start doing some funky things.

The simplest implementation of alpha is single-bit alpha. That

means that each pixel has an alpha value of either 1 or 0

which means it’s either on (visible) or off (not visible). This may

sound similar to chroma keying, but the major difference is in

how the alpha information is used by graphics APIs.

Before we tell whichever API we’re using (GL, DirectX, or any

engine that uses either of those) to use a specific texture while

it’s rendering, we can specify a blending operation for it to

perform while it’s using that texture. Essentially blending is all

about controlling the final colour value of a pixel on screen by

multiplying the source colour information (the colour that the

system is trying to make the pixel, gotten from a sprite or

texture) and the destination colour information (the colour that

the screen pixel is already) in all sorts of different ways. The

usual blending operation is to get the final colour on screen by

multiplying the source colour by its alpha value, and adding

the destination colour multiplied by 1 – the source’s alpha.

This gives us something similar to what you get by looking

through a piece of coloured glass: The colour behind the glass

is “let through” by how transparent the glass is, while also

being tinted by the how un-transparent (opaque) the glass is.

This means that an alpha value of 0 doesn’t change the

onscreen colour at all (ie: fully transparent, perfect glass) while

Transparency effects in games are very important, not only because they make games look good, but also because they

provide a unique set of problems and opportunities for smart designers to exploit. This is because transparency is

implemented using a very versatile blending system, which can be put to use in tons of different ways …

RGB values: never look at household pets in the same way again!

11 DEV MAG ISSUE 5 2006

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

an alpha of 1 doesn’t let through any original onscreen colour

at all and we only see the texture colour (ie: totally opaque,

like a wall).

Now, if we give our alpha channel more bits, we make it

possible for the alpha to have more values than just 0 and 1.

This gives us wonderful, smooth, gradiated translucency, just

like our coloured glass example. Imagine looking through a red

pane of glass that’s half-transparent at a green field: Our

source (the glass) has a colour value of S{red = 1, blue = 0,

green = 0, alpha = 0.5} – this is called RGBA notation (I’ll let

you guess why). The grass behind it is represented by D{0, 1,

0, 1} because it’s completely green and also completely

opaque! So, using the blending operation we described above,

we get our final colour by adding S multiplied by its alpha to D

multiplied by 1 – S’s alpha (this is called giving the inverse of a

value, subtracting it from its possible maximum value).

So:

F = (S * Sa) + (D * (1 – Sa))

 = (S * 0.5) + (D * (1 – 0.5)) : Substituting Sa = 0.5

 = (S * 0.5) + (D * 0.5) : Calculating 1 – 0.5

 = ({1, 0, 0} * 0.5) + ({0, 1, 0} * 0.5) : Substituting S and D’s colours

 = {0.5, 0, 0} + {0, 0.5, 0} : Multiplying out

 = {0.5, 0.5, 0} : Adding the colours together

So our final value for F is {0.5, 0.5, 0}, giving us a half-red,

half-green, mucky brown colour. Exactly what you would see if

you looked through a red glass window at a green field, yay!

Thankfully you don’t have to do this type of calculation all the

time, your graphics card is doing it millions of times per second

for every pixel on screen, more yay!

Hopefully some of you will have realised that you need to have

drawn the grass before drawing the red glass, otherwise all

you’ll see is the grass (if you can’t figure out why, redo the

calculation above and switch S and D around, to see what you

get). This is called transparency ordering and is one of the

nastier problems of 3D graphics, we’ll get to it later after we’ve

discussed other nifty things like Z buffering…

Other uses of blending

As I mentioned earlier, blending is done by your graphics card

and defined by the blending operation you choose. The

blending operation we’ve gone over so far is only one of many

different possibilities. You define a blending operation by

telling your API what values to multiply the source and

destination colours by, so the operation we looked at above is

blend(source alpha, inverse source alpha), this is the setting

used to get “normal” transparency. Additive transparency is

given by blend(source alpha, one) because we want the

screen colour to be unchanged, we just want to add our

source colour “on top” of it.

There are many different blending values that you can play

around with: Destination alpha, inverse destination alpha,

source/destination colour, inverse source/destination colour,

maximum, one, zero, etc. Experiment and see what kinds of

effects you can create. Blending is extremely versatile, some

people even use blending to achieve advanced stencil and

lighting effects, all it takes is a little thinking outside the box.

Key points:

- Blitting = oldschool.

- Chroma keying = colour that isn’t drawn to screen,

can have issues with filtering.

- Alpha channel = extra channel in textures/sprites

along with red, green and blue.

- Blending = operation that does things to source and

destination colour to get final.

- Blending values = many and varied, can achieve

lots of effects.

DISLEKCIA

12 DEV MAG ISSUE 5 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

POSITIVE AND NEGATIVE

FEEDBACK

ypically in games, a small

advantage can often be turned

into a big advantage. Such as finding a

rare Diablo magical item, or having the

upper hand in resource gathering in an

RTS. An advantage like this can often

help the player get a bigger and bigger

advantage in the game. The RTS player

can then build more armies from the

extra resources, which results in said

player being able to get a territorial

advantage, and then more resources,

etc.

The extra opportunities gained from a

slight positional advantage in a game is

called positive feedback. Basically

positive feedback is the process in

which a small advantage can be

extended to a bigger and bigger

advantage. Positive feedback is both a

good and a bad design principle to build

into a game. In single player games

positive feedback can be used to allow

the player to quickly build a bigger and

better position. In multiplayer games its

more important to limit positive feedback

to give everyone a fair chance in the

game.

The opposite of positive feedback is

negative feedback. Negative feedback is

used to slow down the speed in which

players can gain an advantage. For

example the cost of building new units

could be based on the number of units

the player already has. Negative

feedback can also be used to adjust the

level of AI to match the players skills.

Negative feedback can sometimes spoil

a game for a player as they may find it

difficult to grow their position in the

game.

New players that play the game for the

first time will often find the use of

positive feedback an encouragement to

playing the game. Their positions in the

game will quickly improve, thus

encouraging them to keep playing.

Players that already know how to play

the game will use and positive feedback

systems to attempt to get an advantage

over the other players, while negative

feedback will make the game easier to

balance between good and bad players

by not allowing the better player to build

such a big advantage over the other

players.

Good players will find ways of using

both positive and negative feedback

systems to their own advantage. Both

positive and negative feedback systems

can be used to balance a game.

However, it must be remembered that a

positive feedback system would typically

not allow new players to join in a

multiplayer game as the first few players

would have an insurmountable

advantage purely from having started

playing first. The use of a negative

feedback system could allow the

players that joined later to catch up to

the first few players more easily.

A game can implement a handicap

structure by adjusting the effects of the

positive and negative loops on the

various players. Weaker players could

be given a larger positive multiplier to

allow them to compete more easily with

better players, or they could be

penalised less for any advantage that

they achieve. For example, if each

soldier a player builds costs twice the

number of existing soldiers in gold

(negative feedback) a weaker player

could have each soldier costing only

1.8 times the number of soldiers they

already have.

By keeping in mind the effect of the

resource and skill systems on the

advantages that players can achieve in

a game, the system can be adjusted to

ensure balance for all players of the

game. Some games require quick

sudden advantages in a player's game

experience, while other games need to

limit the speed in which the teams build

their strength. Time spent identifying

the effects of the positive and negative

feedback loops in a game will make

that game easier to balance and

therefore more fun for its players.

CAIRNSWM

T

Everyone who plays games wants to see their character, country or team getting better as they play. The

advancing of character skills, countries' power and team influence is the key to why people play the game.

When a game designer creates a new game, the development throughout the game is core to the design.

OMG ur dmg is
so imba

LOL im lvl 99
n00b!!!1!
D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

13 DEV MAG ISSUE 5 2006

MOBILE GAME

DEVELOPMENT IN JAVA

FUNDAMENTALS OF 3D AND BLENDER

A skilled 3D modeller is capable of

creating life-like replicas of anything

he can imagine, ranging from people

to machines, to entire landscapes.

Almost every object you see in

modern computer games is a 3-

dimensional model.

While there are many tools that can be

used in modelling, most are extremely

expensive. Blender is a free, open-

source alternative that is capable of

creating nearly anything that

professional software can. This tutorial

will teach you how to create 3-

dimensional models in Blender.

To understand modelling, one must first

understand the basic concepts and

elements that comprise 3D models. The

most basic unit is a vertex, which is

simply a point in space. Two vertices

form a line, or edge, and three or more

vertices can form a flat plane known as

a face. Multiple faces form solid, 3-

dimensional objects. [More detail on 3D

concepts can be found in our “Napkin”

series - Eds]

Now, go ahead and open up Blender.

You should be presented with a

relatively complex screen full of buttons

and gadgets. Most of these you don’t

need to use yet, so you can safely

ignore them. The majority of your

screen area is dedicated to the 3D

view, which shows you your scene. The

upper portion of your screen is the

menu bar which contains more options

related to Blender and its functions. The

lower portion of the screen is the

Buttons Window which contains all the

functions you’ll ever need to manipulate

your model. At this moment, you

shouldn’t be overly concerned with their

uses.

Looking around

The first step to creating a model is to

know how to move your view around.

The middle mouse button is used

extensively in this process, but if you

don’t have one you needn’t worry. The

left mouse button, together with the ALT

key, can serve as a substitute. Hold

down the middle mouse button (Or ALT

+ Left mouse button) anywhere in the

3d view, and move the mouse. This will

rotate the view. If you hold down CTRL

while clicking, the view will zoom in and

out, and if you hold SHIFT your view will

pan. Try these now to become

acquainted with the basic controls.

You can also you the numerical keypad

(NOT the numbers above the QWERTY

keys) to change to preset views. Press

7 to change to top view (which is the

default view), 1 to change to front-view,

and 3 to change to side view. 5 will

toggle between perspective and

orthogonal view. All of these view

functions can also be accessed from

the view menu under the 3d window.

14 DEV MAG ISSUE 5 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

The Blender interface

You will notice that, in addition to a

cube, the 3d view is populated by two

other objects: One is a circular item that

represents a light source. Without lights,

all items in a scene will simply be black

and unlit. The other object, a pyramid

shape, represents the camera. It is from

this point that the scene will be seen

when rendered. You can see the scene

from the camera’s point of view by

pressing Numpad 0. You can render the

scene now by clicking the Render

option on the menu, then Render

Current Frame, or simply by pressing

F12. This will bring up a window that will

show the scene from the camera’s

viewpoint. It’s not much, but it’s a start.

If you are using a recent version of

Blender, your view may also contain

coloured arrows. These represent

Blender’s ‘3d transform manipulator’.

This is just alternate way to manipulate

objects and you can safely disable it to

get it out of the way. We won’t be using

it. Press CTRL+SPACE to remove the

arrows, or click to hand icon under the

3d view.

Moving and changing things

Press 7 to change to top view. The pink

outline of the cube tells you that it is the

currently selected object. If it is not

outlined in pink, you can right-click on it

to select it. If you hold down SHIFT

while right-clicking you can select

multiple objects. Pressing A will toggle

between selecting and deselecting all

objects. Pressing B will allow you to

select multiple objects by drawing a box

around them. Try these various

methods to select the three items in

your scene. You may need to move

your view around to see all of the

objects. Also note that if you hold CTRL

while performing any of these actions,

the changes will be constrained to grid

units.

Now, select the cube object with the

right mouse button and press G to

activate grab mode. If you move the

mouse, you’ll notice that the cube will

move also. Press the left mouse button

to place the object in its new position, or

right-click to cancel. Pressing S will

activate scaling mode, which will allow

you to change the object’s size, and R

will activate rotation mode, which you

can use to spin the object. Rotation can

also be performed on the camera object

and on certain lights, but will have no

effect on the one in your scene. Try

rotating, moving and scaling some

objects now, and then press F12 to see

what effect they had on the render.

In addition to these controls, the camera

object can be moved in another, simpler

way. By pressing CTRL + ALT +

Numpad 0, the camera will move to the

location of the 3d view. While

manipulating objects as a whole is

useful, to create detailed models one

must be able to edit the finer details of

an object. While making sure the cube

is selected, click the drop down box

under the 3d view that reads Object

Mode, and change it to Edit Mode.

Pressing TAB will also toggle Edit

Mode. You will notice that the individual

vertices of the cube will become visible

as pink dots. Whilst in Edit Mode, you

can manipulate each of these vertices

just as you did with the cube as a

whole. Select some vertices and try

moving them around to see how it

affects the cube and the render.

Changing the view to wireframe mode

will allow you to see the vertices and

the entire structure of the model more

easily. To change to wireframe view,

click the drop down box shaped like a

cube under the 3d view, and change it

to wireframe mode, or press Z. This is

useful when in edit mode.There were a

lot of things to cover in this section, but

now you should be aware of all the

basics. You should try using all these

features to become acquainted with

their use. You’ll be using them often.

And that is all for this Blender tutorial.

Next time, we’ll delve into more detail,

and learn about lights and materials.

 CH1PPIT

Where to get it?

Blender is available for free from www.blender.org.

This tutorial should be correct for most recent

versions of Blender. The latest available version is

2.42, and this tutorial was created with version 2.41

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

15 DEV MAG ISSUE 5 2006

RECAP - CONTROLS

Middle Mouse Button: Move around. Pan with SHIFT, zoom with CTRL.

Right Mouse Button: Select objects.

F12: Render scene.

Numpad 1, 3, 7: Change to preset views (CTRL changes to opposite
side)

Numpad 0: Change to camera view

B: Enable box select

A: Select/deselect all objects

G: Grab

S: Scale (Resize)

R: Rotate

TAB: Toggle Edit Mode

Z: Toggle Wireframe Mode

Changing to Edit Mode

Changing to Wireframe Mode

 o start off, you need a 3D model that you want to use in

your game environment. I made myself this little buggy/

tank for my upcoming title, Mech’s Destiny.

 I imported the model into 3D max and set up my scene like

we did last month. I used a white background once again, but

this time it’s because the tires on

my buggy are black, and my

environment in Mech’s destiny is

white. After I have set up all the

lighting I desire, I make sure my top

view fully extends the model. I then

do my first render.

 Now that I have my sprite rendered, I will have to reformat it a

bit to work correctly with game maker. The first thing I normally

do is open the new file in my painting program, and resave it

as a .gif file. I use .gif format because it's 256 colours and is

much smaller than .jpeg. One does lose some quality, but it

makes up for it in the size. You could always keep the higher

quality file, for a bigger but “higher quality” download version of

your game. After resaving it as a .gif file, I close all images and

reopen the .gif file. This loads the palette the newly saved file

uses.

 Most painting suites have the “magic selector” option. This

automatically selects regions, much in the same way that

Game Maker would decide what is opaque. I would then select

the outside. After doing this, I would increase the colour depth

to 24bit, and paint the outside of my image with a new colour

that is not used in the sprite (I used red for my buggy).

 Now decrease the colour depth back to 256 colours, and

resave the .gif file. Now comes the hard work of cleaning up

the shadows on the image. Take a pencil tool, and clean up

the areas that need clarity [the magic selector can also work in

a pinch, but it's a little more fiddly -- Eds]. When you are done,

it should look something like the image below.

 Now we finally get to use our asset in Game Maker. Open

game maker and create your object. Add your new sprite and

assign it to the object. How does it look? Need to redo some

post-editing? Maybe you'd like to render it with a little more

light, or with a different texture? Next month, I'll show you how

to make a fake shadow to go along with your sprite, which is

all done within game maker. And then, in the following month,

we'll start with animated sprites.

 HIMMLER

T

Last month we ended with a rendered teapot. Not very useful, is it? This month, I would like to put a model you've

created, or downloaded, into Game maker itself.

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

PART 2PART 2PART 2PART 2

1

2

3

4

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

16 DEV MAG ISSUE 5 2006

roject Management is an oft-overlooked, yet invaluable part

of any undertaking, be it building a paper airplane, or an

entire operating system. Without properly applied project

management, you are setting your project up for failure, or, at the

very least – an exhausted schedule.

What does all this have to do with making computer games?

Everything. The entire process of creating a game can (and

should) be managed – from the interface, to the story, to the

voice acting. So, how exactly do you manage a project?

There are hundreds of books written on the subject – each

one giving a slightly different opinion, set of rules, or steps to

follow. My goal behind these articles is to give you sufficient

insight into PM as a whole, and give you the tools necessary

to provide a basic level of management for any game you

create.

There are 5 broad stages to successfully implementing a

project. Each is essential, and their use will allow for a

smooth, relatively snag-free project. These stages are:

It can be argued that there are a lot of similarities between

some of the stages. Planning and designing are often thought

of as a single process, but this is far from the truth.

Throughout these articles, I will be detailing each step, and

with each step – I ask you to use the tools I provide to either

create a new game, or re-create an old one. By using these

tools together with your game-building abilities, you will find

that your games will become easier to create, and present

fewer problems towards the end.

Step 1 – Initiate

It is important for you to keep in mind that the initiation phase

will not be technical. The primary purpose of this stage is to

decide what your game will be, not how you will build or play

it. Decide the genre of the game, as well as the main feeling

you want the players to experience.

You will need to choose which platform you will be

developing on, and which language or engine you will be

using. The purpose of this phase is to simply make decisions.

Once a decision is made – stick to it. If you choose to use

Game Maker for building your game – don’t change your

mind halfway through.

Choose which programs you will be using. Include

applications for programming, compiling, designing graphics

and sound, as well as any resources you plan on using for

your game (websites, image libraries etc).

Commit yourself to a deadline. This can be difficult if you are

inexperienced, or are attempting something completely

different to your usual games.

The important thing to remember is to be realistic – if you

have studies, work, or other time-impacting duties, then you

should factor those in. If you are building your game with or

for someone else, it is vital to have their input for your

deadline.

Once you have an outline of your project, and feel confident

that you can achieve your deadline with the tools you have

chosen, you can begin the next phase.

"Projects happen in two ways: a) Planned and then executed or b) Executed, stopped, planned and then

executed."

 -Project Management Proverb

 PROJECT MANAGEMENT

1) Initiate

2) Plan

3) Design

4) Execute

5) Maintain

17 DEV MAG ISSUE 5 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

P

Step 2 – Plan

You’ve (hopefully) done everything from step 1, and are now

ready to start fleshing out your project. There are many

theories behind the importance of planning, but it is generally

accepted that one should spend 70% of their time planning

and designing, 20% executing (content creation), and 10%

refining, polishing and maintaining. This may sound like a

huge waste of time, but it is during this phase that the heart

of your project will take place.

Let’s begin then. Determine exactly what will happen in your

game. Who is the main character? Why is he or she in the

game, and what is their purpose? Provide overviews for the

game’s storyline (provided it has one). Include dialogue

descriptions, inventory items, weapons, armour, NPCs and

locations. You will also need to outline any puzzles that your

game may have.

Document everything. You should be drawing mock-ups of

each level and any graphics. It is important not to get bogged

down with details at this point, however.

You should also be pre-coding the larger or more

complicated aspects of your game. There is no need to go

into the nitty-gritty just yet – but you should be at least

outlining the basics of your code – such as where to use OO,

and where to use procedures. You should also list any

particular problems you foresee.

That brings us to the end of part one of project management.

I strongly advise you to complete both stage 1 and stage 2,

and to not begin any coding or graphic design just yet. In the

next issue, we will go into the details of the design stage, in

which you will delve a little deeper into the creation of your

game, and will be essentially creating the whole game on

paper.

 GEOMETRIX

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

18 DEV MAG ISSUE 5 2006

PART 3: SAY IT WITH SPRITES
Welcome back. As promised last time, this lesson will focus

on the Game API found in MIDP 2.0 and later. This has the

benefits of providing us with a couple of ‘free’ abilities like col-

lision, a prebuilt sprite system and simplified input handling.

The first thing we need to do is actually import the Game pack-

age, we do this by importing javax.microedition.lcdui.game.* at

the top of our source file.

Now we must make our TutorialCanvas class a GameCanvas sub-

class. To do this we first replace extends Canvas in our class dec-

laration with extends GameCanvas, and then add super(true) as

the first line of our constructor. We do this because GameCanvas

has a boolean parameter in its constructor controlling how input is

handled. We also slightly change the way we handle drawing by

renaming our paint method to doPaint, and replacing the calls to

repaint and serviceRepaints with calls to doPaint and the Game-

Canvas method flushGraphics. As you may have guessed, this

automatically makes use of double buffering if the device supports

it. All this changes can be seen (bolded) in Listing 1.

Now we’re going to replace our simple graphics sphere with a

bouncing sprite. We need an image of a ball. I created my 10x10

pixel smiley-ball using The Gimp (free from www.gimp.org), so

that I could have a transparent background. You can use Windows

Paint if you like, but your background will be solid, just be sure to

save it as a .png file called ball.png. Copy that file to the res direc-

tory in your project directory (for example C:\WTK22\apps\Tuto-

rial\res).

In the TutorialCanvas class, we add a Sprite member ballSprite and

in the constructor we assign it a new sprite object initialized with an

Image created from ball.png (notice the leading ‘/’ in the filename)

and set its initial position.

We can also move the ballX and ballY declarations into the game

loop, since the sprite itself can store those values. In the game loop

we modify our bounce code to take the sprite’s size into account

and update the sprite’s position with the setPosition method. Finally

we replace the arc drawing code from the do Paint method with a

call to ballSprite’s paint method. You can see all of these changes

in Listing 2.

Listing 1. TutorialCanvas updated to extend GameCanvas.
 import javax.microedition.midlet.*;
 import javax.microedition.lcdui.*;
 import javax.microedition.lcdui.game.*;

 //Main MIDlet class
 public class TutorialMIDlet extends MIDlet
 {
 ...
 }

 //Canvas class
 class TutorialCanvas extends GameCanvas implements Runnable
 {
 ...	

 //Constructor
 public TutorialCanvas()
 {
 super(true);
	 ...
 }

 //run the game loop
 public void run()
 {
	 while(!exit)
	 {
	 ...
	 //paint everything
	 doPaint(getGraphics());
 	 flushGraphics();
	 ...
	 }
 }

 //paint the canvas
 protected void doPaint(Graphics g)
 {
	 ...
 }
 }

Img1ResDirectory.bmp: Copy ball.png to your res directory.

 M
O

B
ILE

19 DEV MAG ISSUE 5 2006

Listing 1

And that’s it, instead of a plain ball we have a bouncing sprite. You

could replace the ball image with anything you like, maybe you’d

like your girlfriend’s face bouncing around on your phone?

By now you must be getting fed up with bouncing objects thought,

so next time we’ll add some player input and add lives.

Until then, there is loads of room to clean up and improve this

code, and you’re just the game coder to do it!

 FLINT

 M
O

B
ILE

20 DEV MAG ISSUE 5 2006

Listing 2

Listing 2. TutorialCanvas updated to extend GameCanvas.
class TutorialCanvas extends GameCanvas implements Runnable
{
 ...
 static int ballVX, ballVY;
 static Sprite ballSprite;

 //Constructor
 public TutorialCanvas()
 {
 ...
 try
 {
 ballSprite = new Sprite(Image.createImage
(“/ball.png”));
 } catch(Exception e)
 {
	 e.printStackTrace();
 }
 ballSprite.setPosition(1, 1);
 }

 //run the game loop
 public void run()
 {
 while(!exit)
 {
 //update our ball position
 int ballX = ballSprite.getX();
 if(ballX < 0 ||
 ballX + ballSprite.getWidth() > getWidth
())
 {
 ballVX = -ballVX;
 }
 ballX += ballVX;
 int ballY = ballSprite.getY();
 if(ballY < 0 ||
	 ballY + ballSprite.getHeight() > getHeight
())
 {
	 ballVY = -ballVY;
 }
 ballY += ballVY;
 ballSprite.setPosition(ballX, ballY);

 //paint everything
 ...
 }
 }

 //paint the canvas
 ...
}

THE TECH WIZARD

COMPUTER MEMORY SYSTEMS

A LITTLE BIT ABOUT ...

MEMORY TERMS

he smallest value for memory on a computer is a bit,

which can only contain a single value of 0 (off) or 1 (on).

However, the preferred method for working with data on a

computer is to use the byte, which is a value that is 8 bits

long. Other memory amount terms based off of the byte are

the kilobyte (KB), which is 1024* bytes long, and the

megabyte (MB), which is 1024 kilobytes long.

All data on a computer is stored in its memory. This memory

is separated into two different types: random access

memory (RAM) and hard disk memory. RAM is used by

currently running programs to store their active data into.

Hard disk memory is used to store more long-term data, like

the programs themselves as well as the data resources that

they need to run with.

RAM

When a program first runs, it reserves a portion of the

computer system’s RAM for its own use. This RAM is then

further divided into two separate sections of usable memory,

which each have different uses: the local stack and the

global heap.

LOCAL STACK

The local stack is used to store data that is created inside of

functions. Its size can be any value, providing that it meets

the demands of your program. Usually it ranges between 64

KB and 2 MB, which makes it relatively small compared to

the size of the global heap.

Data that is created inside of a function (excluding global

memory allocation), is considered to be local to that function

alone. That is, it only remains valid while you are inside of

that function, or go into sub-function (a function called from

within a function).

Since all functions in your program share this same local

stack memory, some behind the scenes trickery is necessary

in order for there to be enough space in the stack for your

program to work with.

This is achieved through the use of something called the

stack pointer, which is used to keep track of the current

location of the top of the stack. Each time data is stored on

the stack, the stack pointer is moved to be after this new

data.

Diagram 1:

Whenever you enter a sub-function, the current location of

the stack pointer is saved. Now, any variables created inside

of the function are stored on the stack after any that were

created inside of the calling function, and the stack pointer is

moved along accordingly.

When the sub-function is exited, the stack memory that was

used becomes available for use by other functions simply by

In order to become comfortable with programming complicated applications or games, a certain amount

of familiarity with the architecture of computer memory systems is required.

* Although the prefix “kilo” is usually associated with the value 1000, in computer terms it is associated with 1024 as it is considered to be a

power of 2 value (ie. 2
10

).

T
E
C
H

T
E
C
H

T
E
C
H

T
E
C
H

21 DEV MAG ISSUE 5 2006

T

moving the stack pointer back to the where it was before the

sub-function was entered.

Diagram 2:

If you travel too far down

into sub-functions (like in

the case of recursion),

you may run into a stack

overflow crash, which

means that your stack has

run out of space. In most

cases this can be simply

solved by increasing the

size of the stack for your

program. Be careful,

however that you haven’t

run into a case of infinite

recursion, which is

caused by continuously

going lower and lower into

sub-functions without ever

returning to higher levels.

GLOBAL HEAP

The global heap is used for a few different things. Firstly, any

variables that are declared outside of the scope of a function

are placed into this memory. These are known as global

variables. Secondly, any dynamic memory allocation

requests that are made by the program get their memory

from here.

The size available for the global heap on most systems is

regarded to as the amount of available RAM that the

computer has, minus the amount of memory needed for the

local stack, plus any additional virtual memory* that the

operating system memory manager may have.

This makes it quite a bit larger than the local stack, and in

most cases the amount of global heap memory used by an

application to store its data will be anywhere from 2 MB to

512 MB.

MEMORY ACCESSING

In order to store data, you need to create a variable.

Variables are the simplest form of data structures for use in

computer programming. They generally come in three main

types: single bytes, multi-byte integers, and multi-byte

floating point values.

When you create a variable, you are telling the compiler

reserve a piece of memory for your data, either on the local

stack or the global heap. In order to gain access to your data,

you need to know where in memory it is stored. In computing

terms, the location of data in memory is known as its

address. These data addresses are represented by

numbers, which are simply offsets (in bytes) into the

computer’s memory for where your data is located.

In most cases, you don’t care about the address at which

your data is stored, as the compiler handles that for you

behind the scenes. To accomplish this, the compiler uses

your created variable as an alias to where in memory your

data is actually located. In other words, the compiler uses

your variable like an address, to know where to go to in

memory in order to retrieve your data.

There are times, however, when you do need to have direct

access to your data in memory. A good example of this would

be if you wanted to allow a function to modify data that was

created locally inside of another function. If you were to send

the data that you wished to be modified into the function, you

would only be able to read what the data is, and would not be

able to modify it. However, if you instead sent the address of

the data to the function, you will now have access to the

actual location of the data in memory, so you can read or

write to the data as you wish.

In order to do this, you need to find and store the address of

your data into a variable. This new variable, generally

referred to as a pointer**, does not contain your actual data,

but instead just tells you where your data can be found in

memory. In essence, it works in a similar fashion to the stack

pointer from above (note the use of the word “pointer”).

The actual method of using the address stored in your

pointer variable will differ depending on what language you

are programming in. Generally, you will apply an operator to

the variable that will extract or dereference the data from the

pointer, and allow you use it.

CONCLUSION

If you can understand how data is stored in memory and how

that memory can be accessed through use of addresses and

pointers, then you’ve got past one of the most difficult

concepts in the entirety of computer programming. Now you

have the power to be able to go and start creating much

more complex and advanced game systems and algorithms!

However, keep in mind that using addresses and pointers is

not without its own dangers. It can be very useful to have a

value that can by used by anything and at any point of your

program, to either view or modify specific data.

The downside is that you can easily destroy or overwrite that

data, so be sure to use pointers and addressing carefully and

with responsibility!

COOLHAND

* Virtual memory is “simulated” RAM where the operating system memory manager uses hard disk space to store program memory data. It is

usually quite slow to use, as the memory manager has to read and write to the physical hard disk.

** The term came about from the fact that the variable “points” to where in memory your data is located.

T
E
C
H

T
E
C
H

T
E
C
H

T
E
C
H

22 DEV MAG ISSUE 5 2006

//Someone asked me why I like Game

Development. This is what I told them.

T
A
IL
P
IE
C
E

T
A
IL
P
IE
C
E

T
A
IL
P
IE
C
E

T
A
IL
P
IE
C
E

23 DEV MAG ISSUE 5 2006

Import mind.start.*;

It all begins with the mind,
 {
 The passion();
 }

If(you're not of those kind)
 {
 then it's
 not for the cash-in;
 }

for(love = 0; love<infinity; love++)
 {
 the pleasures of creating
 gaming
 }

is > than anything else();

while(above is true)
 {
 I'll continue
 With the
 Click click click
 Of creating my dreams;

 Ideal = true;
 }

/*Build Build Build
Draw it
Make it
Design it
My own
Mine
My ideal!*/

If(complete == true)
 {

Silently close
The completed
Rejoice in personal
reward
To start again
With something more(); //!!!

 }

TR00JG

