
INSIDE: We chat to the creator of Iji O Get your fix of collision detection and learn some handy flash
O Reviews: Penny Arcade Adventures Episode 2 O Killer Worm O Iji O Loads more!

Issue 28 January 2009

1

F
E

A
T
U

R
E

o
p
in

io
n

R
e

g
u

l
a
r
s

D
e

v
e

l
o

p
m

e
n
t

t
a
il

p
ie

c
e

R
e

v
ie

w

Contents
You are here

Ed’s Note
A word or two or

three from our

fearless and ever-

merciful leader.

News
Catch up with

some important

bits of informa-

tion that may have

slipped past your

radar.

That’s Racist!
Our dearest

Nandrew facepalms

and groans as

the internet em-

barasses itself by

doing its usual jig

of spurting sensa-

tionalistic nonsense

at readers who

should know better,

but don’t.

As Iji as pie!
We have a little

chat with Daniel

Remar about his

fantastic creation,

Iji. We talk about

the challenges and

successes, as well

as all of the things

he learned while

developing this

GameMaker mas-

terpiece.

Penny Arcade
Adventures -
Episode 2
Oh dear! The ran-

domness continues

in episode 2!

Iji
No one can say

that all GameMaker

games are simple!

Killer Worm!
Ever wanted to

control a worm...

that kills!? Now’s

your chance!

Do I detect
Collision?
Some weird guy who

says he’s the editor

is here to show you

the basics of collision

detection.

Flash! Ahh-
haaa!
Nandrew teaches you

how to flash! For free

too! We mean the

software, here. He

charges for the other

kind.

2009?
We have a special

treat for your tailpiece

this issue! It’s sort of

like a treasue hunt

where you don’t really

get anything. So like,

dating Amy Wine-

house, but with less

rehab. But you DO

get to see what 2009

holds!

2

SNAPE KILLS DUMBLEDORE
LOLOLOLOL. Oh wait, this is old.

:<

So we’re all back from our

extended holidays, thrust

back to the tedium of the daily

working grind, all the festivities already

forgotten. Which generally means news

(and, in fact, everything) is a bit light in

comparison to our usual offerings.

 Not to fear, however, the long break

hasn’t dulled us or our dedication and

contributions to the magazine. In fact,

recent growth and developments have

led to the possibility of some rather

drastic (and long coming) future chang-

es to accompany our change of hosting.

Yes, that’s right, we’ll be changing our

hosting service soon, and I apologise in

advance if this causes any issues with

our website and the availability of our

magazines.

 That also brings me to a special but

unfortunate request: Reliable web host-

ing that can offer the service we require

(and promise to our readers) costs mon-

ey; not a lot, but enough that help would

be appreciated. As such, sometime next

month or late this month, we’ll be add-

ing an extra link to our website that will

allow you, our readers, to donate to
the magazine and help keep it run-

ning. This is not obligatory at all.
The magazine will stay free (probably

forever) and you’re more than welcome

to continue reading and downloading

our issues as you’ve always done. How-

ever, for the generous among you (or

those who feel our work is worth some-

thing other than your readership), the

donation option will be made available

in the near future.

 On the content side of things, we

have a fairly special feature/review pair

this month, and our cover this month

(drawn by John Nesky) hints to its

content: a review of a fantastic Game

Maker platform title, Iji, and an ac-

companying interview with its creator,

Daniel Remar.

That’s all I have to babble on about this

month. Get reading, and enjoy!

~ Editor

Claudio “Chippit de Sa

HEADMASTER
Claudio “Dumbledore” de Sa

DEPUTY HEADMASTER
James “Professor McGonagall”
Etherington-Smith

HE-WHO-MUST-NOT-BE-NAMED
Quinton “Voldemort, bitches”
Bronkhorst

STUDENTS
Rodain “Harry Potter” Joubert
Simon “Ron Weasley” de la Rouviere
William “Neville Longbottom” Cairns
Danny “That one dude” Day
Andre “George Weasley” Odendaal
Luke “Fred Weasley” Lamothe
Gareth “Draco Malfoy” Wilcock
Sven “Luna Lovegood” Bergstrom
Chris “Herwhiney Ranger” Dudley
Herman “Herman Tulleken” Tulleken

CARETAKER
Robbie “Argus Filch” Fraser

HOGWARTS
www.devmag.org.za

HEDWIG
devmag@gmail.com

This magazine is a project of the
South African
Game.Dev community. Visit us at:
www.devmag.org.za

All images used in the mag are copyright
and
belong to their respective owners.

e
d

’s

p
a
g

e

3

http://www.johnnesky.com/

n
e

t
b
r
ie

f
s

Blender game
engine competition

Blender

To encourage experimenta-

tion with Blender’s recently

overhauled and improved

game engine, a competi-

tion is being hosted on the

official Blender site, calling

for developers and develop-

ment teams to use Blender’s

tools to create a fully fea-

tured game in one of the 3

categories: Best graphics,

best gameplay, and a third,

special category restricting

the use of python scripting.

The deadline for entries is 16

March, which gives you time

to put your skills to the test.

Atari’s lite-C game
programming lan-
guage version 1.5
available

Atari

The newest version of Atari’s

Windows-based game pro-

gramming language, created

by Conitec in association with

Atari, has been released to

the public. It has a 24-work-

shop tutorial that aims to

teach anyone how to use the

software, and attempts to be

easy to use and understand

even for non-programmers,

by handling complex im-

porting, collision detection,

lighting and other 3D game

considerations transparently.

It is that is free for non-com-

mercial purposes.

Lost Garden fishing
prototype results

Lost Garden

The results for the most re-

cent Lost Garden prototyp-

ing challenge have been re-

vealed, and they include a

surprise result: For the very

first time, a gold medal was

awarded to an entry, made

by one Andre, a game that

took the prototype and de-

sign further than any other

before. Far enough to have

it accumulate a 4.1 aggre-

gate rating on Newgrounds,

and ultimately to sell it for a

neat sum of $4000. Who said

these prototyping challenges

lead nowhere?

2009 IGF finalists
announced

IGF

The 22 finalists for 2009’s

Independent Games Festi-

val have been announced,

including DreamBuildPlay

finalist and grand prize win-

ner, CarneyVale Showtime.

IGF is a huge event in the

indie calendar, and we’ll be

carefully watching develop-

ments in this area. Expect a

huge roundup on all the IGF

entrants in the next issue.

Global Game Jam in
Cape Town

Afrigraph

The Global Game Jam, a 48-

hour international game pro-

totype creation competition

being held roughly simulta-

neously in numerous venues

all over the planet, is taking

place in Cape Town this year

too. The University of Cape

Town has offered their com-

puter science labs for the

purposes of the competi-

tion, set to be held from 30

January to 1 February. With

tons of popular development

tools available for partici-

pants to work in (including

both Game Maker and XNA),

the Jam promises to be a

fun evening for like-minded

developers to team up and

frantically cobble something

playable together.

4

http://wiki.blender.org/index.php/Game_Engine/Competitions/2008_Q4
http://www.3dgamestudio.com/litec.php
http://lostgarden.com/2008/12/fishing-girl-prototype-results.html
http://www.igf.com/02finalists.html
http://www.afrigraph.org/global-game-jam

o
p
in

io
n

R
od

ai
n

 “
N

an
dr

ew
”

Jo
u

be
rt

The other day, a member of the

Game.Dev community was accused

of producing a racist game. Sur-

prised and intrigued by the rumour, I in-

vestigated the link provided by a friend and

stumbled upon a Website that claimed to

analyse games on a more “academic” level

than the average review or blog post.

 I was equal parts relieved and annoyed

to find that the blog post I was sent to con-

sisted of distilled garbage – the result of

some self-aggrandising, pseudo-intellectual

lunatic who believed that cockroaches and

pest exterminators were a metaphor for

racial oppression and wholesale slaughter

of native Africans rather than, say, a damn

pest extermination simulator. Reasons for

this line of thinking included factors such

as the roaches' dark colours and the game

developer's background as a white South

African citizen (a national identity which

immediately seems to raise the racism flag

amongst less-than-enlightened foreigners,

along with thoughts of mud huts and riding

lions).

 After two posts in the comments section

which gained me little ground (the Website

admins didn't seem interested in retract-

ing their statements or apologising for their

sensationalism), I made a quick facepalm

and moved on to more enlightened parts of

the Internet.

 I think it's sufficient to say that I was

unimpressed with the blog post. They ac-

cused my colleague of producing a racist

game based on the most ludicrous of evi-

dence, then tried to justify their statement

instead of looking back on it and perhaps

saying, “Actually, my bad.” I'm not even go-

ing to go into the journalistic responsibilities

that I feel were quite thoroughly violated (a

hint, ladies and gentlemen: if it's not a fo-

rum, and it's not framed as an opinion col-

umn, don't call your damn blog posts “aca-

demic” and then start writing sensationalist

rubbish).

 What upsets me most, however, is that at

the end of the day this imbecilic and down-

right harmful opinion will be fed to the gen-

eral Internet populace, 90% of which will

never even bother scrolling down to look

at the rebuttals afterwards. Voices like this

exist all over the Internet in a whole variety

of genres. Game development, in particu-

lar, has its fair share of individuals who cry

wolf in this manner, with opinions hiding in

everything from academic essays to hum-

ble MySpace posts made by angst ridden

teens.

 One of my friends drew an analogy be-

tween this and the “feminist conspiracy” re-

garding the shape and function of the red

and blue ovals in Portal. Then there's the

stuff about ninja games being a Japanese

conspiracy to train gamers for their secret

army. One really doesn't have to dig that

deep in order to find a whole menagerie of

ludicrous theories that relate to just about

any paradigm, class or society. They make

Jack Thompson look completely reasonable

in comparison, and I'd throw my chips in

with him if these people were the alterna-

tive.

 Sadly, there actually are problem games

out there which promote some very nega-

tive messages, and not in an ironic or over-

the-top manner either. Army of Two, for

example, is incredibly politically slanted

and several reviewers have pointed out the

rather shameless pro American bias that it

contains. Then there are those ubiquitous

under-the-radar games which clearly and

unapologetically promote hate speech, in-

tolerance and gender-based violence in a

much more severe manner.

 Maybe if we had more self-styled watch-

dogs keeping an eye out for the real prob-

lems instead of latching onto messages that

only their own guilt or obsession lets them

see we'd have a slightly better Internet so-

ciety on our hands. Or maybe not. At the

very least it would keep them occupied with

real problems instead of contrived horrors.

Racist cockroaches, anyone?

“This imbecilic and downright harmful opinion will be fed to the

general Internet populace.”

5

F
E

A
T
U

R
E

Si
m

on
 “

tr
0

0
jg

”
de

 la
 R

ou
vi

er
e

To accompany our review of the game, Dev.Mag sat down

with Daniel Remar, the sole creator of Iji, and probed

him with questions about the development of the re-

markable game.

Talking about....Iji

6

There was a lot of experimenting and testing

with the music long before I wrote the general

guidelines for the sound and feeling of each

song. A mini-soundtrack was produced for the

first demo of the game, which gave us expe-

rience in understanding each others' tastes.

While the final soundtrack was being composed

and recorded, I let Chris do pretty much what

he wanted since I trusted him, and he knew

what kind of style we were after. He liked driv-

ing, positive tracks rather than dark, depressing

ones, and I thought that what he came up with

fit the game perfectly. Only one song in the

final batch (Organ Smash) was left out of the

game. It's included in the high-quality sound-

track download though, so don't miss it.

F
E

A
T
U

R
E

IJ
I

IN
TE

R
V

IE
W

What inspired you to make the

story-driven platformer, Iji?

The main inspiration comes from my old dis-

continued comic, which in turn was inspired

by another creation of mine that stemmed

from playing Operation Carnage. Iji was at

first supposed to be a survival horror kind

of platformer, but changed rapidly once I

begun working on it. It's hard to say when

or why it turned into what it is now.

Where does the name come
from? Why Iji?

All the names were pretty much random-

ized, and don't have any special meaning.

I wanted the main ones short and easily

recognizable though.

Iji took 4 years to develop. Why?
Were there several design itera-
tions?

There were no real design iterations; it just

flowed from start to finish. It took so long

because of the huge amount of content in the

game, and the amount of bug fixing I needed

to do. Recording the voices and drawing the

cutscenes are examples of things that took

several months each. Of course, it didn't

take four full years; I often took month-long

breaks to keep my motivation up. Build-

ing and tiling a level also usually took a few

weeks, but Sector 5 was done in three days.

Some of the many moves, secrets and alter-

nate texts and events also took a long time

since they often caused conflicts, and I had

to test them thoroughly.

Were there any particular goals
you wanted the music in the game
to achieve?

I mainly wanted heavy or industrial metal mu-

sic mixed with ambience, recorded live rather

than in MOD format. Machinae Supremacy

and their various works were a big inspira-

tion, and one of the reasons I like them is

the optimism and believing in oneself that is

often seen in their lyrics and musical style.

Were there any specific guidelines
you passed on to the composers
who created it for you?

Did you create any custom tools or
systems or was it all made in Game
Maker?

To make the game's resources I used Photoshop

for graphics, Blender 3D for the characters, and

Goldwave for editing the sound and voices, but

the only "system" I could say I created was the

polygon rotation and forward kinematics ani-

mation tool for the final boss. Unlike the other

characters, it animates in real time with poly-

gons, rather than using rendered sprites, since

it's so large. Unfortunately this made it slow on

some computers.

7

How did you find working with
Game Maker? Did you upgrade in
the middle of the development?

F
E

A
T
U

R
E

IJ
I

IN
TE

R
V

IE
W

You used the same polygonal
character animation that Anoth-
er World used. How did you go
about creating and animating the
characters?

It seems that you took some in-
spiration from System Shock,
Deus Ex, Blackthorne and Anoth-
er World. Any other games that
helped shape the final product?

What are your plans for the fu-
ture?

Of all the games you took inspi-
ration from, which is your favou-
rite?

It’s all GM5, since it was too bothersome to

switch to GM6 in 2005 due to the many in-

compatibilities, the loss of certain functions,

the poorer sound and music handling and the

loss of compatibility with Windows 98, among

other things. I always work in GM5 unless a

certain game would be impossible or more dif-

ficult to do without it, such as Garden Gnome

Carnage’s rotation and surface effects. GGC

also started out as a GM5 game though.

The inspiration for the gameplay was largely

the games you list, but I got inspiration from

so many others (most of them subconscious-

ly) that I can’t list them all. There are refer-

ences to everything from Tyrian to Doom in

there, but I was also inspired by movies like

Nausicaä.

Of the direct inspirations it’s System Shock

2. I personally don’t think Another World

and Blackthorne are fun games, but they’re

inspiring.

I built and rigged them in Blender 3D, and

animated them frame-by-frame which was

so tedious it nearly stopped the development

of the game. I rendered them from a par-

allel perspective in flat colors, and fixed the

frames up in Photoshop. It produced better

results than trying to animate them by hand,

at least. Since they are only seen from the

sides, I could “cheat” a lot while animating

them, such as having body parts cut into

each other or dislocating parts to make sure

they were drawn in front of others.

There are some games I want to make which

will only take a few months each, but I won’t

have the kind of spare time I had as when I

worked on Iji anymore. I won’t make any-

thing the size of Iji again, it’s too draining.

8

F
E

A
T
U

R
E

IJ
I

IN
TE

R
V

IE
W

SHORTS

Either the PC or N64, they’re the ones I’ve

played the most over the years.

Bad in-flight movies or cold
coffee?

Favourite Platform?

I neither fly nor drink coffee; so between

failed homemade cake rolls and being too

cheap to buy clothes without holes in them,

I’ll say failed homemade cake rolls.

9

R
e

v
ie

w
G

ar
et

h
 “

G
az

za
_

N
”

W
ilc

oc
k

EPISODE TWO

“The developers have taken all the player feedback about Episode 1

to make Episode 2 better.”

When one talks about the development of episodic games, there are normally two distinct ad-

vantages that get touted. The first is a steady cash flow. The other is the ability to iteratively

improve on the game as each episode comes out and players are able to dictate what they liked

and didn't like. Episode 2 of On the Rain Slick Precipice of Darkness (henceforth referred to as “Episode 2” to

save my fingers from an early death) follows this philosophy to the letter. In fact, this review could be boiled

down to four words: “Episode 1, but better”.

10

R
e

v
ie

w
P

EN
N

Y
 A

R
C

A
D

E
A

D
V

EN
TU

R
ES

 E
P

IS
O

D
E

2

Given that we published a review of

Episode 1 not so long ago (Dev.Mag

Issue 24), I won't go into too much

depth regarding the mechanics. Suf-

fice to say that at its core Episode 2

is Episode 1 – same characters; same

basic plot premise; same interface;

same exploration/puzzle-solving/com-

bat dynamic. Naturally, they've sub-

stituted certain elements with newer

ones – the characters have new

weapons and attacks that you need

to improve; the Special Attack minig-

ames are different; and the enemies

are tougher. Powerups and status

items have undergone minor changes

to slightly alter your battle strategy.

Otherwise, the gameplay remains the

same, but given how much fun Epi-

sode 1 was, this isn't much of a draw-

back.

 What the developers have done is

taken all the player feedback about

Episode 1, and expanded and refined

on those elements to make Episode 2

better. For example, the game feels

much longer, with more characters,

and locations to visit than in the origi-

nal. Along with this comes more ene-

mies and more, tougher (but far from

impossible), puzzles. The game is

crammed full of more of the hilarious

animated cutscenes that made the

original so entertaining. The combat

mechanics may be the same, but the

developers have attempted to make

fighting more dynamic. Enemies will

switch positions on the fly, enter com-

bat at different times and from differ-

ent directions, and flee from battle to

lure you to larger and stronger groups

of adversaries. Blocking has been

made easier as well, by increasing the

visibility of the “block” cue.

“Fun to play and brilliantly written.”

11

R
e

v
ie

w
P

EN
N

Y
 A

R
C

A
D

E
A

D
V

EN
TU

R
ES

 E
P

IS
O

D
E

2

Technically, Episode 2 can be played without

having played Episode 1, but this would be a

mistake. The presence of certain characters,

inventory items and plot points make very

little sense unless you've been introduced

to them in the first game. Additionally, by

importing your Episode 1 character, you gain

access to special items that were won or pur-

chased in that game, but didn't have much

use. These can be combined with others in

Episode 2 to obtain additional benefits.

 So yes, Episode 2 is more of the same, but

with extra polish and more content. It's still

as fun to play and brilliantly written as one

would expect, and the changes and additions

keep it from feeling too much like more of the

same. If you enjoyed Episode 1, you'll enjoy

this continuation of the series.

12

R
e

v
ie

w
G

ar
et

h
 “

G
az

za
_

N
”

W
ilc

oc
k

If one were to attempt classification, Iji could be described as a “Nonlinear Action RPG Plat-

former”. It borrows thematic and gameplay elements from System Shock and Deus Ex, marries

them with tactical platformer gunplay à la Blackthorne, and presents it all using the same basic

polygonal graphics that made Another World so visually distinctive.

Whew! Quite a mouthful!

“A lot deeper than one

would expect.”

13

R
e

v
ie

w
IJ

I

Sadly, a side effect of relating a game

to existing titles is that it makes the

reader think that the game being re-

viewed consists of nothing but cheap

borrowings from the games it’s being

compared to. This does the game a

great disservice, especially if it does

a particularly good job of melding all

those borrowings into a cohesive and

entertaining whole. Iji takes all its in-

fluences, mashes them together very

nicely, and adds some little touches of

its own that make it highly distinctive;

but enough of that – it’s time to tell you

why.

 Iji’s story begins with the title char-

acter and her family touring the mili-

tary research complex where her father

works. This is rudely interrupted when

a hostile alien race hits the Earth with a

somewhat sudden and unprovoked or-

bital bombardment. Six months later,

Iji awakes from a coma to find that the

military complex has been completely

overrun by the aliens, and that she has

been infused with reverse-engineered

alien nanotechnology by the few sur-

viving scientists. It’s up to her to strike

back against the invaders and, through

whatever means available, get them off

what’s left of Earth.

 So yes, Iji is part action platformer;

and it’s little different from any other

action platformer you may have played.

You guide Iji through the ten Sectors

of the military complex, jumping from

floor to floor and shooting increasingly

nasty aliens with a growing range of

weaponry. Her repertoire of moves is

pretty basic – jumping and crouching.

“Iji awakes from a coma to find that the military complex

has been completely overrun by aliens.”

14

Crouching allows nastier enemy projec-

tiles to zip harmlessly over her head,

and is ideally performed behind cover

to prevent fire from weaker weapons

and melee attacks from reaching her

too. However, unlike in other games of

this type, she is unable to fire her own

weapons while either crouching or in

mid-jump. This can become annoying

in some situations, but eliminating these

abilities makes tactical placement and

weapon selection all the more crucial to

your survival. You can't just pull off the

old “crouch 'n' fire while the aliens shoot

uselessly over your head” or “jump to

the next floor level, fire at enemy in

mid-jump, fall into cover” maneuvers.

This forces you to think your firefights

through a little more carefully, especially

against larger, stronger adversaries.

 Fallen foes leave behind residual

nanite swarms, known in the game as

“Nano”. Once enough Nano, which can

also be found as free-floating, nonlethal

swarms, is collected, Iji gains a Level

Point. As you progress through the

facility, you'll find special Upgrade Sta-

tions where you can trade Level Points

for increased aptitude in the specific

skills indicated by each station. Health

and Attack skills provide more hit points

and weapon effectiveness respectively.

Strength allows you to shatter certain

doors and send enemies flying with Iji's

Mighty Foot. Your aptitude with alien

weaponry needs to be increased to a set

level before you can use certain guns.

Cracking gives you access to the hack-

ing mini-game, which allows you hack

equipment containers, doors, and even

lets you fuse weapons together to cre-

ate more powerful variants. Choosing

which skills to augment is an immense

challenge at points, as all of them are

incredibly useful and can dictate your

path through the sectors, with all the

benefits that brings in terms of access

to weapons and collectibles.

R
e

v
ie

w
IJ

I

“It's diffi-

cult to

refrain

from

gushing

about Iji.”

15

R
e

v
ie

w
IJ

I

Iji's story deserves special mention too.

Presented through a mixture of semi-

animated slideshow cutscenes, in-game

dialogue and enemy notebooks (which

also provide some humourous gameplay

tips and “recipes” for new weapons) –

it's certainly a lot deeper than one would

expect from a game of this type, pre-

senting some very interesting questions

to the player regarding war and politics.

Most intriguing is the effect that the play-

er's actions have on Iji herself and on

certain aspects of the story. While the

overall plot remains the same regardless,

taking either a pacifistic, avoidant stance

or an aggressive, kill-'em-all strategy al-

ters in-game dialogue and the contents

of enemy logbooks, and determines the

presence of certain friendly characters

later in the game. Iji's in-game utter-

ances will reflect her stance as well, with

her either uttering apologies when kill-

ing someone, or letting out an impas-

sioned “DIE!” when dispatching a foe.

It's a nice touch, making one feel as if

Iji herself is evolving as a character, and

adds yet another tangible reflection of a

chosen play style.

 There remain two other honourable

mentions one must make about Iji.

Firstly, its replayability is superb, courte-

sy of both its nonlinear design as well as

a wealth of hidden areas and unlockable

content. Secondly, an absolutely incred-

ible soundtrack that creates an amazing

atmosphere for each of the levels – the

final boss music and the credits track in

particular must be heard to be believed.

These two little touches of polish raise

Iji above and beyond the regular Indie

offerings, and make the game far better

for it.

 It's difficult to refrain from gushing

about Iji. Daniel Remar has done himself

proud with this game, creating some-

thing both fun and inspirational. Not

bad for one man using Game Maker.

SECOND OPINION
by Chris “LionsInnards” Dudley

Iji is like a delicious stew. It feels

as though a pinch of everything was

flung into the mixing pot, but with the

grace and skill of a master chef. Slices

of role-playing and story float around

in the platforming sauce, compliment-

ing the A-grade chunks of action, all

garnished with a delicate sprinkling of

emotion. This is a full meal, and one

that was crafted with the most basic of

tools, Game Maker 5. It is the kind of

game that makes one’s own creations

with the program appear amateurish;

as prison gruel is to haute cuisine.

16

R
e

v
ie

w
C

h
ri

s
“L

io
n

sI
n

n
ar

ds
”

D
u

dl
ey

Killer Worm drops the player behind the wheel of a giant killer worm, ready to lay waste

to the highly nutritious inhabitants of the game world. Murder! Destruction! Pixilated

slaughter! And all the player has to do to achieve this wormy goodness is lift a single

finger. The controls couldn’t be simpler; the leap action is bound to left click, and aiming is

governed by the mouse.

17

R
e

v
ie

w
K

IL
LE

R
 W

O
R

M

At first, Killer Worm is quite difficult to

classify due to the combination of dif-

ferent elements from various genres.

There is an RTS-like resource system

demanding that one plays smart and

makes tactical decisions, and a seri-

ous dependence on the score to keep

the player motivated – reminiscent of

old school arcade games.

 The strategy aspects come in to

play when the player has to manage

a hunger-meter, which requires the

player to strike a balance between

exposing themselves to danger, and

grabbing themselves a slice of civil-

ian tartare – all while reveling in the

cheesy b-grade feel of the game’s vi-

suals and music.

 The Killer Worm franchise is now

in its third iteration, and it has im-

proved noticeably. The basic ele-

ments of the first game formed a

great base for Game.Dev community

regular and developer Unc1354m to

expand on, as his original version of

the game was lacking in a few areas.

The most glaring was the repetitive

and restricted action available to the

player; a problem easily remedied in

his sequels, in which range and angle

were taken into consideration when

coming in for an attack. This served

as a great way to break a lot of the

monotony of the first game, and to

show off the updated animations and

growth systems.

 Killer Worm is a great reference

to show how evolving your ideas can

pay off. Unc1354m should be com-

mended for his dedication to his titles,

and is a shining example for new de-

velopers disheartened with their own.

Everyone is encouraged to follow his

example and pour their all into their

pet project – you never know what it

could blossom into.

18

D
e

v
e

l
o

p
m

e
n
t

C
la

u
di

o
“C

h
ip

pi
t”

 d
e

Sa COLLIDE
WHEN WORLDS

The Basics of Collision Detection in 2D
PART 1

Almost every video game needs to respond to objects touching each other in some sense, a practice commonly known as collision detection. Whether it’s simply to

prevent the player character from walking through the walls of your maze with a simple collision grid array, or if it’s to test if any of the hundreds of projectiles fired

by a boss character in a top-down shoot-‘em-up have struck the player’s ship, your game will likely require a collision detection system of one sort or another.

 So there comes a time in almost every game’s development cycle when an important choice needs to be made: how accurate should the collision detection be, and which

method should be used to achieve that accuracy. This is a decision that is not made lightly, since it can drastically affect both gameplay and performance of your game.

 Unfortunately, there’s often no avoiding the mathematics behind collision detection. However, anyone with so much as a secondary-school maths education will be able to

follow the collision detection explanations in this article.

19

D
e

v
e

l
o

p
m

e
n
t

C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 P
A

R
T

1

CircleCircleCollision
Input
	 Center1	 x/y	pair	of	floating	points	 Centre	of	first	circle
	 R1	 	 Floating	point		 	 	 Radius	of	first	circle
	 Center2	 x/y	pair	of	floating	points	 Centre	of	second	circle
	 R2	 	 Floating	point		 	 	 Radius	of	second	circle
Output
	 True	if	circles	collide

Method
	 //	Calculate	difference	between	centres
	 distX	=	Center1.X	–	Center2.X
	 distY	=	Center1.Y	–	Center2.Y
	 //	Get	distance	with	Pythagoras
	 dist	=	sqrt((distX	*	distX)	+	(distY	*	distY))
	 return	dist	<=	(R1	+	R2)

The above method can be optimized somewhat by comparing the square distance with the square of

the sum of the radii instead, saving a comparatively slow square root operation, as shown below.

	 //	Get	distance	with	Pythagoras
	 squaredist	=	(distX	*	distX)	+	(distY	*	distY)
	 return	squaredist	<=	(R1	+	R2)	*	(R1	+	R2)

Bounding sphere/
circle test
< A sprite with visible circular collision bounds

The simplest of all methods for detecting intersec-

tions between objects is a simple bounding sphere

test. Essentially, this represents objects in the world

as circles or spheres, and test whether they touch,

intersect or completely contain each other. This

method is ideal when accuracy is not paramount,

for objects roughly circular in shape, or in instances

where these objects do a lot of rotations.

Each object will have a bounding circle defined by a

centre point and a radius. To test for collision with

another bounding circle, all that needs to be done is

compare the distance between the two centre points

with the sum of the two radii:

• If the distance exceeds the sum, the circles

 are too far apart to intersect.

• If the distance is equal to the sum, the

 circles are touching.

• If the distance is less than the sum of the

 radii, the circles intersect.

r1

r2

Center2

Center1

20

D
e

v
e

l
o

p
m

e
n
t

C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 P
A

R
T

1

RectRectCollision
Input
	 Rect1	 Rectangle		 First	Rectangle
	 Rect2	 Rectangle		 	 Second	Rectangle
Output
	 True	if	the	rectangles	collide

Method
OutsideBottom	=	Rect1.Bottom	<	Rect2.Top
OutsideTop	=	Rect1.Top	>	Rect2.Bottom
OutsideLeft	=	Rect1.Left	>	Rect2.Right
OutsideRight	=	Rect1.Right	<	Rect2.Left
	 return	NOT	(OutsideBottom	OR	OutsideTop	OR	OutsideLeft	OR	Out-
sideRight)

The above can then be condensed into a single line as follows.

	 return	NOT	(
	 	 (Rect1.Bottom	<	Rect2.Top)	OR	
	 	 (Rect1.Top	>	Rect2.Bottom)	OR	
	 	 (Rect1.Left	>	Rect2.Right)	OR	
	 	 (Rect1.Right	<	Rect2.Left))

The second obvious solution to the problem is to

represent obstacles as axis-aligned rectangles. This

method is ideal for smaller objects that are roughly

rectangular and because it is incredibly fast to pro-

cess.

 The method that will be described uses a contradic-

tion to determine whether the rectangles intersect.

Because it is simpler instead to determine whether

rectangles do not intersect, the function will calcu-

late that and return the negation of its result.

Rectangles will be defined by their left-, top-, bot-

tom- and right-edges. To determine whether two

rectangles do not intersect, one simply has to check

for any of the following conditions:

• Rectangle 1’s bottom edge is higher than

 Rectangle 2’s top edge.

• Rectangle 1’s top edge is lower than

 Rectangle 2’s bottom edge.

• Rectangle 1’s left edge is to the right of

 Rectangle 2’s right edge.

• Rectangle 1’s right edge is to the left of

 Rectangle 2’s left edge.

Bounding box/
rectangle test
<A sprite with visible rectangular collision bounds

left

top

right

bottom

21

D
e

v
e

l
o

p
m

e
n
t

C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 P
A

R
T

1

Similarly, we define point Pb, any point on line B, as:

Pa = B1 + ua (B2 - B1) with ub being any real number and B1 and
B2 as two points on line B

Solving for the point where pa = pb (the intersection between these

lines), we get two equations:

xA1 + ua (xA2 – xA1) = xB1 + ub (xB2 – xB1)
yA1 + ua (yA2 – yA1) = yB1 + ub (yB2 – yB1)

Solving the above for ua and ub gives:

ua = (xB2 – xB1) (yA1 – yB1) - (yB2 – yB1) (xA1 – xB1)

 (yB2 – yB1) (xA2 – xA1) - (xB2 – xB1) (yA2 – yA1)

ub = (xA2 – xA1) (yA1 – yB1) - (yA2 – yA1) (xA1 – xB1)

 (yB2 – yB1) (xA2 – xA1) - (xB2 – xB1) (yA2 – yA1)

You’ll notice that the denominator for these two equations is the

same. Thus, if the denominator is 0, both ua and ub are undefined,

and no collision between these lines exist (the lines are parallel).

The algorithm for simple infinite-line length checks simply needs to

calculate the value for this denominator to determine whether a col-

lision exists.

A1

A2

B1

B2

Occasionally, one would need to represent objects

in the game as simple lines (or perhaps a compound

group of lines). Testing collision between two lines is

slightly more complicated that the two methods de-

scribed above, requiring some algebra to develop an

algorithm, but is still otherwise fairly simple.

 All lines used in this method will be represented as

two points along the line (or the two endpoints if the

lines are to be considered line segments instead of lines

of infinite length). With a line A of infinite length, and

two points on that line, A1 and A2, we define point Pa,

any point on line A as:

Pa = A1 + ua (A2 - A1) with ua being any real number.

That is, Pa is a point Ua-percent along the line from A1

to A2. Note that, since Ua is any real number, this point

(and therefore the intersection between the lines) can

lie on any point on either side of A1 and A2. Conversely,

if ua is between 0 and 1, Pa is between points A1 and
A2 (this is important later).

Line-Line
intersection test

A1 A2

u = 0.25a

u = 0.5a

u = 0.75a

^ pa for different values of ua

22

D
e

v
e

l
o

p
m

e
n
t

C
O

LL
IS

IO
N

 D
ET

EC
TI

O
N

 P
A

R
T

1

LineLineCollision
Input
	 LineA1	 Point	 First	point	on	line	A
	 LineA2	 Point	 Second	point	on	line	A
	 LineB1	 Point	 First	point	on	line	B
	 LineB2	 Point	 Second	point	on	line	B
Output
	 True	if	lines	collide

Method
	 denom	=	((LineB2.Y	–	LineB1.Y)	*	(LineA2.X	–	LineA1.X))	–	
	 	 ((LineB2.X	–	lineB1.X)	*	(LineA2.Y	-	LineA1.Y))
	 return	denom	!=	0

However, there will be occasions when either one or

both of the lines to be tested are not lines of infinite

length. In this case, as mentioned above, ua and ub

become really important. If ua is between 0 and 1,

then the collision occurs on a line segment of line

A, between points A1 and A1, and, similarly, if ub

is between 0 and 1, the collision occurs on a line

segment of line B, between points B1 and B2. More

often than not, you’ll want to perform both these

checks in your collision routine.

And that’s all we have space for this month. Next

issue we’ll look at getting more information out of

some of these collision routines, as well as covering

a few more complicated algorithms.

23

D
e

v
e

l
o

p
m

e
n
t

R
od

ai
n

 “
N

an
dr

ew
”

Jo
u

be
rt

Many of you have experienced

it. You go online, log into your

instant messenger or e-mail

account and receive a link from some

excited friend saying, “ARARRRAARARR

PLAY THIS GAME ASBFLARGAFUG www.

insertrandomlinkhere.com!!!!!”. Chances

are it's either an Internet booby trap (if

you have those kind of friends) or an awe-

some browser-based something brought

to you by Adobe Flash; and if you're a

keen game developer, you've probably

slobbered at the idea of creating some of

these cool games yourself.

Flash for Free: How to be-
come a Flash developer
without spending a cent.

24

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

Most people believe that Flash development is

something remote or intimidating, a craft which is

difFIcult to get into and even more difFIcult to

persist with. However, this need not be the case -

all you need is a good set of guide points to work

from and, of course, the right software (on top

of that, knowing Java will have Flash practically

fall into your lap).

This is a comprehensive kick-start to Flash which

will take you through three basic sections:

1. Securing (free) software

2. Project structure and IDE environment

3. Learning basic code with ActionScript 3

After going through these three basic sections,

you should have a working idea of what develop-

ing in Flash requires from you. From there, it's

onto Internet tutorials and other things to get

to grips with coding and advanced tools. Let's get

started.

Meanwhile...

1. Your Tools

Like many programming languages, Flash

requires three primary components: (1)

the IDE (or “where you slap the code

in”); (2) the SDK (or “the files on your

hard drive which let your computer un-

derstand the code stuff”) and (3) the de-

bugger (or “the program which runs the

final stuff and helps you see if you wrote

it all right-like”).

 For a coding environment, we'll be us-

ing the excellent and totally free Flash-

Develop IDE (http://www.flashde-

velop.org/). It's only a few megabytes

to download and has all of the features

that one may expect from a competent

IDE, including possibly the most awe-

some code completion system that you'll

ever lay eyes on. This is the program that

will be visible to you, the user, whenever

you want to show off your coding biceps

and make something fantastic. Install it,

but don't double-click that little icon just

yet! We want to get some other stuff

onto your system first.

 The FLEX SDK is a group of files which

needs to sit on your system before you

can develop in Flash. These files are

used in building the final Flash applica-

tions after you've done the hard work of

laying down the code, and will be used

by the FlashDevelop IDE when you get

around to opening it up.

There are numerous SDK down-

loads at: http://opensource.ado-

be.com/wiki/display/flexsdk/

Download+Flex+3

Once you've picked something to down-

load (hopefully a fairly recent build under

the “Adobe Flex SDK” category), grab the

brand spanking new ZIP file that appears

on your hard drive and extract it to a

place on your drive where you won't for-

get about it (for example, C:\flex_sdk_3).

Seriously, don't forget where you've put

it.

Finally, you'll probably also want to look

at downloading some runtime files and

debuggers. Browse through the files on

this page: http://www.adobe.com/

support/flashplayer/downloads.

html

Recommended downloads are the Flash

Player 9 ActiveX control content debug-

ger and the Flash Player 9 Projector con-

tent debugger.

After that, you're pretty much sorted for

basic downloads. Install applications as

necessary.

25

http://www.flashdevelop.org/
http://opensource.adobe.com/wiki/display/flexsdk/Download+Flex+3
http://www.adobe.com/support/flashplayer/downloads.html

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

There's a universal consent that part 2 is by far the most boring, and

people are tempted to pull an Underpants Gnome trick (don't ask) and

go carefully through steps 1 and 3 while leaving a big set of question

marks over 2. Please don't skip this section. Your programs will screw

up, you'll fail to compile properly and the world will explode. Worst of

all, you won't fully understand why all this happens, and many, many

programming woes emerge purely because the user doesn't know

what's going on.

Right, go ahead and open FlashDevelop. Then take a moment to

pause and read through the next few paragraphs before doing any-

thing else. There are a few things that need to be set up in FlashDe-

velop before you even open an AS3 project. First off, look for Tools

in the menu bar and proceed to Program Settings. Select the AS3-

Context plugin and scroll down to the “Flex SDK Location” field. Now,

remember earlier when we extracted the SDK files onto the hard disk?

Type that location into the text field, or click on the ellipsis (three

little dots) and browse for it. Hopefully you haven't done something

stupid, like forgetting where you extracted those files to. If you have,

slap yourself on the face and go back to step one. Everyone else

– congratulations! You've just told FlashDevelop where the SDK is.

Now it can actually figure out what to do with the code when you click

that big green “GO!” button.

2. Your working environment

26

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

For beginners who aren't familiar with this concept,

take note: FlashDevelop is just a development environ-

ment. This means that it can watch you code, help you

auto-complete, and generally provide a comprehensive

structure to organise and streamline your development

experience. It cannot, and never will, be useful in de-

bugging, compiling, interpreting, linking, running, fish-

ing, baking or writing philosophy essays. It needs the

SDK for that stuff in the same way that a really awe-

some refrigerator can provide shelving and storage for

your food but won't ever prepare dinner for you (un-

less you count the stuff that always grows right at the

back). If you try to make a Flash program without an

SDK present, you'll come short very, very quickly.

 A secondary, albeit slightly less critical action to per-

form is establishing a folder on your hard drive for all of

your Flash projects. After all, your projects don't con-

sist of one or two arbitrary files that can just be shoved

anywhere and recognised easily. They're entire direc-

tories (and sub-directories) of project shortcuts, source

code and embedded files which all contribute to your

final product, and it's preferable if you don't just shove

them into the mess of C:\various_rubbish. So go ahead

– create a nice neat “Flash Projects” folder somewhere

on your drive. You'll thank me for it later.

 Now that you've got all this stuff out of the way, go to

the Project > New Project menu option. There's quite

an array of project types that you can start up here, but

it's a good idea to start up a basic AS3 Project. Type in

an appropriate project name and directory (remember

the folder you set up just now?) and then continue.

You should now have a fresh new workspace to oper-

ate with.

 Before we go on to a basic coding tutorial, bring your

attention to the project window on the right. What

you have is a comprehensive tree of every resource

to be used in your creation, and files will be added to

this window when you create new ones inside FlashDe-

velop or add them to the project folder from an exter-

nal application. The project window is nice and simple

to start with, but if your creation is going to become

complicated (or you're just really trigger-happy with

the “New Class” option), it'll look a lot like the one dis-

played here.

27

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

Standard AS3 projects in FlashDevelop are divided into

three primary folders:

BIN – no, this is NOT where you throw your rubbish! The

BIN (or binary) folder contains the final product, the sum of

your efforts, the stuff that an end user will pick up and look

at. The two most important files for you to worry about

over here are index.html (a Webpage template that can test

how your project appears in a browser – if you know HTML,

you can fiddle about with this) and a .swf file named after

your project (only visible after your first build/run, so don't

panic if you don't see it yet). The latter is your executable

Flash program.

LIB – you can worry about this later. You know, when you're

pro and stuff. It contains things.

SRC – this is where all your hard work takes place before

you send it to your executable, and will be the folder in

which you spend most of your time. SRC can contain many

things. For a start, it holds “Main.as”, the entry point of

your program and the place where you'll begin your coding.

Later on, it'll hold all of your various source code files, em-

bedded images / sounds and, well, whatever else you want

to put in there (ooh, look, someone smuggled in a Game

Maker 7 file!).

Hopefully you have a slightly better idea of how things work

in FlashDevelop now. Feel free to hate me, but knowledge

is good. Seriously. Besides, we're getting on to the cool

bit now.

3. Your “Hello world”

Right, now for the implementation of all your hopes and dreams! By now you should have a

nubile young AS3 project parading about on your screen (if you don't have one, you obviously

didn't read part 2. Didn't I just tell you to read part 2?). Double-click on the Main.as file to

open it in your editor window (the file is squirreled away inside your project's SRC directory,

remember?). You'll be presented with what us fancy types like to call a code stub – this is

FlashDevelop's way of saying, “You're lazy and/or stupid, so we've written out some framing

code for you already. Now you connect the dots.”

28

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

You'll be presented with one or two “import” lines

(in simple terms, each one extends the commands

and/or objects that you have access to in this par-

ticular file), then a public Main class which contains

two default functions: one called Main() – (code

that runs as soon as the program starts) – and

another called init() – (code that runs just a short

while after the code in Main()).

You may notice that the code refers to something

called “stage”. “What's that?” you may wonder.

Well, AS3 applications are based on a great big par-

ent/child structure. This “stage” object is a univer-

sal instance (visible to most default object types)

which serves as a great big canvas on which you

can stick everything else. So if you want a soccer

ball to appear in your product, you'll write some-

thing along the lines of “stage.addChild(soccerball_

thingie);” in your code. If you want ten soccer

balls to appear on-screen, you'll add ten of these

“children” to the “parent” stage. This is all done

after you've successfully created a soccer ball ob-

ject, of course.

So, let's make our first project stick with the classic

“Hello World”. Actually, heck, let's be adventurous!

We'll make it write “Hello Flash!” in nice friendly

letters.

Go to your init() function just below the point

where it says “entry point” in comment marks.

This is where we'll be writing our code. “Why not

do stuff in Main()?”, you may ask. Well, Flash has a

few funny problems with initialising stuff before it's

properly added to the stage, and the Main instance

has to be added just like everything else. Don't

worry about this technicality too much – the code

stub provided will make sure that it automatically

adds itself before it does anything, so just stick to

that friendly little “entry point” reminder until you

know enough ActionScript to screw about prop-

erly.

Let's throw in the following lines of code:

 var myText: TextField = new TextField();

 myText.text = "Hello Flash!";

 stage.addChild(myText);

These lines, in order, do the following:

(1) Create a new reference to a text object, then

instantiate it. This means that somewhere in the

tiny little universe of your Flash project, there will

now be a little man with a sign pointing at some-

thing and going “Look! I've got a textbox here that

you can use!”

(2) We've just told the little man to go with a pencil

and etch something into the textbox – because it

doesn't have anything in it yet.

(3) Now we've grabbed our stage object and, as

mentioned earlier, added the text object as a child.

So now our little man is no longer floating around –

he's been put onto the stage to perform for a great

big audience, using his talents as a Professional

Textbox Tamer to wow the crowd. Amazing stuff.

29

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

Right, let's attempt a project build so that we can run this

thing. Go to Project > Build Project in the top menu.

Uh oh. Looks like the program threw some errors.

Fortunately, these ones are easy to fix. Go to the “im-

port” lines in your code again. Remember that it was

mentioned how these had this sort-of ability to extend

the command set of your program? Well, we need to

extend it now to recognise these text objects. S o write

this line with the other imports:

 import flash.text.TextField;

There we go! Try building the project again. It should

go without a hitch.

Once the build is complete, run your project.

Brilliant, you've made your first Flash application, and

you did it without loads of money!

As a final parting shot: tweaking some of the output

properties is really easy to do with FlashDevelop, and

you may want to remember these for future reference.

Click on the rightmost icon at the top of the Project win-

dow to get access to project properties. This will offer

various output options (and many other adjustments)

which developers should probably have a look at.

30

D
e

v
e

l
o

p
m

e
n
t

FL
A

SH
 F

O
R

 F
R

EE

Now, use this beginner's guide as a spring-

board, look up coding tutorials on the Internet

(make sure that they deal with ActionScript 3,

and not the Adobe Flash creator application

or something else) and learn how to create

your own Flash games like a pro. It's a fun and

rewarding language that, as you may soon dis-

cover, is powerful enough to do a great many

things and reach a whole lot of people. Happy

scripting!

At the end of the day

We’d like to thank DC comics and adobe for providing this opportunity. Sorry.31

t
a
il

p
ie

c
e

Th
e

D
ev

.M
ag

 T
ea

m 2009!
Celebrations! And a happy new year to all of our readers! With 2009 well on it’s way (can you

believe it’s the end of January already?) some of the Dev.Mag crew threw together some

thoughts and anticipations for the year ahead. We’re looking forward to many different

things that will be coming this year, but most of all, we look forward to sharing it all with you!

32

t
a
il

p
ie

c
e

2
0

0
9

!

Simon “Tr00jg” de la
Rouviere

My wish for 2009 is to see more exploration plat-

formers in the vein of Knytt. I love getting lost in

the ambient exploration of other worlds. I love

discovering interesting new environments and just

letting my imagination run loose on why the world

is like it is. If I were to develop one, I would centre

it on the idea of an old lost civilization/city. At first

you only see its ruins, but as you go on, you slowly

reawaken the city piece by piece to its former glory.

[Play Aquaria, wouldya? – Ed]

Rodain “Nandrew” Joubert

Independent Games Festival 2009
To be frank, the annual IGF should be on EVERY aspiring game devel-

oper’s froth-at-the-mouth list for 2009. Now in its 11th year, the Inde-

pendent Games Festival is a great showcase for most of the top indie

titles out there. In recent years, it has featured and honoured gems

such as World of Goo, Crayon Physics Deluxe, Aquaria, Audiosurf, Dar-

winia and Braid.

If you’re fortunate enough to be within reach of the IGF (March, in San

Francisco), snap up the opportunity to attend and ogle. For the rest ...

well, this year’s finalists have just been announced, so hike on over to

http://www.igf.com/ and check out the quality of the games fea-

tured. Chances are that you won’t be disappointed.

Robbie “Squid” Fraser

Going to study IT and hopefully acquiring some nifty programming

tricks. There, and with my new 360 controller, I can look forward to get-

ting involved with XNA and learning C#. There’s also the new possibility

of making some cash writing for cellphones (yay, monies!). Then there’s

rAge 2009, which promises to be an awesome weekend as always. I

also cannot wait to see more of SpaceHack, the game has loads of

potential and I can’t wait to see where it goes. Finally, the evolution of

Dev.Mag itself; the magazine keeps going from strength to strength. It’s

actually rather exciting.

Claudio “Chippit” de Sa

Xbox Community Games is the big landmark name for this

year, and you’ll probably be hearing a lot about it in the com-

ing months. We’re all anxiously awaiting the day when we

can gladly and truthfully say that a Game.Dev creation is

available for sale on a worldwide scale; whether this game

is SpaceHack or Ultimate Quest (or another local project) is

irrelevant, or, in fact, whether it’s on XBCG or Steam, or any

other distribution platform available to a wide audience yet

accessible to indies.

Tied in with that is anticipation for DreamBuildPlay 2009.

We’re hoping to see an even greater Game.Dev presence

there this year, and many plans for projects are already float-

ing around long before the start of the competition. Are we

getting ahead of ourselves? Probably, but we don’t care; we

enjoy it so much.

What they
have to say

about it

2009!

33

http://www.igf.com/

34

35

www.devmag.org.za

FEAR COUNT:

We managed

to terrify 5

people this

month.

3 children.

36

	2 - Home
	3 - Editorial
	4 - News
	5 - Opinion
	6 - Feature
	10 - Review - PAA
	13 - Review - Iji
	17 - Review - Killerworm
	19 - Dev - Collision
	24 - Dev - Flash
	32 - Tailpiece

	Button 84:
	Page 1: Off
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:

	Button 72:
	Button 73:
	Button 64:
	Button 74:
	Button 63:
	Button 75:
	Button 76:
	Button 65:
	Button 77:
	Button 66:
	Button 78:
	Button 67:
	Button 79:
	Button 68:
	Button 80:
	Button 69:
	Button 81:
	Button 71:
	Button 82:
	Button 70:
	Button 83:

