
BACK OF A
NAPKIN:
PART 3: WHAT IS TEXTURE
FILTERING

THE WORK
AFTER THE WORK

THE BASICS
OF SOUND
DEVELOPMENT

MOBILE GAMES:
PART 2: MAKING MOVES

REVIEWS : GAUNTLETS FEATURE :
ENGINES AND FRAMEWORKS,
THE QUALITY TOUCH DEV.MAG ISSUE 4

S
O

U
T

H
 A

F
R

IC
A

’S
 F

IR
S

T
 G

A
M

E
 D

E
V

E
L
O

P
M

E
N

T
 M

A
G

A
Z

IN
E

ISSUE 4 2006

Crash Bandicoot 2D

CONTENTS
REGULARS
03 - ED’S NOTE

04 - DIGITAL STOMPIES

FEATURE
05 - ENGINES AND FRAME WORKS

SPOTLIGHT
07 - Unc1354m

REVIEW
08 - GAUNTLETS

DESIGN
09 - THE WORK AFTER THE WORK

10 - BACK OF A NAPKIN PART 3:
........WHAT IS TEXTURE FILTERING?

13 - MAKING 2D ASSETS WITH 3D
.........SOFTWARE

14 - THE QUALITY TOUCH PART 1:
.........THE MINIMUM .REQUIREMENTS

15 - SOUNDS GOOD: THE BASICS OF
.........SOUND DEVELOPMENT

TECH

17 - A LITTLE BIT ABOUT RECURSION

MOBILE

18 - MOBILE GAME DEVELOPMENT
.........

IN JAVA.

TAILPIECE

 20 - THE TRUTH ABOUT
 INSTITUTIONS

10 0908

ED’S NOTEED’S NOTEED’S NOTEED’S NOTE

Something has really grabbed the attention of the guys at Dev.Mag and I,

and that is just how far this project has come. Every week I hear stories

and see the evidence of what we have accomplished. We’ve been

mentioned in NAG (a gaming magazine that gets distributed

internationally) and we are also a regular feature on their monthly cover

DVD. We’ve been mentioned in a newspaper (The Citizen), in blogs, and in

numerous other places.

This is our 4th issue, which is, apparently, the ‘life-defining’ edition of a

magazine. I quote a GameMaker forum member: “Most e-zines don’t get to

their 4th edition, they get their 3rd out but never a 4th. There’s some sort of

invisible barrier there or something. The ones that make it though are

usually here to stay.”

If our increasing quality is anything to go by, we’ll be here for quite a while.

But besides all the promotional talk, I’ve also got some other news: May/

June saw the release of another game development e-magazine,

GameForce. We were lucky enough to be sent a complementary copy (+3

points) by the staff. All I can really say to them is “good luck and I hope you

break the 4th edition barrier”.

Editor

Stuart ‘GoNz0’ Botma

THE TEAMTHE TEAMTHE TEAMTHE TEAM

ENIGMATIC EDENIGMATIC EDENIGMATIC EDENIGMATIC ED

Stuart “GoNz0” Botma

DASTARDLY DEPUTYDASTARDLY DEPUTYDASTARDLY DEPUTYDASTARDLY DEPUTY

Rodain “Nandrew” Joubert

DILIGENT DESIGNERSDILIGENT DESIGNERSDILIGENT DESIGNERSDILIGENT DESIGNERS

Brandon “CyberNinja” Rajkumar

Paul “Higushi” Myburgh

JUBILANT JOURNALISTSJUBILANT JOURNALISTSJUBILANT JOURNALISTSJUBILANT JOURNALISTS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “cairswm” Cairns

Bernard “BurnAbis” Boshoff

Danny “dislekcia” Day

Andre “Fengol” Odendaal

Yuri “knet” Oyoko

Heinrich “Himmler” Rall

Matt “Flint” Benic

Luke “Coolhand” Lamothe

Greg "Zphyr" Reveret

WIZARDLY WEBSTERWIZARDLY WEBSTERWIZARDLY WEBSTERWIZARDLY WEBSTER

Claudio “Ch1ppit” de Sa

WEBSITEWEBSITEWEBSITEWEBSITE

devmag.googlepages.com

To join, make suggestions or just

tell us we’re great, contact:

devmag@gmail.com

This magazine is a project of the

NAG Game.Dev forum. Visit us at

www.nag.co.za

03 DEV MAG ISSUE 4 2006

LEARNING FROM THE PROS

"I'm Jeff Tunnell and I've been 'making it big' in the game

business for a LONG time. MBG lets you learn, for free,

the lessons I paid a high price for." Make It Big In

Games is a blog written by a professional indie game

developer, offering insight, advice and instructions

regarding many common problems that hobbyist

developers face in their quest to become pros. Blog

entries consist of topics such as "Five Realistic Steps to

starting a Game Development Company" and "How

Much Money Can Indie Games Make?", amongst many

others. Visit http://makeitbigingames.com/ to find out

NEW LOCAL SITE

A prolific game developer in South Africa has

recently launched their own Game Development site

(www.TheGameDeveloper.co.za). Much like a blog,

TheGameDeveloper will give voice to ideas and

methods of game development, with a focus on

things such as frameworks and Delphi.

DEVELOPMENT GOLDMINE?

Need art? Need sound? Need resources?

Need anything for a game and don't want to

go to the hassle of creating it yourself? Try

the Game Contents Resources from

gpwiki.org, a place with a lot of cool links to

online galleries, gaming material and a whole

manner of resources including sound, music,

2D/3D art, editors, icons and more. Best of

all, it's free. Get it all now at http://gpwiki.org/

index.php/Game_Content_Resources.

MORE PODDING ABOUT ...

Gamasutra has some interesting things to offer this month. For a start, there's

a new GDC Radio podcast out about next-gen console development (http://

www.gdcradio.net/2006/06/gdc_radio_presents_next_gen_co.html) Also

available is a cool interview with the creator of Earthworm Jim, Doug

Tennapel (http://www.gamasutra.com/features/20060606/murdey_01.shtml).

He covers why fans are wrong and where EWJ on the PSP is going.

4e5 BACK IN ACTION

The Gamedev.net Four Elements contest (http://www.gamedev.net/

community/contest/4e5) recently released the list of element entries

needed for its latest competition: Emotion, Economics, Emblem and

Europe. The idea of the contest is to get entries centred around these

four words, while still maintaining high standards of design, gameplay

and technical expertise. The competition runs until the end of November

and prizes include a free FastCapPro license for every contestant who

enters. Time to get busy, developers!

04 DEV MAG ISSUE 4 2006

N
E
W
S

ENGINES AND

FRAMEWORKS

game engine is defined as "the

core software component of a

video game. It typically handles

rendering and other necessary

technology, but might also handle

additional tasks such as game AI,

collision detection between game

objects, etc. The most common element

that a game engine provides is graphics

rendering facilities (2D or 3D)."

(Wikipedia).

A framework is defined as a "support

structure in which another software

project can be organized and

developed. A framework may include

support programs, code libraries, a

scripting language, or other software to

help develop and glue together the

different components of a software

project." (Wikipedia).

Based on these two definitions there is a

very large intersection between a

framework and an engine. A Game

Engine is typically a very specific and

clearly structured way of creating a

game. Often this is so rigid that the

engine dictates what style or genre of

game can be created using the engine.

(for example ORTS is an engine for RTS

games, Half Life 2 is an Engine for FPS

games). On the other hand a Game

Framework is only an outline, containing

suggested methods and usually some

code libraries etc. Game frameworks

can typically be used to create any type

of game, but often with a lot more work

than with a Game Engine.

Game Maker can be considered a

framework rather than an engine as it is

designed to make any type of game

rather than limiting the design options to

a specific type of game. A simple

example of this would be the various

options available for user input. Game

Maker has the facilities to allow the

game developer to define how the user

input will function. In an FPS engine

these controls would typically be defined

as part of the engine and will work as

the player would expect for an FPS,

while these controls can certainly be

extended it would be difficult to modify

the user input to do RTS controls.

Many game developers consider

building their own Game Engine before

making their own games. These

developers typically see the

development of a game engine as a

challenge to their technical abilities. As

they develop their engine they are

continually learning the functionalities

and abilities of their chosen libraries.

These developers typically spend

years continually extending their

engines with all the latest features.

Other game developers spend time

learning to use the frameworks that are

available to them. These frameworks

are typically based on existing libraries

or other game engines. These

developers often are able to deliver

completed games that make use of the

features available in the framework.

Often that means that these completed

games do not have all the latest

A

Most game developers understand that there are various game engines available that will make their

development time easier. However a game engine by itself is often not enough. In fact it is often the case

that a Game Framework is more important than a game engine.

05 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

functionality and hardware driven

capabilities that are available.

Game Developers and Engine

Developers are interdependent on each

other. The greatest Game Engine in the

world is worthless unless a Game

Developer has been able to take the

engine and create a game using it. For

the Game Developer to do this the

Engine Developer must extend the

engine further than just being a library

into a Game Framework that contains

examples, code snippets and that

defines the relevant structure games

using the engine should use. At the

same time Game Developers need to

embrace the game frameworks that are

available as they contain the low level

code needed to create top class games.

The best game developer using a poor

game engine and framework will only be

able to turn out a mediocre game.

The time has come for Game

Developers and Engine Developers in

South Africa to start communicating with

each other. As a unified team we can

turn out top class games that will rival

what the rest of the world can produce.

CAIRNSWM

The above diagram outlines a typical game framework and the components that it

consists of. The scope of a typical framework is often broader than that of a

standard game engine.

BY THE WAY ...

Game Maker is more than

just a framework. Besides

the Code Libraries, there are

a number of tools to make

development easier. These

tools include an Image

Editor, IDE, Compiler and

Debugging. It also has

extensive Help files that

describe how to make use

of the Framework, Libraries

and Tools.

06 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

07 DEV MAG ISSUE 4 2006

How long have you been developing games?

[Since] June\July 2005. I had always been
interested in making stuff, and the Game.Dev
section on the nag forums gave me the idea
to download Game Maker 6.1. [I] spent a few
days going through all the tutorials, [and] after
about 4 days I released my first game.

Can you briefly explain the idea behind Killer
Worm?

The idea in Killer Worm is that you are a
giant, hungry worm. You need to eat, but pixel
humans are so small [that] they don’t offer
much food, so you need to eat alot of them.
Humans will start growing in technology and try
to kill you since you are a huge threat to them;
they grow from small pixels walking over the
ground oblivious to the fact that there’s a huge
worm hungry under them, eventually having
aircraft, tanks and the like in their name.

Killer Worm’s concept is truly original. What
inspired you?

The day Game.Dev’s 08 compo was
announced, I began brainstorming ideas
instantly, [and] for some odd reason I just
thought of an ant lion ‘consuming’ ants. It
seemed a good idea, but instead [I] decided to
make it a worm ‘consuming’ humans. [I] started
work right away, ideas kept coming to me,
[and] eventually I came up with the basic game
dynamics.

What made you design the game in black and
white, instead of colour?

This was laziness on my part. After making the
sprite for the worm and pixel humans, I felt that
they didn’t need colour, but with a colour[ed]
setting it looked messed up, so I decided to
make the terrain and clouds black and white.
About halfway through the game I got the idea
to add old film scratches to blend the black and
white in more. It came out pretty good.

Any current projects you would like to let us
know about?

Outlaw Ball, an action platformer. This is a very
large project, but [I] will keep the community
updated.
Thread found here:
http://www.nag.co.za/e107_plugins/forum/
forum_viewtopic.php?20717

Your game is one of the highest rated and
downloaded games at the experimentalgame-
play website. How do you feel about that?

I wasn’t expecting it, since there are many
other great games there, but as long as it stays
at the view of potential downloaders I’m happy.

Do you see yourself expanding on Killer Worm

at all?
In the future, maybe. It has been a success. If
there’s ever a time, [when] I need something to
work on, it might be Killer Worm.

 Is there anything else you would like to add?

Thanks to everyone who enjoyed Killer Worm
or my previous
games DM

S
P

O
T

 LIG
H

T

An interview with Unc1354m (or Unclesam for the leet impaired), the
creator of Killer Worm.

GAUNTLETS

auntlets is a top-down puzzle

game. You control a tank and

your aim is to progress through the

different levels while setting high scores.

The game features various upgrades

such as speed, accuracy and attack that

help you pass stages and defeat

enemies and bosses.

 The levels in Gauntlets are

straightforward and don’t really require

much thought. All you have to do is

simply time your moves and go when it

looks safe. Of course, you also have to

shoot the occasional enemy tank but

they're not a focal point in the game.

Control of your tank is accomplished

through the use of your keyboard and

mouse, where the keyboard controls the

movement of the tank and the mouse

lets you aim the turret and fire.

 Gauntlets also has its problems,

though. One of them is its level design,

the levels themselves being very

repetitive (after completing the third

stage, you’ll know what to expect in

future ones). The second problem with

Gauntlets regards the camera control.

The mouse lets you control the position

of the camera relative to the field, which

means you can move the cursor too far

off the screen and lose sight of your

tank, allowing enemy turrets or tanks to

shoot at you freely.

 The last problem with Gauntlets is the

respawn time. When your tank is

destroyed, it takes less than one second

to respawn, leaving you with virtually no

time to prepare for any obstacles in the

way or any enemies that were firing at

you. A good example of this is the anti

tank trap in the game. It is like a timed

bear trap that opens and closes every

few seconds. If you timed your passage

over the trap badly and you die, you will

respawn right on top of the trap and it’s

up to you to move your tank out of the

way as quickly as you can.

 Other than that, Gauntlets is a pretty

fun game and if you take the time to play

through a few levels, you may not be

disappointed.

KNET

G

FIND IT!

http://www.apfstudios.com/
gauntlets_beta4.zip

The levels in Gauntlets are full of obstacles

which you have to pass through using

combinations of firepower, speed and

accuracy.

Gauntlets offers you upgrades that help you

progress though the levels.

When you die, you set your high score and

sadly, that’s the end of it.

08 DEV MAG ISSUE 4 2006

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

R
E
V
I
E
W

can't say I have been in the game development industry

long enough to become a Jedi Master of the industry, but I

have noticed certain trends that might help you. After almost 2

years of flogging my games about everywhere I can stick

them, I stumbled upon a few gems that are other people’s

games. These people are just like me: beginners who love

playing and developing games. Some were really innovative;

others just filled up my hard drive. What I've noticed will

definitely help me for future projects. At the level of

development where you create games solely for the love of it

and not for the want of any money, you get 3 types of games.

1. Teh SuXXor.

These games are not even half way decent, yet these

abominations are thrown out to the world. Their creators want

to show what they have, even though it is not really something

special. Usually, these games are platformers with ripped

sprites and very annoying midi music.

2. Middle-McDonalds

These games show some sign of innovation. They come from

the minds that live to create something new, yet they fall off

the bus somewhere in the middle, usually due to being riddled

with bugs. These games, if done correctly, have the most

potential.

3. The Cream

Now this is the interesting category. These games are

spectacular for one reason: POLISH. Most of the time these

game are not even innovative, yet the creators had a goal and

stuck with their project, working countless hours to make it

perfect. These games are the ones that have endless forum

threads dedicated to them and that you bury in a special folder

on your hard drive.

Most of my own games fall into the second category. In fact,

all of them do. What I have learned is that polish is king. A

non-innovative game that took 4 months to make and was

reworked to death is much better than an innovative game

filled with countless bugs.

Why? When you are playing a game, you escape into the

other world and every kink (bug) you find along the way snaps

you back to reality. If you polish a game to every last bit, you

create not only a game, but an experience. The longer you

manage to suspend the player's disbelief, the better that

player’s experience will be.

I hate polishing my games and sifting through bugs. It

sometimes feels as if the last bit, polishing, takes more time to

do correctly than the entire game up to that point. However,

once learned, the habit of polishing could be the best thing you

have done to your game development life.

TROOJG

I

THE WORK AFTER THE

WORK ...

The popular Indie title, Eets, is a good example of a game which

is simple at heart, but has been constructed with care.

09 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

ON THE BACK OF A NAPKIN:

PART 3: WHAT IS TEXTURE FILTERING?

he reason that texture filtering is used in 3D is a small

problem in the graphics industry called aliasing. Aliasing

problems are very easy to spot and can ruin the visual illusion

in a game.

 Any computer screen is divided into pixels, duh. Each pixel

can only be a single colour, it’s impossible to have a pixel start

off being red on one side and then fade to black on the other.

The idea is that any image can be abstracted (see, it IS all

lies, even your screen) by splitting it into enough individual

pixels, unfortunately that doesn’t always work very well: We

notice “blockiness” on diagonal and nearly vertical/horizontal

lines very easily.

Aliasing issues:

Aliasing is called that because it’s the process of referring to

one thing by a set of different handles or names. In this case,

we’re trying to get the pixels in a rendered image to refer to the

pixels in a texture. As each pixel in our image is rasterised, (if

you have no idea what that means, read the article on Vertices

again) interpolation gives us a unique set of texture co-

ordinates that tell us where on the texture to fetch the colour

our pixel should be. That sounds complex, but it isn’t:

Rasteriser starts on a new pixel onscreen -> interpolation

gives us the various values that pixel needs (by blending

between the various vertices) -> texture co-ordinates give us

an x and y point on our texture -> pixel is made that colour,

with some adjustments for lighting and all that jazz.

 Groovy. But textures are also made up of pixels (which we

call texels to save on headaches), so they can have aliasing

issues of their own… Damn. Here’s a picture of some of the

problems:

Bilinear filtering:

All you have to do to see the effects of bilinear filtering is to run

almost any game in software mode and then again with

hardware acceleration. Bilinear filtering makes textures

“smoother” and less blocky by grabbing four texels near the

sample point and averaging their values to get a blended

colour for the screen pixel. It’s this “blurring” that smoothes out

the textures on the screen and avoids aliasing misses.

 There are a few problems with bilinear filtering though. The

first and most visible is caused by mipmapping. Mipmapping is

a technique used to manually limit aliasing issues by providing

smaller versions of textures that an engine uses when objects

are far away, this means that there are less texels that it’s

possible to miss when there are large “gaps” between sample

T

Now that we’ve got a solid foundation to work with, we can start looking at more relevant issues in 3D. This week we’ll

explore the idea of texture filtering and why it’s a good thing. We’ll find out what the various types of filtering actually do,

how they do them and how much of a frame rate hit each one causes. Read on if you want to know the difference

between bilinear, trilinear and anisotropic filtering.

10 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

points… Some engines use many levels of mipmaps,

especially if it’s possible to see very far into the distance.

Trivia: The famous “picmip 5” setting that Quake3 pros used

simply scales down all the textures in the game, making a

512x512 texture effectively a 64x64 or 32x32 image instead.

This blurs all the textures like crazy, but that’s not why the pros

did it: They were after the small increase in FPS caused by

having smaller textures and less texel lookups and a rather

debatable “visibility increase”… Oh what crap textures you

have grandma! All the better to see you with dear.

So, mipmapping was invented before bilinear filtering as a way

to deal with distance aliasing issues. The smaller textures

(remember how the U and V texture coordinates only range

from 0 to 1? The different sizes of mipmapped textures are

one of the reasons for that) allow for less “misses” of texels

because there are less texels in total. But, when you’re using

bilinear filtering AND mipmapping, the smaller textures are

blurred a lot more by the bilinear filter:

 This sudden increase in blur is what we see in games as a

horizontal or vertical “line” on floors and walls, especially when

moving. It ends up looking like there’s an error that stays a

certain distance ahead of us in the game, which can get very

frustrating. That’s why there’s the option to turn on trilinear

filtering.

Trilinear filtering:

Just as bilinear filters across two dimensions, trilinear filters

across three. Except that the third dimension is the Dimension

of MipMapping! This means that where bilinear filtering grabs

four texels and averages them out according to an algorithm,

trilinear grabs eight texels (four from one mipmap and four

from the other) and again averages them out to get a final

colour for the pixel on screen.

Anisotropic filtering, the next level:

So, both bilinear and trilinear filtering work in texture space to

try to calculate the correct colour for a textured pixel.

Unfortunately this isn’t always the best approach: It works fine

when the textures that are being filtered are displayed on

polygons that are at right-angles to the camera, but it’s a poor

approximation for polygons that are at non-perpendicular

angles. This is because of the shape of a pixel on screen

when projected into texture space depends on the angle of the

polygon the texture is being used on. Wait, that sounds

confusing… Here’s a picture:

Anisotropic filtering takes this difference in mapping into

account and uses many samples of the texture in patterns that

depend on the projection to calculate the final colour of our

on-screen pixel. Unfortunately ATI and NVIDIA use different

patterns and sometimes even different amounts of samples to

arrive at their final values, so it’s not really possible to draw a

simple snapshot of anisotropic filtering. It is possible to

mention that anisotropic filtering uses a lot more texture

samples per pixel (obviously) so both card manufacturers

decided to allow us to have some say in the amount of

bandwidth vs the visual quality of anisotropic filtering by giving

us the arbly named 2x, 4x, 8x and even 16x Aniso settings that

we can tweak in our drivers.

11 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

But what does that all mean?

Why don’t we take a step back and figure out what all this

means for our gaming?

Texture filtering makes games look better by making our

textures less dependant on resolution. Of course, we could

simply up our resolutions and make our games look smoother

and crisper that way. That’s option 1, but it does mean that our

whole rendering pipeline is calculating a lot more pixels, so

your FPS will depend on the speed of your GPU’s core clock.

If you can stand it, turning filtering off (and living with only point

sampling and mipmaps) is the fastest approach in terms of

memory bandwidth. It doesn’t look great at all though…

Bi- and tri-linear filtering are the current standards because an

average graphics card these days has a memory clock that’s

fast enough to allow 4 (for bilinear) and 8 (for trilinear) texture-

memory reads per pixel. So, depending on your card, you can

probably afford to use either of those filtering methods without

taking a FPS hit at all.

Anisotropic filtering ups the memory reads per pixel quite

dramatically, sometimes even doing as many as 128 reads on

the highest settings! So your memory clock speed is really

important if you want to use aniso. Newer cards can handle

the lower levels of aniso (4x and lower) without pushing

themselves too much, both manufacturers use optimization

algorithms to attempt to apply anisotropic filtering to only those

parts of a scene that need it.

If you really hate fuzzy textures, enable the highest level of

aniso filtering you can, but it will give you slower fill rates as

each pixel reads tons of memory. The slowdown will get worse

the larger your resolution, but such a high level of filtering

might make it tolerable to take your screen size down a notch

or two. But that’s all purely personal choice.

The bottom line:

- Point sampling = simple + fast + blegh.

- Bilinear = “blurs” textures, effective but has nasty mip-lines.

- Trilinear = fancy sounding slower upgrade to bilinear, kills

mip-lines and not much else.

- Anisotropic = different method (actually uses bilinear as

samples), tries to match screen-space by doing more work,

slowest + prettiest.

DISLEKCIA

12 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

hese days, the artists out there

concentrate on 3D modelling, as

they should. It is where the industry is

going. But we, the Indie game

developers, need 2d sprites or animated

.gif files to do our job. So how can we

still use the 3d models produced by

today’s artists in our games? Well, that’s

exactly what I’m trying to show you all

here in this series of articles. We will run

through the various steps I follow to

make working assets for my games.

Now, I'm not an expert, not nearly, but I

can handle a 3d modelling package.

This tutorial should be universal to all

programs out there – the package used

must just be able to “render” a scene.

So, let’s get started.

 For these articles I will be using 3D

Studio Max (any version will work), Paint

Shop Pro 7, and Game Maker 6.1

(registered).

Setting up the scene

This, if any, is the most important step in

the process, and if not done correctly

will cause a lot of work to pop up later.

In your modeller import the model you

would like to use in your game. Most

cases you would like to get a top view of

your model, or a side view. For my

“golden lamp” I will be using the top

viewport as my rendering viewport. The

use of cameras are advised for

Isometric assets, as you would like to

setup up a template scene first, that is

used in all the assets, to keep informality

for post editing and style.

You should also use a plane in the same

color of your games environment. For

example, if it’s a space shooter a black

plane may be needed, or a desert

shooter an orange plane would be good.

This will help loads in the editing of the

“near opaque” area of your images. For

my lamp, I am going for a white plane, to

make it more universal. So, I create my

lamp and place it in the centre of the

field (0, 0, 0). I then use the Max

function to extend the view to fit all

objects (most programs have this

function). I add a huge plane at co-

ordinates (0, 0, 0) and make sure it does

not overlap the main model. When

moving and adding objects, I do not use

the top view port which I would later use

for rendering, as one can easily resize

or move the viewport without knowing,

and that is not desirable.

Now you should apply the UV Map and

texture you would like on the object, and

also the required material settings you

want to use.

For this situation I created a Raytrace

material with metallic settings, and a

gradient reflection setting. My diffuse

map is a nice goldish color.

 Next we need to pre-setup the

renderer. We need to be sure on the

size we require. I usually make the

renders slightly bigger than the size I

need in game maker. The size I chose

is 96x72. This added resolution helps

loads when post editing. I adjust some

custom settings and I do my first

render.

This is really simple, but usable. Next

month we will add lighting to the scene

and animate the model. In the mean

time, you are all welcome to collect

some free 3D models from http://

www.3dtotal.com and http://

www.3dcafe.com for the next issue,

and we can make some nice assets.

See you next month.

HIMMLER

T

What are the most wanted people in the Indie game development world? Well, I think you may know already. Artists.

Having a graphics artist in your group is like having superpowers. Yet every one of us must have the creative gene in

us, otherwise we wouldn’t be making games. What makes it so impossible for us to make our own assets?

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH MAKING 2D ASSETS WITH

3D SOFTWARE3D SOFTWARE3D SOFTWARE3D SOFTWARE

13 DEV MAG ISSUE 4 2006

PART 1:

MINIMUM REQUIREMENTS

 hese features are mostly slog work

that creative and most hobbyist

developers leave out due to lack of

enthusiasm or time constraints.

However, players notice the lack of

attention to these details and they're

worth spending a little extra time on.

Splash Screen: A good splash screen

serves two purposes in a game. Firstly, it

acts as an immediate indication to the

player that the game has started, while

the game loads in the background.

Secondly, it gives a new player an

indication of the theme of the game.

Main Menu: A clearly defined main

menu gives a game a very nice

completed feeling. The Main Menu must

be clear, responsive and rather intuitive,

and should make it easy for the player to

access the various other game features

or exit the game without using Alt-F4.

Tutorial or Help Screen: More often

than not, a new player will download

your game and dive into the action

without exactly knowing what to do; only

if he can’t figure it out for himself or is

struggling to get very far with the game

will he look for a help or tutorial button.

If a player can’t work out how to play

your game within a few minutes, the

chances are good that they will just

delete your game and forget about it.

Rarely does a player think about or

spend time looking for a readme file in

the project directory, so clear and easily

read tutorial or help screens will keep

the player from getting frustrated.

Credits: Hobbyist developers rarely

create their own content for their games;

we rely on graphic artists, midi

musicians and other artists for content,

often for free! A credit screen is a good

place to thank the people who’ve helped

make the game what it is.

About Screen: While this could easily

be part of the Credits screen, the About

screen serves a different purpose. The

About screen gives the game’s version

number, copyright information, the

game’s homepage where the player can

get more help or information and an

email or link to provide feedback. The

About screen can also give more

information about you, the hobbyist

developer; your email address, website

or blog, and other games you’ve made.

Readme File: While a player won’t

necessarily read the readme, it’s

important to include a readme for

logistical reasons. The readme should

include: licensing information (may

someone sell, give out or distribute

your game without your permission?),

the various copyright holders'

information (in fact, include all the

information from the Credits and About

Screens), a list of known bugs and

issues (if there are any that you are

aware of) with work-arounds and a

history of what’s changed in your

version updates.

These features make it easy for the

player to get involved in your game and

it’s worth spending time adding them to

your development cycle. Practice by

always adding these features, and they

won’t be the hard work that they may

appear to be at first.

In the next article, we’ll cover “adjusting

the user experience” where players

should be able to control aspects of

your game like music volume, graphical

effects and speed performance.

 Cairnswm, Fengol

T

THE QUALITY TOUCH

A complete game is more than just gameplay. A complete game must be equipped with easy access to features,

information about the game and its creators and options to adjust the experience of play. In this article,

CAIRNSWM and FENGOL cover some of the basics that a game needs to “feel” complete.

14 DEV MAG ISSUE 4 2006

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

THE BASICS OF SOUND

DEVELOPMENT
n the vast world of audio, our jobs

become more and more complex as

the ever-evolving matrix of

technology pushes us into having to be

multi-skilled professionals, where a

single person can now do the job that an

entire team of skilled individuals did in

the past. As our computers get faster,

our software becomes more and more

complicated, allowing us to live in a

world where the boundaries of our

capabilities are set only by the limits of

our imagination. It is for this reason that I

would like to start off this audio column

by introducing to you some of the “tools

of the trade” used in the audio industry

today. But with such a vast array of

powerful tools at our disposal, some of

us can’t help but feel a little bit

overwhelmed at all these technical

gimmicks that prome to make our games

sound like they’ve just stepped out of Mr.

Lucas’ sky-walker ranch.

 Sure, some software might perform

certain tasks better than others, some

are designed only to do one certain

thing, and some might even claim to do

it all! But the question is: Which one is

the right one for you? Let’s talk more

functionality and less gibberish. Let's

help you spend your money wisely on a

product that best suits your needs for

making successful game audio.

 The first question that you would

naturally have to ask yourself is: “How

much am I willing to spend?” There are

plenty of choices that will suit any

budget, whether you want to spend as

little money as possible or if you’re

willing to give an arm and a leg for it.

Luckily, there is something for everyone,

even if you’re not prepared to spend

anything at all!

The External/Hardware Sound Card:

(Assuming that you already have a

computer) The sound card is the piece

of hardware that acts as the “audio

brain” of your setup. It’s an interface

which allows you to connect external

sound sources, and be ready for

recording. Most sound cards feature

multiple inputs, such as microphone

inputs, line inputs (keyboard/guitar etc)

and, usually a MIDI In/Out/Thru feature

will also be available (amongst others). If

you want to take sound seriously, one of

these babies will definitely need to be by

your side. It’s a fair investment that will

reap many audio advantages.

The “Multi-track” software sequencer:

These are generally the most popular

software tools. These “all rounder” tools,

and cater for most audio tasks such as

general editing, music creation/

sequencing, audio/visual editing,

recording and even post production

work. Expect to pay a fair amount for

this kind of software, however, as they

hold seemingly endless features. Also

be sure to have a somewhat powerful

PC at your side with at least 1 GB of

RAM; these tools are normally quite

process intensive. External equipment

is available to take some of the load off

the CPU, but we’ll leave that topic for a

future article.

 A free sequencer to check out is

Kristal Audio. (www.kreatives.org/

kristal) This type of software is

generally hard to come by as a free tool

due to the complex tasks that are

required from it. Kristal has quite a few

limitations, but is a good introduction to

sequencers nonetheless.

The Audio Editor:

This is the tool which I feel is most

relevant to us in the small game

development community. This is not

only because these tools are quite

simple and cheap, but because the

type of functions that this kind of

software performs very much apply to

what we are doing.

 The editor is a sound designer’s best

friend. With excellent visual

I

SOUNDS GOOD

Some other popular sequencers:

Steinberg’s “Cubase SX” Apple’s “Logic”(MAC) Digidesign’s “Pro-Tools”

 (www.steinberg.net) (www.apple.com/logicpro) (www.digidesign.com)

15 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

interpretation of your audio wave, you

can literally “read” your sound like a

book allowing you to decipher what the

next critical audio decision will have to

be. And if that isn’t enough, you’ll have

an entire militia of different types of

metering tools at your side which allow

you to critically analyze your wave. The

main features that we will be focusing on

with the audio editor will be:

- Monitoring our mix, (checking for

clipping/distortion)

- Checking overall levels, (consistency in

sound, correct compression applied)

- Multi-track capabilities, (the layering of

our sound effects and overall mix)

- EQ and overall effects applications,

(plug-ins)

- Proper conversion/compression of our

sound files, (eg. WAV to MP3

conversion)

- The “batch converter”, a common

feature amongst audio editors that

allows us to convert multiple audio files

at once! (More detail in the near future)

Two free(ish) editors really worth

checking out are:

Goldwave editor

http://www.goldwave.com/

This one can be continuously kept in

demo mode (and is very affordable

none-the-less)

Audacity

http://audacity.sourceforge.net/

This one is 100% free and is really quite

good! I would recommend Audacity as

really good starting-point/budget friendly

audio editor.

Audio Plug-ins:

Plug-ins are stand-alone software

applications that work independently,

but still use your sequencer/editor as a

host. These become very useful when

you require something specific that your

editor might not cater for. Just open it

through your VSTi/DXi link and, presto!

Your editor has become that much more

powerful.

There are literally thousands of plug-ins

available, some costing up to R90000!

Yes, there are many good free ones too,

but for the sake of trying to keep this an

introductory column, I would rather go

into more detail on plug-ins at a later

stage.

Sound-Effects Libraries:

Your sound-effects library is the source

of all your sounds. These too, come in

all shapes and sizes. Available are

general “all-rounder” libraries with

everything in them, from the sound of

gun-shot effects, planes, right through to

someone walking on wet lawn during a

windy day, or more specific

categorized libraries.

 A really good place to get free

samples is the free-sound project, an

online sound sharing community that I

can highly recommend.

(http://freesound.iua.upf.edu)

Also be sure to check out

http://www.sound-ideas.com (a popular

source for the professional industry-

features an excellent gaming library

too!) and

http://www.hollywoodedge.com

(another popular choice for the

professional industry).

Remember, whatever choice you make

for your everyday audio tool, make

sure that the software you use works

for you and doesn’t block your creative

process. A tool is there to enhance

your creativity, not to make your life

complicated. As time goes by and you

try more and more software, eventually

you will found the right one -- the one

that works best for you!

 As the months go by, I will go into

more and more detail about these

topics. I believe that, to get into actual

production, we need to become familiar

with our tools and understand the basic

fundamentals of audio.

ZPHYR

Left:

Digidesigns Pro-Tools LE 7. The

industry standard.

Right:

Steinberg’s Wavelab 6. A common

favourite amongst audio junkies

Other popular editors:

 Steinberg’s “Wavelab” Sony’s “Sound-Forge”

 (http://www.steinberg.net) (http://www.sonymediasoftware.com/Products/

 ShowProduct.asp?PID=961)

16 DEV MAG ISSUE 4 2006

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

D
E
S
I
G
N

THE TECH WIZARD

RECURSION

t its base level, it is merely a method where a function

does some work, then “calls” itself to do the same work

again. However, instead of using the data that was used at

the start of the previous work, it uses the data that was

created as a result of the work. This process is repeated until

a certain condition is met, at which point the recursion ends

by returning from the current level of the function, instead of

continuing into another recursive call of itself.

Recursion is typically used to apply what is known as the

divide-and-conquer approach (mentioned briefly in last

month’s article), which is made up of the following three

steps:

Divide:

Divide a problem into a smaller number of “sub-problems”.

Conquer:

Process each sub-problem by using recursion until the “size”

of the problem is small enough to be solved in a

straightforward manner

Combine:

Combine the solutions for each sub-problem to create a

solution for the original problem.

A typical example of recursion being used is the merge sort.

Merge sorting works by recursively breaking up a list of data

into two smaller lists, each of (list_size / 2) size, until there is

only one element in the list at the current level of recursion.

At this point, the recursion is ended and the function returns

to its previous level where it merges the data of the two lists

into one:

It is quite easy to see where the recursion happens in the

above pseudo-code. MergeSort calls itself with modified data

until low is the same value as high. At this point the

recursion stops, the function returns to its previous level, and

the MergeData process begins on the list of data. Once the

data is merged, the function returns to its previous level and

the merge process continues until the original level of the

function is reached, at which point the data has now been

sorted completely.

Now that you know what recursion is, it doesn’t mean that

you should run out and make use of it all over the place. The

real trick is to know what problems should be solved by

implementing a recursive algorithm, and what problems

should instead be solved with an iterative approach.

COOLHAND

Recursion is yet another one of those fancy terms that computer scientists use to describe a technique that is actually

quite simple in practice.

A

MergeSort(data, low, high)

{

 if(low < high)

 {

 mid = (low + high) / 2;

 MergeSort(data, low, mid);

 MergeSort(data, mid + 1, high);

 MergeData(data, low, mid, high);

 }

}

17 DEV MAG ISSUE 4 2006

T
E
C
H

MOBILE GAME

DEVELOPMENT IN JAVA

PART 2: MAKING MOVES
elcome to the second tutorial in

cellphone game development.

Let’s start off by reviewing the MIDlet

from the previous tutorial. The first thing

to notice is our two class declarations:

the first being our MIDlet class, which is

the mobile application that the system

runs. The second is the Canvas class

that is used to actually display objects.

As you can see, our MIDlet doesn’t do

very much other than create the canvas

and set it as the MIDlet's main display.

The three methods, pauseApp, startApp

and destroyApp, are called respectively

when the MIDlet enters the pause state,

the running state and when it is

destroyed. It is important to note that

startApp may be called more than once,

so what we’ve done by creating our

canvas in this method is technically

incorrect. Within the TutorialCanvas

class we have overridden only the paint

method. As you can guess this is called

when the Canvas is repainted. The

actual paint implementation simply

clears the screen to white by setting the

colour, then drawing a rectangle the

size of the screen. We then set the

colour again (to red) and draw some

text.

To extend this simple application to do

more than draw text once, we need an

update loop. As can be seen in Listing

3, this is achieved by implementing the

Runnable interface in our Canvas

subclass. We also add a static Thread

member variable, gameThread, and a

boolean member variable, exit, to allow

the thread to be stopped. The new

constructor simply assigns a new

Thread to gameThread. The run

method is where we do our work. For

now we just check if we need to exit,

and if not we request a repaint (and wait

for that repaint to happen) and pass

control to another thread. There are two

important things to note here: firstly,

never explicitly call paint; use the safer

repaint instead. Secondly, the only way

to stop a thread in J2ME is for it’s run

method to finish. The programmer is

required to ensure that all threads they

start are stopped when the MIDlet is

destroyed as the JVM is not guaranteed

to do this automatically.

This brings us to the changes to the

MIDlet (Listing 4): We have made the

canvas a member variable, set it as the

display, and ensured that it’s initialised

in startApp. In destroyApp we make

sure the canvas’s thread will stop.

We have the beginnings of a game

loop, so let's add some game-like

behaviour. We need a ball in our game,

so let's add that to our Canvas and give

it a simple bouncing animation. There is

no support for floating point numbers in

Listing 1. Class declarations.

public class TutorialMIDlet extends MIDlet

..

class TutorialCanvas extends Canvas

Listing 2. Paint method implementation.

g.setColor(0xffffff);

g.fillRect(0, 0, getWidth(), getHeight());

g.setColor(0xff0000);

g.drawString("Hello World", 0, 0, 0);

Listing 3. TutorialCanvas updated to implement Runnable.

class TutorialCanvas extends Canvas implements Runnable

{

 public static Thread gameThread;

 public static boolean exit = false;

 //Constructor

 public TutorialCanvas()

 {

 gameThread = new Thread(this);

 }

 //run the game loop

 public void run()

 {

 while(!exit)

 {

 //paint everything

 repaint();

 serviceRepaints();

 //give other threads a chance

 Thread.yield();

 }

 }

}

W

18 DEV MAG ISSUE 4 2006

M
O
B
I
L
E

M
O
B
I
L
E

M
O
B
I
L
E

M
O
B
I
L
E

the J2ME configuration we're using,

(CLDC1.0) so we have to settle for two

integer values for the ball’s position. We

also add velocity values for the ball, and

define a constant for the ball’s size. In

our constructor we set some initial

values for the position and velocity. In

our update method, before we call

repaint, we update the ball’s position.

This is easy enough, since we just have

to add our velocity and change direction

if we are outside the bounds of the

screen. We actually allow the ball to

slightly exit the screen because it’s a bit

simpler this way. Finally, we replace our

text with the ball in the paint method. We

use the Graphics.fillArc method to

specify our circle. Note that the position

in this method refers to the top left

corner of the rectangle that would

contain the arc, not the origin of the arc.

All of these changes can be seen in

Listing 5, and, as always, I have

omitted code that has not changed.

That’s all for this lesson. We now have

an update loop running in a separate

thread that is animating a bouncing ball.

The code as it stands has a lot of room

for improvement and optimisation, but

my focus has been clarity, so I’ll leave

all that as an exercise for you. Next

time, we’ll delve into the MIDP game

engine.

FLINT

Listing 4. Updated MIDlet class.

public class TutorialMIDlet extends MIDlet

{

 TutorialCanvas canvas = new TutorialCanvas();

 //Constructor

 public TutorialMIDlet() {}

 //Called when the app starts

 public void startApp()

 {

 Display.getDisplay(this).setCurrent(canvas);

 TutorialCanvas.gameThread.run();

 }

 //called when the app is destroyed

 public void destroyApp(boolean unconditional)

 {

 //make sure we stop the game thread

 TutorialCanvas.exit = true;

 }

}

Listing 5. TutorialCanvas updated o include a bouncing ball.

..

static int ballX, ballY, ballVX, ballVY;

static final int BALL_RADIUS = 5;

//Constructor

public TutorialCanvas()

{

 ..

 ballX = ballY = ballVX = ballVY = 1;

}

//run the game loop

public void run()

{

 ..

 //update our ball position

 if(ballX < 0 || ballX > getWidth())

 {

 ballVX = -ballVX;

 }

 ballX += ballVX;

 if(ballY < 0 || ballY > getHeight())

 {

 ballVY = -ballVY;

 }

 ballY += ballVY;

 ..

}

//paint the canvas

protected void paint(Graphics g)

{

 ..

 g.setColor(0xff0000);

 g.fillArc(ballX-BALL_RADIUS, ballY-BALL_RADIUS,

 2*BALL_RADIUS, 2*BALL_RADIUS, 0, 360);

}

A ball bouncing around the screen.

19 DEV MAG ISSUE 4 2006

M
O
B
I
L
E

M
O
B
I
L
E

M
O
B
I
L
E

M
O
B
I
L
E

THE TRUTH ABOUT INSTITUTIONS

ow does one go about learning, though? Well, one of

the best ways to get to know different people is to take

elective courses that are totally off your "stream". If you're

careful and study your university handbooks, you'll be able to

get credit for them no matter how strange they might be. A

good way to decide if something is as interesting as it sounds

is to spend a bit of time exploring exotic-sounding classes in

first year, once you're settled in it's really easy to just sit in on

a couple of lectures. If the course is interesting, relevant to you

or has types people that you know you're going to need to

involve yourself with during your working life, sign up for it next

year.

 Here are a couple of ideas for things that you might be able

to use to strengthen your CV and network at the same time.

You should always keep a hard-copy of your contacts and how

/ why you know this person and what they can do.

ART / DESIGN COURSES

If you want to make games, you're going to need art

resources. Making friends with the arty students can lead to

some of them wanting to help you with your games and

providing graphics that you would never be able to do.

 You don't have to do hectic art classes either, most

universities offer "lighter" courses such as Visual

Communication or Semiotics. While they can be very strange

to a technically-minded BSc student, learning the theory

behind perception or how colours define emotions can be very

useful and immediately applicable in your games. At the very

least, you'll have some understanding of how to talk to artists

in their own language afterwards – never underestimate the

importance of good communication!

 I've got a short-list of contacts from my design classes that I

send work to every once in a while when people ask me for

business cards or logos. They're all keen to work with me on

games and I send them playable versions of what I'm messing

with every once in a while. One of them even likes GM

because she can change the graphics without having to code.

 The same goes for music classes, but typically those are

much harder for "lay-listeners" to understand. I'd suggest

getting to know some of the design students and hanging

around in the "art" areas of campus for a while. You'll meet the

musicians eventually...

BUSINESS / MARKETING COURSES

If you're planning to do it alone and start up a company to

build games, knowing all the little things you need to do to

incorporate and understand how investment works can be

invaluable.

 You should be able to find entrepreneurship courses without

too much difficulty and they'll probably fit into your course-

structure quite well. Once again, they'll be a bit simpler than

your tech-minded CS courses, but it's a different method of

thinking. Once you've got an understanding of business, you'll

know if it's something you can do or if you'll need to get a

partner to run the business side of things. The people in these

courses can be valuable if you have questions later when you

start up.

 The dark art of marketing is a driving force behind the

success or failure of games these days. Getting into a couple

of marketing courses will give you useful contacts if you need

marketing help, plus you can continue with it through to

second-year level to give you an edge – if you're built to

withstand the lovely task of manipulating people all day, of

course!

ENGLISH COURSES

Not only are some English modules excellent for helping you

develop that story-writing side of yourself, there's also a whole

lot of information about the publishing industry that can be

learned here. Yes, the basic principles of publishing are the

same for books, music and games, so a good publishing

course will equip you to deal with publishers on a much better

footing.

 Personally, I'd recommend getting to know the publishing /

H

So, off to a tertiary institution? Studying for your future? Excited about the opportunities in professional game-making

that your studies will present? Well, know now that there's another side to going to university, something that's

overlooked by a lot of students. You're going to be surrounded by tons of interesting people while you're studying, and

if you don't use that time to make contacts and learn about things "not in your field", you're missing a big opportunity to

get ahead as a game creator.

20 DEV MAG ISSUE 4 2006

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

English students through the first-year art modules you take,

they'll probably be in those. Then once they start talking about

things that interest you, start sitting in on the odd lecture.

PSYCHOLOGY COURSES

A little bit of psych can be really useful in helping you decide

how to invoke powerful emotions with your games.

Unfortunately most 1st year psych modules are very low level,

but if you feel that you're learning something applicable, go for

it.

 Usability and Human-Computer-Interaction courses:

Most informatics faculties will have a few courses dedicated to

these fields. In the gaming sphere, the most important person

you're ever going to interact with is your user – the person

playing your game. Any techniques and skills you can learn to

make their experience better will translate into success later,

even if you're simply a programmer...

 While these courses are most useful for aspiring game

designers, learning the ins and outs of usability will make your

code better and less error-prone, despite what the hardcore

CompSci guys say about it. Trust me. Being able to make a

piece of software fun and understanding WHY it's fun will

serve you in good stead.

REGULAR COURSES

Most CS degrees will have you doing at least some maths. Go

to it and work hard, you can do ok without it, but knowing your

algebra makes graphics coding much, much easier. Trying to

understand AI without combinations, permutations and some

calculus will break your head.

 Don't run away from the physics course. It's not as hard as

you think, provided you keep working on it every week... It'll

help you out in the days of physics cards and emergent

gameplay.

There are tons of other courses which might prove useful.

Remember that you need to sit down and decide what you

should focus on and what not. Your degree will try to push you

towards certain things, but remember that this is all for you to

use – get the most out of everything you can.

DISLEKCIA

21 DEV MAG ISSUE 4 2006

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

T
A
I
L
P
I
E
C
E

