
1

INSIDE: Our DreamBuildPlay Entries blown open: Ultimate Quest 2 and SpaceHack O We look at part
two of Quadtrees O Reviews: World of Goo O Roaster Toaster O DinoRun O Multiwinia O Part

2 of our Game.Dev Competition retrospective

Issue 27 November 2008

They’re here...

2

Features

REGULARS

Tailpiece

Part 2 of our Competition retrospective looks
at the last 10 challenges! SHEEP PUNS!

Reviews

3

38

Some say you can’t run away from your own demise...but there’s
mutton’ wrong with trying!

4

Development

Mr Tulleken shepards us in the applications of Quad Trees in part 2 of
this very informative tutorial

Oh dear! Nandrew is at it again! This time he’s pulled the wool from over
his eyes and gave into peer pressure! Scandal inside!

Toast roaches! Roast Toaches! Ram them if you have to! But whatever
you do - kill them dead. Now with added controversy!

We unpack the first of the DreamBuildPlay entries, and find a lot of
sheep!

Our second DreamBuildPlay entry bleats any preconception you might have
about top-down hack ‘n slash shooters. Did we mention it’s in space?

Controlling our favourite flatties as they battle it out can amount
to nothing more than shear pleasure!

5

9

28

16

18

22

24

3

COMBINE Orange and Duck.
“There are only two ways that combining
these two objects is possible, and neither

of them are particularly comfortable for the
duck. So let’s rather not, then.”

So DreamBuildPlay is
over. Unfortunately, neither of the Game.

Dev offerings placed in among the finalists (we

needed more sheep, evidently), but the experi-

ence both teams gained from the journey will

likely prove more valuable than any prize we

could’ve won from the competition. We’ve creat-

ed the first two complete Xbox 360 games in the

country, both of which were proudly on display

at the rAge expo held last month for people to

see and play.

This is a major stepping stone for recognition of

our fledgling industry in a more global light. Both

these games have the potential to be released on

the XNA Community Games service (which will

likely be live by the time you read this), both for

personal profit (yay, making money for the stuff

we love doing!) as well as the subsequent ac-

knowledgement.

Other than that, things are pretty much as normal

here. I apologise that we’re a bit late this month,

something for which I am mostly to blame. Other

responsibilities meant that most of my Dev.Mag

time was otherwise occupied. That is also partly

the reason that there is no Blender tutorial this

month. Additionally, there will be no Decem-
ber issue of Dev.Mag, with that month being

our traditional break. Rest assured, we’ll be back

in mid-January.

Now to this month’s content. The highlight of

the month is our promised double-feature on the

Game.Dev DreamBuildPlay entries, chronicling

the journey and lessons as they happened. We’ve

also managed to snag copies of 2DBoy’s World

of Goo and Introversion’s Multiwinia for review.

Things are tied up at the end by the conclusion

to our Game.Dev Comp roundup on the final 10

competitions.

Oh, and sheepies!

~ Claudio, Editor

FARMER
Claudio “Baah” de Sa

SHEPARD
James “Ram” Etherington-Smith

SHEARER
Quinton “Ewe” Bronkhorst

SHEEP
Rodain “Quack Quack” Joubert

Simon “Lamb Chop” de la Rouviere
William “Possibly not a sheep” Cairns

Danny “Rock the Flock” Day
Andre “Mary had him” Odendaal
Luke “Bleating the Cold” Lamothe

Gareth “Ate one for dinner” Wilcock
Sven “Woolyspoon” Bergstrom
Chris “Woolen Mittens” Dudley

Herman Tulleken

HOUSEKEEPER
Robbie “Shear the fun” Fraser

FARMHOUSE
www.devmag.org.za

POSTBOX
devmag@gmail.com

This magazine is a project of the South African
Game.Dev community. Visit us at:

www.devmag.org.za

All images used in the mag are copyright and
belong to their respective owners.

4

Flash development tools abound

http://www.mochiads.com/resources/

http://www.kongregate.com/labs

Interest in Flash development grows with every

excellent offering that is produced for it. Many

sites attempt to harvest potential new developers,

and there are two new contestants on the block.

Firstly, Mochiland, a development community that

showed people ways to make money out of their

games, has assembled a large host of valuable

flash development resources on their website in

an attempt to help new developers get started.

Secondly, the popular Kongregate flash portal has

created their own basic game development tool

under Kongregate Labs. It seeks to increase inter-

est flash game creation by simplifying the process,

as well as offering ‘new developer’ prizes as incen-

tive.

New Lost Garden prototyp-
ing challenge

http://lostgarden.

com/2008/11/fishing-girl-

game-prototyping-challenge.

html

Lost Garden has just launched their

new prototyping challenge, this time

involving a casual flash game. The

premise of this competition is quite

simple, yet, as always, the execution

thereof will be of great importance.

The post details the play dynamics

of a fishing game, and Danc hints

that it may be somewhat related

to the Mystery Project he’s started

with developers in his local area. As

always, artwork for the game has

been included.

Soundsnap hosts gargan-
tuan sound library for free

http://www.soundsnap.com/

Soundsnap, a free community based

sound-effect site with a library of

nearly 100 000 sound effects (rang-

ing from weapon sounds to music

loops to ambient effects) was re-

cently launched. It is entirely com-

munity driven, with all sound effects

available created or recorded by its

members. The site contains var-

ied and high-quality audio samples

which will be invaluable for game

developers, and is a site that should

reside in every developer’s resource

bookmark list.

http://www.soundsnap.com/
http://www.mochiads.com/resources/
http://www.kongregate.com/labs
http://lostgarden.com/2008/11/fishing-girl-game-prototyping-challenge.html

5

Your Wallet has been stolen!

We’ve come a long way, crafted what is probably the most complete game I’ve ever cre-

ated in under 3 months, entered it into a huge, global competition, and came away sane and

with a product that we’re proud of. Are there better ways to spend sleepless months? Probably,

but few of those result in such a sense of accomplishment as seeing groups of strangers, gam-

ers and non-gamers alike, playing your game in the largest expo in the country. And laughing

and having fun.

Claudio “Chippit” de Sa

6

So we’ve achieved what we sought to do, and learnt much in the process of

getting here: The value of development tools in larger projects (like our UEdi-

tor), the massive benefits of working in a group, quite a few intricacies of

puzzle design, and the practice of iterative design. And, of course, the general

experience gained from creating an entire Xbox game from scratch.

But let’s go back to the beginning, soon after we decided to work on UQ for

DreamBuildPlay. We had the original game, which we believed was successful

enough, and now we had a new challenge of making it work on the Xbox. The

largest obvious challenge was the completely different control scheme. We

couldn’t use a text parser input or the traditional point and click systems that

worked so well for the PC adventure games of old, since both of these would

be incredibly awkward on a 360 controller.

We eventually settled for a system not unlike that which was used in the later

LucasArts adventures Grim Fandango and Monkey Island, where the avatar’s

position is essentially your cursor and the player can only interact with ob-

jects in the avatar’s immediate vicinity. In our system, nearby objects were

highlighted and placed in a ring around the player for selection by the user.

We added an additional twist into the mix by giving the player the ability to

highlight all objects on the screen that are interactive, regardless of distance

to the player. This essentially removed all artificial ‘pixel-hunting’ challenge

that some adventures used to ramp difficulty and required us to adjust our

puzzle design accordingly. We couldn’t hide things in obscure places on the

screen to make our puzzles harder, so we had to add additional steps and/or

complexity to the puzzles in order to achieve the same effect.

7

As it turned out, however, our puzzles ended up too difficult because of this. With
both Azimuth and I being a more veteran adventure gamer crew, the puzzles
we did have made the difficulty curve a rather formidable obstacle. One of the
largest focus points we have at the moment is to include simpler puzzles at the
start of the game so that players aren’t immediately stuck without any idea of
what to do. There is little more frustrating for a player than to be overcome by
a game’s difficulty right from the start, and this is something we urgently need
to address.

Once we had a control scheme we believed could work, I started on a prelimi-
nary version of the game tile engine and what eventually became the UEditor. At
the time, it was simply a tile map editor, but I quickly worked on ways to make it
easy to use, allowing it to place pretty much anything we needed on the map, in-
cluding interactive and static world objects. Eventually, it grew into the tool we’d
also use to craft and test in-game dialogue as well. The dialogue editor used a
flexible and powerful tree-based system, which could also control special game
events and access persistent in-game variables and even player inventory items.
Essentially, all actual in-game content is created almost exclusively in the edi-
tor, which made the entire game extremely modular and easy to extend. Levels,
complex merchant dialogue, action responses and more were all crafted from the
UEditor and imported directly into the game.

The graphical style of the game underwent some of the most drastic iterations.
Initially we settled for an 8-bit pixel-doubled style as something of a homage to
old Sierra titles. Difficulties coupled with a few concerns about the general ac-
ceptability of something like that led us to a slightly higher fidelity graphical style
and then, eventually, to the painted style we finally settled on. The transition
between the different iterations took place over quite some time, and the final
change was rather a bit too close to deadline for my personal liking. However,
seeing the final product look like it does did vindicate the effort.

8

All the framework and testing and design con-

siderations took a considerable amount of our

3-month deadline. In fact, it was only when the

deadline counter started ticking past 3 weeks

did we realise that it was time to create an

actual game. By this point, we had a frame-

work for level creation, most of the requisite art

assets and the underlying engine that would

power everything, but we didn’t actually have

any game content or puzzles. The last 2 weeks

of the deadline were spent in a frantic rush to

make a fairly complete offering for the compe-

tition, as well as clearing out all the bugs that

reared their heads.

At this point we looked to the original UQ pro-

totype extensively for inspiration on setting

and puzzle designs. Many of the puzzles were

adapted and extended from the original ones.

We lengthened many of the originals, adding

extra sub-puzzles and layers of complexity in

the mix. The result was a collection of puzzles

that were quite devious and very much in the

traditional adventure game spirit, with many

convoluted solutions that we hope are fun to

solve, even if they may be a bit too challeng-

ing to stand on their own without some sort of

training puzzles for preparation. The game was

essentially two meta-puzzles: The first involved

getting money for your character to use to pur-

chase goods at the store, and the second was

to get membership into the adventurers’ guild.

Each of these was achieved by solving a web

of smaller puzzles that would eventually lead to

the primary solution.

By crunch time, we had completed a game that

was quite a bit longer than the original proto-

type, with a far more flexible dialogue system

and engine powering it. There were still bugs

to work out and testing to be done, which took

up most of the last two or three days (thank

the heavens for the deadline extension, both

because of this and because of upload difficul-

ties), but the game was in a more complete

stage than anything I’d made before, and we

were proud to submit it to DreamBuildPlay.

But, as much as I’d like to say the journey is

over, we’re now planning to work hard to get

this game in a complete, sellable form so that

it can be placed on XNA Community Games

(which launches near the end of November

for all Xbox Live members) as soon as we can.

There are quite a few things that need to be

done to achieve this: A rework of the initial

puzzles and tutorial sections to make the game

simpler, rich Marketplace and Live features (like

a demo mode and user presence information),

and general tweaks to improve playability. We’re

confident we have something we can sell and,

in fact, hope to use the game and the resultant

engine as a stepping stone for future adventure

titles on XBLA.

9

“SpaceHack is a Hack-and-
Slash, Rogue-like top down
shooter. In space.” I have lost

count of the number of times I have

uttered that phrase in the past few

weeks. Add the number of permu-

tations (like adding SHMUP or men-

tioning Bullet-Hell if the person I’m

talking to looks like a gamer) and

I’m surprised I still feel enthusiastic

about the game at all. I always for-

get to emphasise the random gen-

eration of EVERYTHING aspect…

Danny “dislekcia” Day

10

 But, hand-in-hand with most of those

explanations have come the smiles of

people playing our game for the first

time. Exclamations of surprise; coos

of “cool” at the enemy shapes the gen-

erators create; screams of triumph and

defeat. All of these blend together into

one simple message: People are having

fun with this; they’re enjoying some-

thing we feel isn’t done yet, so we have

to be on the right path here.

 Along with that enjoyment comes the

interest. People take notice when your

indie game runs on an Xbox 360. They

take even more notice when you drop

in choice phrases like “infinitely replay-

able” and “randomly generated story.”

SpaceHack has opened a lot of doors

locally – doors that I plan to keep wide

open to the rest of the stuff that will

emerge from Game.Dev. SpaceHack

and Ultimate Quest are but the first of

many. But I’m supposed to be talking

about our game, so I’ll reign in the big

picture stuff and start again.

 SpaceHack began as two things: A

racing game; and a random ship gen-

erator for a grandiose space opera in

the vein of Starcontrol 2. I’ll look at the

racing game first because it’s the least

intuitive.

 At some stage late in my university ca-

reer (so we’re heading back to the scary

days of late 2004 here folks), I had an

idea for a 2D racing game with a differ-

ent control scheme: Instead of having a

player steer a car via discrete full left/

right and complete brake/accelerate bi-

nary key-presses, why not have a player

control a car’s orientation on the road

absolutely via the mouse? That would

be an analogue turning system, provid-

ing much more control (I feel that a

controller’s analogue options make driv-

ing games much better). If the player

kept smoothly dragging the mouse in a

direction, they’d corner accurately and

responsively. If they jerked the mouse

right or left quickly, the car would go

into a drift and behave differently, lead-

ing to gameplay possibilities via the con-

trols. The idea was to have angles that

caused the car to “let go” of the road,

so drifting and spinning would be very

important parts of the game.

11

 I started prototyping the idea and quickly got

a system going where the player’s car would

be stationary on the screen and the entire map

would rotate around the car according to the

motions of the mouse. I ran into issues with

the car physics though, and my impetus quickly

ran dry. Sarcastically, I added a shooting capa-

bility and a few arbitrary targets and filed the

prototype away as yet another of those rainy

day projects that could take some work when

the inspiration to do something new was lack-

ing. I revisited it a few times over the next few

months, adding a star-field for grins and at one

point spending an enjoyable few hours coding

Robotech-style missiles just to see if I could.

Everyone liked the missiles. That went into the

book for later.

 Around the same period, I was spending non-

digitally enabled time writing down story ideas

for a Starcon 2 style game, on actual physical

paper. I was doing a lot of travelling due to my

then girlfriend’s family – marriages were going

down, people were hitting important age mile-

stones, that sort of thing. So there was lots

of sitting around in hairdressing salons and idly

daydreaming about galactic civilisations, the

rise of sentience and the stabilising effects of

odd anomalies like the Earth’s moon, punctuat-

ed by obligatory “ooh’s” and “aah’s” at the lat-

est sculpted and flower-adorned majestic head

ornamentation.

 Once people got used to the idea of being mar-

ried and the rampant ageing had calmed down,

I got back to my regular base of operations and

decided that I hated doing art for games and

this dramatic space opera would require far too

much of it. So I started messing with algo-

rithmic approaches to generating spaceships.

Prototyping revealed that the simpler methods

were best and the people that saw the resulting

collections of polys were amazingly quick to give

them recognisable characteristics: Calling them

squid-like or crab-like as often as they observed

that this particular one should belong to a race

of robots. Both the huge galactic story and the

random generation prototypes promptly went

into the Big Stack of Game Ideas™ and didn’t

go anywhere for a while.

 Now, I think it bears explaining that I am

a Hack-and-Slash aficionado. I loved Rogue

and ADOM. I have a MUD character with 4000

hours of existence. I played Diablo to death.

Diablo 2 destroyed more hours of my life than

I am ready to admit to yet. Darkstone, Fate,

Sacred and eventually Titan Quest all scratched

that itch. I’d always had ideas around a H&S of

my own, but never any real foundation to build

on, until one day the racing game prototype

stuck in my head during a Game.Dev organised

DevLAN about procedural generation. Why not

take that control scheme and build an action-

heavy H&S designed to be played to comple-

tion in short sessions? Similar in execution to

PlasmaWorm’s Strange Adventures in Infinite

Space (play that game if you haven’t already

done so).

12

That would serve as the germ concept that

eventually became SpaceHack. Every once in

a while I’d add to the game a little, driven by

inspiration, or a session of “what if the game

was already done, what would it do?” mental

masturbation. That’s how SpaceHack got its

unique elements: things like combining skills

and items into items with branching upgrade

trees to streamline the play experience, but still

give players that thrill of random drops, and

customisable upgrades with options to explore

differently next game; or the weapon preview

scene, to show players exactly what a newly

acquired item would do when either equipped

or upgraded, (that way it wouldn’t need huge

and possibly ambiguous, or worse, confusing

text descriptions that bothered me in other H&S

games).

 That was why I picked the concept as my

entry into the first DreamBuildPlay competition

in 2007. I wanted to make it a console game

and the idea (then called Void Escape because I

suck with names) really made sense in the con-

sole space – a platform devoid of a good H&S

for me to play. DBP proved a perfect excuse to

test out my ideas on procedural generation in a

wider setting – the game would need randomly

generated maps, events, enemies, weapons

and there was even scope for a random story

system. But as things turned out, time was

not kind to me. A design contract went a little

south earlier in the year and meant that not

only was I struggling to pay for food for a while;

I was also limited to just under 4 weeks to fin-

ish Void Escape before the DBP deadline.

 I cut features like crazy and used everything

I’d already learned about .NET from my pre-

vious DirectX 9 work, but it wasn’t enough

to get anything nearly complete out there. I

slept roughly 14 out of 120 hours in that final

crazy stretch before submission. Void Escape

didn’t place anywhere, but it did lay the engine

groundwork for a lot of what would eventually

become SpaceHack.

 That November when I started my company,

Quarter Circle Forward, to formally take over

from my previous contract-based consulting,

DBP 2008 was on the company schedule as

something we were going to do. Whoever “we”

ended up being at that point. Ideas for the next

competition entry constantly spiralled their way

into my design file: a much expanded Mono-

chrome with a film noir story and multiple end-

ings; a good way to do RTS on console natively

instead of porting mouse/keyboard issues; a

bevy of puzzle game concepts that I hadn’t

seen done anywhere else; numerous game me-

chanics inspired by, or hinted at in other games

I played during that period.

 The part of the file marked “Possible DBP”

grew large. Thus it was that in May 2008, when

my longtime friend and nearly-longtime house-

mate Marc “Aequitas” Luck quit his job to live

off his savings and finally make games, Dream-

BuildPlay was high on the list of what we talked

about.

13

When the competition was announced

in June 2008 and the theme complete-

ly failed to help us make what had be-

come an increasingly difficult decision

as to which game to do, we ended up

choosing Redshift. What better way to

make a splash as a small studio than to

finally make a workable console-based

RTS? We began working: Aequitas was

tasked with learning about shaders and

getting his teeth into XNA, while I built a

map system that would index by time as

well as position and started on the scene

framework we’d need for the game.

 Aequitas made good progress. This

was his first real game project (sure,

he’d been to DevLANs before and pro-

duced the odd Game Maker prototype

while there, but this was in a completely

different league), so there was a lot for

him to get up to speed on. 3D program-

ming in particular, hence being set the

mission to understand shaders – I’d

worked with him at university before, so

I knew he was up to the challenge. And

up for it he was; pretty soon we were

attempting to write shaders that would

draw the smooth curves we’d need for

unit prediction paths in the game – he’d

supply the shader code and I’d work on

the math.

 A few weeks passed and we learned a

lot, but made very poor progress. Red-

shift just didn’t feel like it was gaining

any momentum at all. I was running

into a lot of stupid issues with the en-

gine (at one point I simply couldn’t get

textured quads to render correctly at all,

yay), and our forays into parametric line

shaders proved only marginally reliable.

It was time to re-evaluate the entry and

see what we could get done realistically

in the time we had. Void Escape and

Monochrome started dominating our

conversations, but most of the people

we asked still liked the sound of Red-

shift. We were right back to where we’d

started, unable to reach a decision…

 After a rather bad day we gave our-

selves a week to mess with Void Escape,

see what kind of progress we made, and

pick our best shot at the contest that

weekend. We never went back to Red-

shift after the first couple of days. Void

Escape was renamed and just didn’t

have the bottlenecks that Redshift’s de-

sign did; building on an already work-

ing (if horribly incomplete and limited)

proto-system made all the difference in

the world. Every time I wanted a spe-

cific type of functionality in the engine or

scene system, I’d start working on coding

it, only to find out that I’d already done it

a year ago in that sleep-deprived death

crunch. Plus, I apparently still comment

under pressure, so I wasn’t lost in the

code at all. There were some glaring

omissions, like a relative-to-parent po-

sitioning system for objects attached

to other objects, but congratulating my

previous self’s foresight became a habit

as we got further into development.

14

Working with someone else on the proj-

ect is what made SpaceHack possible.

Aequitas really proved himself in those

short months. I started off handing him

tasks with the idea that I’d take his out-

puts and integrate them into the game

and engine myself, but after I spent

nearly a week optimising some slow-

downs with my quadtree implementation

and was too busy to really pay a lot of

attention to his work, he ended up in-

tegrating the entire particle system by

himself – quickly turning it into one of

the fastest parts of the game. I levelled

up my management skills and let him get

on with what he needed to do. Our pre-

vious theoretical game design ramblings

proved invaluable at this stage: he would

get what I was going on about and not

only figure out what I would need pro-

grammatically to get it done, he’d add

his own understanding to that and pro-

duce stuff that could logically do more

without getting dangerously stuck in fea-

ture creep.

 Aequitas understood SpaceHack from

a player’s perspective instantly; we knew

how the other spoke about games, which

meant that there was (and still is) no de-

sign document for the game. We had a

few dedicated design sessions to handle

story or broad thrusts of enemy design,

but in general most of the game evolved

organically from the core concepts as

they started coming to life. We’d discuss

the game on the fly and things would

just magically emerge as cool and func-

tional after that. On top of the shad-

er-heavy implementation code, like the

particle system (when he showed me 40

000 particles onscreen simultaneously,

all animating independently without any

slowdown I freaked out a little), or the

geometry instancing that we ended up

doing to kill a hitch we were getting with

enemy bullets (of which there are usually

MANY), Aequitas turned the preview sys-

tem from theory into reality and handled

all of the enemy and boss firing patterns

while I worked on the random systems

and eventually player items and story.

 I think the only regret either of us

has regarding the game is that we want

there to be more of it! The random

generation systems that populate the

game-world with maps for the player to

explore, put enemies in those maps and

give the player a story to follow currently

only have a fraction of the content we’d

like them to have available. The version

we submitted to DBP has over 80 boss

and enemy behaviour segments (which

the game combines in any order accord-

ing to heuristically determined difficulty

levels that depend on how well the play-

er is currently playing), roughly 30 story

events (unfortunately only 1 major story

arc though; the nanomachine one didn’t

get done in time), and over 40 player

items to find or unlock.

 So while the generators can take all

that content and produce a game that

is already very replayable and different

each time (it takes an average of 3 plays

through the game to see everything that

can happen and many more than that to

get all the items at least once), we had

to cut tons of ideas and neat things we

wanted to do because we simply didn’t

have time. Pretty much all of the game-

play in the DBP demo version of Space-

Hack was done in the last two weeks as

individual segments, and is turned into a

playable game on the fly as you’re play-

ing it. We want another few months to

first produce editors for each type of sys-

tem (story, enemy, player item) and then

build as many objects in each as we pos-

sibly can so that you’ll be able to fire up

the full version of SpaceHack and play it

a hundred times and get a different ex-

perience every time.

15

 But there will always be missiles, because everyone likes

missiles... Yes, there will be a PC version eventually. But first

we need to figure out how a small studio doesn’t go bankrupt

if you don’t have cool stuff to sell on eBay.

16

Run, Dino, Run

Nothing quite gets the blood pumping like taking a jog through the coun-
tryside. There could be many reasons why one would choose to do this: it could be to lose

weight; it could be to get fit; or it could be to avoid the complete and utter obliteration of

your species.

“Like taking a jog through

the countryside to avoid the

complete and utter obliter-

ation of your species.”

Chris “LionsInnards” Dudley

17

In Dino Run, the player takes control of a

small, yellow, raptor like critter that was

enjoying a beautiful day of sunshine, frolic

and fun – up until the giant meteors start-

ed to pummel his homeland. Now he’s

desperately trying to find shelter to avoid

the unstoppable cloud of gaseous death

that threatens to cause his extinction; and

the game tasks the player with getting him

there.

 Developers Pixel Jam, have created a

little time machine here: a jaunt back to

the days when difficulty stood for some-

thing other than how many shotgun blasts

an enemy can take to the face; when

“open ended” meant that one of the sides

had fallen off your arcade machine; and

an economic crisis was when you had run

out of pocket money. It harks back to the

glory days of Sonic – memories of rush-

ing through the stages as fast as possible,

grabbing rings out of the air and basking in

the glorious speed will come rushing back.

 It is a refreshingly straightforward game,

one that has no ambiguity or deeper mean-

ing, no next-gen shine and no ambitions

to re-invent the wheel. It is pure, unadul-

terated fun, which will simply eat away at

the player’s time as they speed past the

obstacles and race to the end of the level.

And that’s exactly what it is: a race. As the

player skips and jumps through the decep-

tively detailed levels, an unmerciful cloud

of death tries to catch up to you and put an

end to your fun. The feeling of panic that

grips the player as the screen turns dark

is intense; the rumbling of the cloud fills

them with dread as they try to scramble

away over the rocks to safety.

 The gameplay is almost flawless. A few

minor gripes about slightly sticky controls

occasionally rear their heads, but are im-

mediately shushed by all the other awe-

some things that make this game truly

special. Levels in which the dinosaurs form

part of the structure of the terrain; the way

the developers have included little touches

such as dinosaurs drowning in tar pits (al-

though it is hard to feel pity for them, as

the player needs to hop on their helpless

heads to survive); and the numerous game

modes that cater for quick and easy play

show the amount of effort put into this title.

There are many different unlockables to be

gained by replaying the levels, secrets to

find and critters to munch; so multiple play

throughs are a must.

 It’s a game that shows that when a

core concept is fun, it doesn’t need Triple-

Whammy-Game-Feature-X. It’s polished,

it’s retro, it’s challenging and fun, and it

has dinosaurs. What more motivation

could there be?

18

Anybody who's played Introversion's seminal strategy/action game Darwinia will know the joys of having thousands of little flat men marching

across the map in a long green column, leaving the glittering red digital souls of dead viruses in their wake. It could be assumed that two or

more such armies colliding would make for one epic battle. Well, it seems that Introversion agrees, because (as our preview in Dev.Mag 25

revealed) they've been hard at work on Multiwinia, a brand new stand-alone multiplayer pseudo-sequel to Darwinia. So now that it's finally

been released, how does it measure up?

Gareth “Gazza_N” Wilcock

NEWS FLASH!
As of October 14, Introversion has

released Patch 1.1. This adds sev-

eral fixes and features to the game

that were missing in our review copy.

These include the addition of the lob-

by chat and game passwords that we

complained about in the review. Now

you good folks have no reason not to

play this game. GOGOGO!

19

 The premise behind the game

is fairly simple. The Darwinians,

a race of self-improving virtual

beings created by Dr. Sepulveda,

have evolved even further since

the events of Darwinia. Unfortu-

nately, dwindling resources have

led them to go the way of all sup-

posedly intelligent beings: they’ve

split up into differently coloured

factions of “Multiwinians” and

have started blowing each other

into pixellated chunklets. It’s up

to the player to take control and

lead their group of Multiwinians

to victory, either against friends

on the Internet, or against the AI

in single-player.

 The game is broken up into six

different modes, each with vary-

ing objectives. These consist of

Domination – the objective is to

capture the most spawn points

across the map. King of the Hill –

the player must hold circular con-

trol areas on the map to generate

points. Capture the Statue – a

CTF variant using giant statues

that require multitudes of Mul-

tiwinians to transport. Blitzkrieg

– each team must sequentially

capture and hold a series of flags

leading to the others base. As-

sault – teams must alternately

attack and defend an objective

on the map. A unique mode,

Rocket Riot – the player captures

and holds solar panels across the

map until their giant rocket is fu-

elled, filled with 100 Multiwinians

and launched before the oppo-

nents can launch theirs.

 There’s plenty of variety in the

game modes to cater for any

player, from simple kill ‘em all

slaughter fests to more complex

challenges. All game modes are

time limited, meaning that from

the moment a match begins it’s a

frenetic all out race to complete

objectives, or at least get ahead

of opponents, before the clock

hits zero.

 Multiwinians are used to ac-

complish pretty much everything

in the game world. They are

injected onto the map at set in-

tervals, either via large station-

ary portals, or at player-captured

spawn points scattered across the

level. In some modes, captur-

ing and holding additional spawn

points is vital to success, as the

more spawn points controlled,

the more reinforcements received

each spawn cycle.

 Control of the Multiwinians

comprises exclusively of move-

ment orders. Don’t despair over

this supposedly limited control,

however; the Multiwinians them-

selves are fairly autonomous, and

once in position will automatically

and intelligently attack enemies,

man machines, open crates, and

generally interact with anything

of interest within close proximity.

Multiwinians can be manipulated

individually, in small groups (using

an expanding selection circle), or

can be guided en masse by con-

verting a single Multiwinian into

an officer through a simple right-

click. Officers, in turn, have two

functions: they can act as non-

mobile pointers, directing any

nearby Multiwinians to a location;

or they can gather Multiwinians

into a mobile squad, which will

follow the officer around the map

in tight formation. Squads allow

concentrated firepower and better

coordination, but also move more

slowly, are less autonomous, and

are highly vulnerable to rear and

flank attacks.

20

Their tightly-packed configuration

also makes them prime targets

for the grenades of non-squad

Multiwinians. All in all, control is

tight and effective, allowing you

to quickly get massive hordes of

Multiwinians to where you need

them to be, while still allowing

precision tactical control where

necessary.

 At this point one could be for-

given for thinking that Multiwinia

is nothing but a game of logis-

tics – capturing spawn points and

setting up officer driven ‘supply

routes’ to the front lines in such a

way that the enemy is eventually

overwhelmed. Whilst the game is

primarily based on that concept,

Introversion has decided to throw

in a little something extra to spice

things up: supply crates. Not

unlike the classic Worms, these

crates are para dropped random-

ly around the map as the match

progresses. Once opened by a

group of Multiwinians (the larger

the group, the faster they open),

crates provide the player with one

of a vast selection of randomized

powerups that can easily turn the

tide of battle if used correctly.

These can be anything from sta-

tionary gun turrets, APCs and per-

sonal shields, to a nuclear missile

barrage which, hilariously, makes

direct reference to Introversion’s

own DEFCON.

 Unfortunately, crates can also

contain nastier surprises such as

viruses or other more elaborate

hindrances to your war effort.

Some may complain that the

crates unbalance the game, but

the dynamism and unpredictabili-

ty they add lends a unique flavour

to each match, forcing players to

adapt their strategies and think

on their feet every time they play.

The game also provides the op-

tion for crate drop locations and

spawn quantities to be balanced

in favour of the underdog, mean-

ing that losing players can be giv-

en a fighting chance should they

find themselves the victim of one

too many meteor showers.

 Asides from one or two minor

path finding issues with squads,

the only major criticism that can

be levelled at Multiwinia, oddly

enough, has nothing to do with

any of the usual suspects. It’s

the lobby system for multiplayer.

While setting up games is dirt

simple, the lobby system lacks

any form of chat or password

protection. Not only does this

mean that random people tend

to unintentionally blunder into a

game intended to be private, but

one is unable to tell them so. We

were forced to discuss game set-

tings over IRC, or via the in-game

chat (yes, there is in-game chat,

mercifully) once each match had

ended. We also found that people

with more unorthodox network

“The dynamism and unpredictability lends a unique

flavour to each match.”

21

setups were unable to connect to

multiplayer games at all, which

was somewhat unfortunate. For-

tunately, Introversion has con-

firmed that they're working on

these niggles, and that they'll be

fixed in an upcoming patch.

 Lobby hassles aside, Multiwin-

ia is exactly the kind of enjoy-

able yet unorthodox experience

we've come to expect from In-

troversion. Hardcore players of

strategy games may scoff at the

supposed imbalances produced

by the supply crates, but those

willing to accept Multiwinia for

the casual arcade-like romp it is,

will reap hours of enjoyment from

it. Multiwinia is slick, polished,

quirky, and above all, enormous

fun. Highly recommended.

“Multiwinia is slick, polished,

quirky, and above all, enor-

mous fun.”

22

Roach Toaster

There comes a time when a gamer requires a certain type
of game. They have work to do, its demand to be completed buzzing

at the back of their head like an overzealous mosquito. They know it

must be done, but before they can start they just have to play some-

thing, anything, to quench their game-parched thirst. They need a game

that can be played for short bursts or extended periods and remain

constantly fun. They need a game that is satisfying, challenging and

entertaining. They need a game that involves shotguns, killer roaches

and references to David Hasselhoff in a bikini.

“Those in the mood for

a minesweeper replace-

ment should look up

RoachToaster.”

http://www.shotbeakgames.za.net/RoachToaster.zip

Chris “LionsInnards” Dudley

http://www.shotbeakgames.za.net/RoachToaster.zip

23

 That game is Roach Toaster – a creation by

Game.Dev community regular Simon “Tr00jg”

de la Rouviere, and a competitor for the “Most

Likely To Get You Fired For Being Played At

Work” award. Roach Toaster has similarities to

both Minesweeper and Tower Defense; the first

in terms of its casual appeal, the latter for its

emphasis on smart decisions and planning. As

the concise tutorial informs you of what you

need to know, it becomes apparent that this

is in a genre of its own. The premise is simple

really: roaches are invading and the player is

asked to dispatch them by strategically placing

different classes of gun wielding soldiers onto

the gameplay grid, in the path of the roaches.

The rapidly swarming vermin multiply to fill all

grid spaces around them, so some forethought

as to where they might be headed is a good

idea. The game’s complexity becomes appar-

ent when the player is introduced to the cur-

rency and playable area systems.

 Any feelings of being overwhelmed will dissi-

pate soon enough. Once the player has played

a round or two (which generally last between

five and ten minutes – great for a coffee break)

the basics seem natural. Before long, players

will master setting up defenses, forming block-

ers and clearing out roach holes. Amusing di-

alogue boxes add a bit of story and humour

to the levels, and subtle changes to the level

structure force adaptation.

 The few flaws that occasionally rear their

head are frustrating, but rarely game breaking.

Occasionally the AI will get confused and do

odd things, like firing at a wall or ignoring an

approaching army, but this happens very rarely.

A couple of other minor issues will undoubt-

edly result in some nasty words being uttered,

but are outshone by the sight of the final roach

being gunned down, or a well planned assault

working out perfectly. Those in the mood for

a minesweeper replacement should look up

RoachToaster. The rewarding action, silly writ-

ing and included level editor make this indie

title shine above the rest.

“Gamers need a game that

involves shotguns, killer

roaches and references to

David Hasselhoff in a bikini.”

24

World of Goo
I must admit, I've been a philis-
tine. I played the original Tower of Goo

back when it was on Experimental Game-

play and thought that it was entertaining

enough. It didn't blow my mind or any-

thing, but it was worth the time spent

playing and I gave it a mental ‘thumbs

up’, before moving on to the next funky

prototype in my “To Play” list.

Rodain “Nandrew” Joubert.

25

A while later, I heard about World of Goo.

My friends were going insane about it – the

game had gone mainstream, it seemed.

They pleaded, cajoled, threatened and wept

in their efforts to get me to play it, but I just

shrugged my shoulders and said, “It's an-

other physics game. Maybe I'll get around

to it later. Maybe.”

 Today, I shed gooey tears of remorse when

I consider my doubting ways, because World

of Goo really is one of the best titles I've

played recently. This game is a raw, sticky

delight from beginning to end – a master-

piece consisting of gooballs, wicked humour

and some really neat backing music. Com-

bine this with nice physics, inspired level

design and a visual identity which looks like

Tim Burton's take on a Worms game and

you have a squishy, stretchy masterpiece

which towers over the competition.

 Throughout the game, the basic prem-

ise remains the same – the player given a

bunch of gooballs and the job is to connect

them with one another to form a structure

that can reach a pipe at the end of the level.

Any gooballs that aren't used in your con-

struction go into the pipe. If enough of the

little globs have been gathered, the level is

won.

World of Goo doesn’t stop there though.

Different species of gooball are introduced

as the game progresses, each one with

their own particular perks and drawbacks.

Some require fewer bonds to form struc-

tures. Others float. Some can even catch

fire. And others are, well, others just really

need to ease off on the makeup.

 Environmental obstacles also play an im-

portant role. High barriers, spinning blades

and the ever-present Pits of Doom™ keep

players on their toes, and make for a set

of interesting challenges without becoming

frustrating. Smooth play is facilitated with

the presence of little “time bugs” on some

levels. These critters exist in a limited quan-

tity and allow players to go back in time by

one move, removing that ever-dreadful ex-

perience of, “Oops, I made one bad move

after placing hundreds of gooballs, and now

I have to start everything all over again!”

Thank you, developers, for this small kind-

ness extended to end users.

“High barriers, spinning blades

and the ever-present Pits of

Doom™ keep players on their

toes.”

26

 If I were to stop slobbering over this game for just one moment to critique

it from a game development perspective, the following strong points would

show up for me:

 The feature creep is well-balanced and introduces new concepts to

the player at a respectable rate. More importantly, each new perk and im-

provement actually makes sense in terms of the story and gameplay, and

doesn't make previous abilities or scenarios obsolete.

 The game focuses on a few base points and polishes them to perfec-

tion, rather than trying to overextend itself or throw on fluffy extras that are

poorly implemented. Everything in the game feels like it has been very care-

fully tested. It's great to see how the developers have expanded upon the

original Tower of Goo prototype to create a product that capitalises on the

original's strengths.

 The meta-game elements are superb. Upon finishing a game, the

player still has more goals to accomplish – attempts can be made to acquire

OCD achievements, for example, finishing levels within a limited number of

moves, or saving a certain amount of gooballs. There's also a sandbox mode

that utilises all the extra gooballs from the main game mode which allows

you to build as high a tower as possible using an open playing field and all

the goo you can muster. Basically, anybody playing World of Goo is able to

set goals and unlock achievements above and beyond the basic “get to the

end of everything” scenario – and the developers have made this reward-

ing.

I give this game five gooey stars. It's a brilliant title which will keep you

slushily entertained for hours, and it has a lure that will have you wanting

more long after that final gooball has been drained away.

27

28

Quad Trees
Herman Tulleken.

In the previous issue, we looked at a simple implementation of quadtrees – the kind that can be used for com-

pression of 2D data. In this issue, we look at when to use quadtrees, how to choose a threshold, issues that might arise with

specific applications, and how you can modify the quadtree algorithm for some applications. The images provided demonstrate

most of the principles discussed here, but it is important to remember that defects that are very visible in images might be totally

invisible in other applications.

29

Quadtrees are by no means the only 2D space-efficient data structures
– typical image compression algorithms can easily outperform quadtree
compression. Here are a few things to consider when deciding on wheth-

er a quadtree is the appropriate data structure for your application.

Does the data need
to be updated regu-
larly?

Although you can im-

plement updateable

quadtrees, it can be very

tricky to get right. If

you need to update your

data, another structure

might be preferable.

Does the data have
large regions of uni-
formity that com-
press well?

If not, you might not

get the compression you

want with quadtrees,

and you should consider

using another compres-

sion algorithm or no

compression at all.

Is the detail level
too uniform?

Quadtrees work best

when the detail in your

data is non-uniform. If it

is too uniform, then us-

ing quadtrees might not

be the best structure – a

low resolution grid will

be easier to implement.

However, quadtrees

are still a good solution

when the uniformity of

the data is unknown in

advance. Also note that

the uniformity of the

resulting tree can be

tweaked by using a non-

constant threshold (cov-

ered later).

Can quadtrees de-
liver a significant
amount of compres-
sion?

This will need to be

checked the solution is

implemented, but it is

possible to make some

rough calculations. If

savings are not signifi-

cant, you are wasting

your time. Do not use

quadtrees to gain incre-

mental savings – rather

use another data struc-

ture. A related question:

is the amount of data

huge? If it is not, a 2D

array will do perfectly.

Is random access
required?

Quadtree lookups are

faster than lookups into

some other compression

structures. If you only

need to access pixel data

sequentially, some other

algorithm might be bet-

ter (run-length encod-

ing, for example). If

you only need to access

data infrequently, you

might consider an algo-

rithm that is slower but

provides better space

efficiency.

Is the blockiness of the resulting data
acceptable?

For images, it is generally not – high tolerance

values must be used to achieve a good result.

However, for many applications high levels of

blockiness is unnoticeable and therefore accept-

able. If you use force fields to steer agents,

for example, you can get away with a threshold

that is quite low, because an abrupt change in

force only leads to an abrupt change in accel-

eration, not speed or position. You only see the

effects of the force field at one point in time

(per agent), so it is hard to visualise the entire

field. For high fidelity simulations, or simula-

tions of particles (such as water or smoke), us-

ing quadtrees to store force field data might be

inadequate. There are however, some ways to

counteract blockiness – see image.

30

Choosing a threshold

There are no hard and fast ways to determine the correct threshold value (not without some sticky mathematics). Some experimentation is required, and after

playing with your data you will get a very good feel for how threshold values affects the result. If you put some method to this madness, you can determine a

good threshold value quite easily. The tests below can help you choose a threshold, but they will give you more insight into your algorithm – especially if you use

exotic detail measuring functions. The tests below are also very good to use as regression tests, making sure that you do not tweak your algorithm and cause

some unforseen anomalies.

It is important to adjust your test data to your application. Use grids that are comparable in size, and judge the results on how they affect things in your applica-

tion, not how good it works on an image. But do use images to train yourself to see your data, and interpret it visually.

The single pixel test:

This tests the effects of

quadtree compression on high

resolution detail. The basic

idea is to put a single pixel with

a different value in a homoge-

neous grid, and do some quad

tree compressions with differ-

ent threshold values. Depend-

ing on your needs, you can

obtain a good maximum value.

If you are not concerned with

high resolution detail, you can

skip this test.

The vertical straight
edge test:

This tests the effect of

quadtree compression on

edges. Divide a plane verti-

cally in two parts, and fill each

part with different values. It

is important to know that

where you do the division is

important. Test with differ-

ent placements, but the worst

case scenario occurs when

the division is one pixel left or

right from the halfway mark

of the rectangle.

31

The diagonal straight edge test:

This test is the same as above, except that you

divide your plane diagonally. Test with different

angles (you only need to test from vertical (90 de-

grees) to halfway horizontal (45 degrees) because

of the symmetry of the algorithm.

The gradient test:

This tests the effect on smoothly changing data. You fill a test rectangle with a gradient. Like the edge tests, you need to

test gradients at different angles.

0 degrees

22.5 degrees

45 degrees

32

The circle test:

This tests the effects of quadtree compression on curved edges. Put a circle in the centre of your

grid, and check the result. Test with circles of different radii.

Handling Discrete Data:

In some applications, every cell might contain a value from a finite set (for instance, an integer between 0 and 10). A typical example is in a tile map for a game, where

every integer denotes a tile type. (In a previous issue of Dev.Mag we explained how to procedurally generate such maps with Perlin noise).

Lossless compression:

Often, we would like the exact map to be retained in the tree. To do

this, we need to set our threshold close to 1, so that only exact matches

will be grouped together. If you make it 1 exactly, floating point errors

might result in a maximal tree. You will only get decent compression if

there are large areas covered with the same tile, so quadtrees are not

suitable if this is not the case.

33

Lossy compression:

In some cases, we might not worry too much about the exact layout for the map – especially if the map is merely for decoration. There

are two cases to consider:

• The sizes of the values are significant. For instance, you may have ten tiles. Tile 0 is water, tile 9 is land, and the tiles in between

are each a mix of water and land, from more water to more land. Essentially, it means that the tile set is ordered, and that the order

corresponds to the value used to represent it.

• The sizes of the values are not significant. This is the case, for example, when you have ten tiles – water, land, fire, grass, etc.

There is no clear meaning of “halfway between fire and water”. In this case, there is no ordering of the tiles, and the values used to

represent them have nothing to do with the tile that they represent.

The methods of handling these two cases differ a lot from one another.

Maps from Ordered Tile Sets:

In this case we can store floating point values. When you get a query, you simply

convert this into a suitable tile. You can round the value to the nearest integer,

and use that tile, but this does not provide any benefits. Instead, take one of the

following approaches:

• Return a random tile, biased with the fractional part of the value. For in-

stance, if the value in a quadtree node is 1.25, you might return 1 with probability

0.75, and 2 with probability 0.25. This approach works well if your threshold is

high. When using randomisation in this way, it is important that your generator

takes an argument (dependent on the coordinates of the pixel you are querying),

and returns the same number for that argument every time. A simple way of

doing this is to generate a small square grid of white noise, and do lookups into

the grid to get random numbers.

• Work out a new interpolated value (see how to do this below), and round

this value to find a tile. This will not only reduce the blockiness, but regions will

be more contiguous.

Using the above, we might use a lower threshold, resulting in better savings.

Maps from Unordered Tile Sets:

Here we need to take special care not to lose information. We cannot simply use

averages – for example, the tile halfway between tile 0 and tile 2 is generally not

tile 1. To handle this case, we need to do several things.

First, we choose the maximum number of tiles that can be depicted by a node.

The algorithm is easiest if this is a power of two, especially if we choose 2. Call

this number N. Now we cannot store single values of tiles. Instead, we store

two vectors: one containing the tiles represented in that region; the other one

the percentages of each tile in the region. These two vectors are both of length

N (the last one need only be of length N – 1, since the values must add up to 1,

we can leave out one value and calculate it instead). We can now use this to bias

randomly selected tiles. Note that if N is higher, more detail can be dismissed,

but you need to store more data per node. Lower values will result in bigger

quadtrees, but lead to more efficient storage per node. You need to experiment

to find the magic value for your data set. This method is so complex, that I would

only recommend it if you really need the extra space that it might provide.

34

Changes to the basic algorithm:

Interpolation:

This approach is suitable for data characterised by large contiguous regions of

smoothly changing data. It is possible to get a result that is completely smooth, but

the algorithm is very complicated because all the squares can be different sizes, and

any square (represented by a tree node) can be surrounded by a very complex ar-

rangement of other squares. There is a simple way to get a crude result that works

for many applications. For every pixel, you find the closest top, bottom, left and

right neighbouring nodes.

Now you have five values. The new value can be calculated from an average of the

five colours. You can even weigh the average according to how far the pixel is away

from the centre, like this:

v’ = (D – d)/D * v + d/(4*D) * (v_top + v_bot + v_left + v_right)

D is the maximum offset from the centre in that node, and d is the offset of the

pixel from the centre of the node. The node values are denoted by v, v_top, etc.

This interpolation procedure results in some anomalies near the edges, but is fine

for many applications.

No interpolation Simple average Weighted average

35

Multi-channel Quadtrees:

If we represent force fields or im-

ages with quadtrees, we store a

vector value in every node. For

images, we store the RGB vec-

tor; for force fields, the xyz force

components. When the channels

are not highly correlated, we can

often get better savings by using

separate quadtrees for every chan-

nel. In images, this is not gener-

ally the case, and using separate

quadtrees will be very wasteful.

Artefacts are also introduced that

are very noticeable in images. In

force fields, the up-down dimen-

sion is often not correlated with

the other two dimensions, and

significant savings can be made

by using one quadtree for the up-

down dimension, and another for

the other two dimensions.

Constant threshold Increasing threshold

Decreasing threshold

Changing Threshold:

Instead of using a fixed threshold, you

can use a threshold that depends on the

depth of the tree where you are process-

ing. This can be used to increase / de-

crease the uniformity of the node sizes.

36

Gradient domain quadtrees:

In certain circumstances you need only differences between pixels, and not their actual values, for example,

when using force fields. As a body moves through the field, you need only update the value with the new dif-

ference. If, in addition, your data is characterised by lots of smoothly changing regions, and edges are not

extremely important, you might get better results if you do your processing in the gradient domain: essentially

working with the differences between pixels, instead of working with their actual values. It is convenient to start

with two grids, one for vertical differences, and one for horizontal differences. Each of these two grids are then

stored in a quad tree. The formulas that can be used (when v(x, y) represent the value at indices x and y in the

original grid) are:

v'(x, y) = v(x + 1, y) – v(x, y) (horizontal)

v'(x, y) = v(x, y + 1) – v(x, y) (vertical)

You will need to store some extra data to be able to reconstruct the original grid (usually the first row and first

column). You might also store a very low resolution quadtree of the actual values, to calibrate every once in a

while. In images, the artefacts are very noticeable; other applications are much more forgiving.

Download:

You can download code that implements some of the ideas from: http://code-spot.co.za/2008/11/15/quadtrees/

http://code-spot.co.za/2008/11/15/quadtrees/

37

38

A Retrospective glance at

Game.Dev Competions
Part 2

The Game.Dev Comps have evolved considerably since they started, with sponsors and prizes being obtained, and more

experienced (and larger) community facilitating the creation of even more advanced games. In part 2, we take a look at all the competi-

tions held since August 2006; 10 competitions over 2 years.

GLEach Comp has a lesson to be learned

Look out for the Game Develop-

ment Lesson from each one!

Claudio “Chippit” de Sa

39

Comp 11 was unlike the other competitions

held to date, and still stands as the only com-

petition that didn’t bid for the creation of an

actual game. Instead, comp 11 sought to

create a succinct tutorial describing the tech-

nique, effect, skill or system that developers

had learned and used during the creation of

their games. This change was justified two-

fold: firstly, it served as a way for developers

to share tricks and tips; secondly, it sought to

correct the post-rAge slump that threatened

to throw off the regular 2 month schedule

that the competitions had been maintaining.

Being little more than a warm-up for the re-

turn of the ‘regular’ format in Competition

12, this comp only saw 2 entries.

Tutorials

Sometimes it’s best to share.

Following immediately after Comp 11, without the

customary month-long gap, Comp 12 tasked de-

velopers with the creation of a multiplayer game

that is playable on a single system. No other

constraints were imposed so entries varied from

real-time co-operative entries with a split mouse/

keyboard control scheme, to turn-based tactical

offerings. What made this Comp unique was the

introduction of additional players into the design

equation. Past games had dealt with single play-

ers only, so the new challenge here was to create

a game that was fun for all parties involved. This

required some new, creative thinking on the part

of the developers, but precipitated interesting and

fun results. In true Christmas spirit, this competi-

tion had a modest but tangible prize up for grabs,

sponsored by none other than Danny “dislekcia”

Day himself.

Not unlike Comp 6, this competition once again

challenged developers to look back on and improve

one of their past titles, with the aim of producing

games of retail quality. The twist this time around

was that the title to be polished was not a choice

of the developer himself, but rather a result of a

collective vote by the community. The competition

sought to teach the value of using and analysing

feedback from players and using it to improve the

offering. Additionally, the competition elegantly

introduced the Pareto, or 80-20, principle; that is,

the old maxim claiming that 20% of your project

takes 80% of the time. This is especially true for

the final polish stages of gaming, where much time

is spent play-testing, tweaking, then testing some

more. This grueling, arduous task is often too much

for developers who lose interest and abandon their

projects when it is no longer fun for them to play, as

is inevitable when you’re playing a game to death.

However, this essential step is often the difference

between a diamond in the rough and a retail hit.

Multiplayer is flexible territory.

Single-PC multiplayer

Final presentation is everything.

Polish Mk 2.0

GL

Comp11

Comp12

Comp13

GLGL

40

Demos

Guerilla learning

This was another unique Comp, once again

asking not for a game, but for the demonstra-

tion of tricks; graphical or otherwise. The for-

mat was in the vein of demo-scene offerings,

where each entry was designated to be a small

application showcasing a piece of eye-candy.

While the results were never judged, there

were many small entries made by develop-

ers who had used the opportunity to experi-

ment with effects or techniques where they

would usually dedicate their time to tweaking

gameplay. While this may have appeared a

little counterintuitive to the Game.Dev ideal

of gameplay above graphics, previous compe-

titions had highlighted that presentation and

polish affect critical reception in an efficacious

manner. As such, the competition sought to

develop skills and tools which may be used in

future productions.

Comp 16 went back and borrowed some ideas

from Comp 9, once again limiting players by

certain rules in an attempt to broaden the re-

sults. Things were slightly less restrictive this

time around, with only a single constraint im-

posed: that all graphics need to be entirely

composed of, or derived from text. Again, like

Comp 9, this was an attempt to focus entrants

on gameplay without needing to worry about

graphical presentation. As it turned out, this

restriction was better received than the Comp

9 incarnation, with ten extremely varied en-

tries being submitted, those ranging from a

real-time enemy-blaster, to a rhythm game, to

a text adventure. All of these had well-devel-

oped gameplay as a result of limited graphi-

cal focus; succeeding in demonstrating that

graphics are only needed as a catalyst to solid

game dynamics, not a substitute.

Comp 15 was another of those milestone competi-

tions. It featured a huge prize sponsored by lo-

cal education initiative Mindset Learn (http://www.

mindset.co.za/learn/default.asp). The competition

challenged the community to compete for a share of

the R10 000 prize pool by creating a guerilla learn-

ing experience for players – that is, a game that can

teach players valuable lessons by integrating them

into the game itself, rather than grinding the learn-

ing experience through reward and punishment, as

is typical for ‘Edutainment’. The games that resulted

were not edutainment in any way, but rather inter-

esting and fun games that taught skills by exposing

the player to their concepts as part of the dynamic

itself. As with the last sponsored competition, Comp

15 ran over two months and saw a huge response

from the community with 15 hopefuls churning out

entries for the Mindset judges to evaluate. Evil_

Toaster, winner of the previous sponsored competi-

tion, swarmed in and took this one with his title, Car-

tesian Chaos, and subsequently received publishing

interest with Mindset. The competition succeeded

in highlighting the capacity that videogames hold for

learning experiences and will hopefully contribute to

a change in the general sentiment regarding educa-

tional games, both for consumers and developers.

Messing around is a key to
learning and progression

Is that method of pre-
sentation absolutely

necessary?

All games are learning expe-
riences, and they have the
capacity to teach anything.

GL

GL GL

Comp15

Comp16Comp14 Text only

41

Lost Garden

Death

In a move against the current genera-

tion’s obsession with sandbox gameplay

and supposedly infinite playtime, this

competition called for games that would

end – in ten minutes. Comp 17 sought

to highlight the importance of cleverly

planned events to orchestrate emotion

and define the experience. Pacing is es-

sential to elicit the required player re-

sponses during the course of the game.

This Comp’s fixed timeframe means that

it was incredibly important to achieve

balanced and carefully planned gam-

ing experiences, for the purposes of the

competition. As such, this turned out to

be one of the most interesting Comps in

Game.Dev history, along with Comp 19.

If you’re a regular reader, you’ll already

be familiar with Lost Garden, the amazing

game design blog run by Danc; and you’ll

be familiar with his prototyping challenges.

Comp 18 released Game.Dev developers on

their choice of three prototype challenges

from Lost Garden: Playing with your Peas,

SpaceCute and CuteGod. This means that

developers were given fixed frameworks

and designs, and challenged to make them

fun. In effect, this highlighted the fact that

ideas are cheap; quality games come not

from good ideas, but the combination of

an idea and a solid implementation of that

idea.

Comp 19 was, quite possibly, the

greatest exercise for the Game.Dev

members design muscles. It chal-

lenged the familiar death concept in

games and urged developers to take

the current axioms regarding it as a

game dynamic and turn them upside

down. A lot of innovation in gaming is

rooted in the simple reexamination of

systems that were previously taken for

granted. This competition sought to

seed such innovation by encouraging

players to change death from a pen-

alty into a critical game mechanic.

Conclusions and climaxes are
important for player experience.

The idea is only the beginning.

Does that game me-
chanic really need to be

there?GL
GL

GL

Comp19Comp17

Comp18

Ending

42

No Text

To mirror the theme from Comp 16, Comp

20 took that concept and flipped it around,

requiring developers to create a game that

had no text whatsoever. This meant that

language couldn’t be relied on to convey

information such as objectives, rewards or

controls, and these must be afforded to the

player in other manners. Developers were

encouraged to experiment with other ways

to reward correct behavior, like using subtle

audio or graphical cues to signify correct

player responses. The competition turned

out some interesting titles, some succeed-

ing quite respectably in telling stories and

conveying objectives without the use of any

language whatsoever.

How else can you teach players
what to do?

This concludes the Game.Dev competition series. If you’re interested in
entering one of the competitions and you reside in South Africa, keep
an eye out on the Game.Dev website (www.gamedotdev.co.za) and
on the forums for competition announcements. By the time you read
this, Comp 21 should be well underway. We look forward to seeing new

faces.

Comp20

GL

That’s it folks!

www.gamedotdev.co.za

43

www.devmag.org.za

Sheep Count:

36 SHEEEEEEEEP!

	2 - Home
	3 - Editorial
	4 - News
	5 - Ultimate Quest
	9 - Space Hack
	16 - DinoRun
	18 - Multiwinia
	22 - Roach Toaster
	24 - World of Goo
	28 - Quad Trees
	38 - Tailpiece

	Button 60:
	Page 1: Off
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:

	blender:
	Button 48:
	Button 49:
	Button 50:
	Button 51:
	Button 54:
	Button 55:
	Button 56:
	Button 58:
	Button 59:
	Button 61:

