
1

INSIDE: Part 2 of our LUMA interview A Introversion speaks about Multiwinia A Audacity explained A
More Blender A Did someone ask about Level Design? A Quad Trees A News + Reviews +

Other stuff too!

Issue 26 October 2008

2

Features

REGULARS

Tailpiece

Part 1 of our Competition retrospective looks
at the first 10 challenges!

Reviews

3

42

Braaaaaaaaaaaains! And lots of dying!

4

Development

The only time you can say “Rigid Body” without slapping an R-rating on
the front cover! Warning: Involves “solid objects”

OMG it’s long! But entirely worth the read! We take a look at using
Quad trees to represent 2D data.

Oh dear! Nandrew is at it again! This time he’s looking to make some
neat sound effects using Audacity!

Ever wondered about effective level design? Of course you have! Look
no further as we delve into just that!

Mark Morris takes some time out of his making-awesome-games time
to answer a few of our questions

We finish up our interview with the big boys at Luma, chatting
about their next offering: BLUR.

Art, design, and game challenges. Awesome.

6

10

15

17

19

23

28

37

3

I’ve stealthily hidden a purple ninja somewhere
in this issue. If you find him; stop taking drugs
immediately! Also. Burning ducks. Why has no

one made this a basis for a game yet?

DreamBuildPlay is done, rAge prep-

arations are nearing conclusion and we’re all look-

ing forward to a crazy weekend where most of the

Dev.Mag staff and Game.Dev community will actu-

ally meet each other, some for the first time. It’s

odd to consider that, even though Dev.Mag has

been running for nearly three years, a large major-

ity of the people who contribute to this magazine

on a monthly basis are still faceless pseudonyms to

me. Such is the curious nature of an online venture,

where contributors are so disjoint yet still rather in-

timately connected.

 And all the above means the busiest month of the

year will be over by the time you read this. Although

that last statement was a bit of a hopeful conjec-

ture on my part, mostly because I cannot imagine

a month that was busier than the last. More ac-

curately, I cannot imagine the aftermath of such a

month; finishing the largest game project I’ve ever

been involved in as well as preparing for what is,

quite possibly, the most important event of the year

qualifies any month as Freakishly Busy. No person

should need to endure many of these every year,

and I shall certainly look forward to a break after

the rAge dust storm settles.

 However, in hindsight, all the effort was well worth

it. By the end of it all, Game.Dev as a community

will have two complete Xbox games under its col-

lective belt, both of which were entered into a high-

profile competition where even the slightest hon-

ourable mention will have a potentially gargantuan

effect for our little fellowship of developers. Need-

less to say, we’re all incredibly excited and hopeful.

And proud.

 That’s enough blathering, though. Now comes the

fun part, where I get to tell you about all the things

that you’d already find on the index page, just in

many more words. Most importantly, we have two

feature interviews this month – a first for us. One is

an excellent chat with Mark Morris of Introversion on

Multiwinia, and another being the conclusion of the

Luma interviews we started last month. We’ve got

another audio-related piece discussing the interre-

lationships between bwumphs and blonks and other

words that make spellcheckers cry, and our tailpiece

goes back and looks at the history of Game.Dev’s

regular competitions, discussing what aspiring de-

signers could learn from them, whether or not they

have participated.

That’s it for this month. Read, enjoy and get out

there and make games!

Oh, and finally:

rAge!

~ Claudio, Editor

CAELESTIS
Claudio “Claudius” de Sa

DEMITTO CAELESTIS
James “Calamitas” Etherington-Smith

PULCRITUDO
Quinton “Voluptarius” Bronkhorst

SERVIOS
Rodain “Venustas” Joubert

Simon “Tr0jan” de la Rouviere
Ricky “SecusObdormio” Abell

William “Cairnswm...us?” Cairns
Danny “RecitoPessime” Day
Andre “Fengolus” Odendaal

Luke “FrigusManus” Lamothe
Rishal “IntegerProprius” Hurbans
Gareth “GazzanusEnios” Wilcock

Sven “TergumChucciaios” Bergstrom
Kyle “ErepoCaudos” van Duffelen

Chris “LeoPenitus” Dudley
Herman Tulleken

NUNTIUS
Robbie “Squid” Fraser

DOMUS
www.devmag.org.za

CELER NUNTIUS
devmag@gmail.com

This magazine is a project of the South African
Game.Dev community. Visit us at:

www.devmag.org.za

All images used in the mag are copyright and
belong to their respective owners.

4

Luma Arcade on InstantAction

http://blog.instantaction.

com/2008/07/blur-game-forme.

html

The local team over at Luma Arcade

has been slaving with the arcade

racer BLUR, a game slated to be

released into open beta on Garage-

Games’ InstantAction games portal

soon. The game, currently in a pri-

vate beta testing phase, puts play-

ers behind the wheel of one of two

selectable vehicles in an adrenaline

fueled 8-player race. Be sure to try it

out when it’s available for public play.

Shred Nebula Design Docu-
ments released

http://www.gamecareerguide.

com/features/603/documents_

of_newly_published_xbox_.php

In an unprecedented move, James

Goddard of CrunchTime Games re-

leased both design documents that

were used during the Xbox Live Ar-

cade pitch of his game, Shred Nebula.

Both documents - a ’60 seconds of

gameplay’ essay and the actual pitch/

design document - are freely avail-

able to download and view at the site

above. These should provide a valu-

able insight into how the usually hid-

den internal processes work for XBLA

and, by extension, for most publishing

deals.

Bioshock Postmortem
available at Gamasutra

http://www.gamasutra.

com/view/feature/3774/

postmortem_2k_boston2k_.php

In a first for Gamasutra, notable

postmortems and other articles from

the vaunted Game Developer maga-

zine will be published on the site.

The first fruit of this new arrange-

ment is this Bioshock postmortem,

detailing the creation of the game

from the perspective of project lead

Alyssa Finley. Worth reading.

http://blog.instantaction.com/2008/07/blur-game-forme.html
http://www.gamecareerguide.com/features/603/documents_of_newly_published_xbox_.php
http://www.gamasutra.com/view/feature/3774/postmortem_2k_boston2k_.php

5

Retro-Remakes competi-
tion 2008

http://oddbob.wordpress.

com/

Retro Remakes, a site dedicated to

the retro gaming scene and retro-

styled games, have launched their

2008 remake competition. The

contest, running till 6 December,

challenges developers to submit a

freeware entry under any of 6 cat-

egories for over £5000 total prizes

to be claimed by the first 10 places

in the grand prize, winners of each

category, and a special judges prize

to be handed out at their discre-

tion. Entries are open until 2 De-

cember.

Torque X 3D Engine now bun-
dled with Softimage|XSI Mod
Tool Pro

http://www.gamedev.net/com-

munity/forums/topic.asp?topic_

id=508463

The powerful, professional modelling and

animation package made by Softimage,

more popularly known for its use with

Valve’s Half Life 2, is now included abso-

lutely free with a Torque X 3D engine li-

cense. The Torque X Engine contains flex-

ible game authoring tools built on XNA and,

with the inclusion of the XSI Mod Tool,

should become a tool that every XNA de-

veloper would want to have at hand. With

indie licenses available for only $250 it isn’t

far out of reach either.

World of Goo is Gold

http://2dboy.

com/2008/09/09/pretty-big-

news/

After a long, long wait, and a mas-

sive amount of evolution from the

original Tower of Goo prototype,

World of Goo has finally gone gold.

Made by a tiny two-man team,

World of Goo is a construction-

based puzzle game that won the

2008 IGF Innovation award, an hon-

our previously bestowed on XBLA’s

Braid and PSN’s Everyday Shooter.

http://oddbob.wordpress.com/
http://2dboy.com/2008/09/09/pretty-big-news/
http://www.gamedev.net/community/forums/topic.asp?topic_id=508463

6

Having thoroughly enjoyed playing through the preview code of Mul-
tiwinia (Dev.Mag issue 25) and bringing our readers a first look at the game,

Dev.Mag decided to have with a chat with Mark Morris, the Managing Director of

Introversion. Perhaps he can help us find our missing Darwinian…

“As always, we will

live or die by our next

title, and in this case

it's Multiwinia.”

Simon “Tr00jg” de la Rouviere

not so introverted

7

Dev.Mag: Why did you decide to take Dar-

winia into multiplayer?

Mark: Just after we won the 2006 IGF (Indepen-

dent Games Festival) award for Darwinia, we were

talking with Microsoft about getting Darwinia onto

Xbox Live Arcade. They were keen, but wanted

us to include a multiplayer mode within the pack-

age. At first we thought this would be a quick

job, but over time, we realized that we were re-

ally onto something. Multiwinia was really great

fun to play and we decided to turn it into the next

major release from Introversion. We had to work

really hard to get such a variety of maps and dif-

ferent modes, but we are really pleased with the

results!

Dev.Mag: How did the design process for

the game modes work?

Mark: Design at introversion is really iterative.

Some of the modes were really obvious, like King of

the Hill; but the more complex modes, like Assault,

Rocket Riot and Blitzkrieg, took us a long time to

get right. Basically we would try something, see if

it was fun or not, and develop it. Multiwinia is all

about fun and action, and if we weren't having fun

with a particular mode, we would try for a while

and then scrap it if we couldn't get it right.

Dev.Mag: How much did DEFCON help with

creating Multiwinia, from a design and cod-

ing perspective?

Mark: Multiwinia and DEFCON are very different

games, so from a design perspective, DEFCON

didn't influence Multiwinia, other than a rather

unsubtle nod to DEFCON, included as a crate

power-up. That said, we had learnt a lot

about networking and game stability

from our work on DEFCON. The prob-

lem was that we had to go back to the origi-

nal Darwinia code, which wasn't as robust as our

latter work. The result was that much of the code

that we had written for DEFCON needed to be re-

written for Multiwinia.

Dev.Mag: What hurdles did you encounter

with the development of Multiwinia?

Mark: The biggest challenge with Multiwinia

was making sure that there was enough

variation in the maps and the different

game modes. We spent most of

2007 coming up with, testing and rejecting lots of

game modes before settling on the final six. We're

really pleased with the end results, and I'm sure

that everyone will have their own favorite modes

and maps. I personally love attacking in Assault.

8

Dev.Mag: What was it like working with the Xbox

360?

Mark: The 360 is a really great platform to work with.

The console itself is basically a PC, but they do some

clever stuff to get as much out of the hardware as pos-

sible, this meant that we were able to get a basic port up

and running quickly, but the real challenge is getting the

performance up. Of course we are still a little bit off the

Live Arcade launch, so you'll need to ask me the question

again in a few months!

Dev.Mag: Was it difficult to adapt the Xbox con-

trols?

Mark: Multiwinia was designed with the 360 controller in

mind, but it’s Darwinia that is giving us the most trouble.

We are nearly there, but we did think it was going to be a

much easier job than it actually turned out to be. I think

we have gone through about four or five control revisions

and I'm still not sure we are there yet!

Dev.Mag: You've been going for quite some

time. Do you foresee a shiny future ahead for you

guys?

Mark: We're in a very strong position now. We're pretty

well known in the industry, and our back catalogue of

games still sells in reasonable numbers. We have a few

ports in the pipeline, which should help to support the

main effort; developing great new games. As always, we

will live or die by our next title, and in this case it's Multi-

winia. Keep your fingers crossed for us!

Dev.Mag: First you rattle our collective gaming

minds with Subversion, and then we hear about

Chronometer. When are we going to get some

info on this? When do you plan to release it?

Mark: *smiles roguishly*

Dev.Mag: How does your design process work in

general? How do you get your wild ideas

onto paper and then into a solid game?

Mark: We have a very relaxed and free flow-

ing design process. Chris has most of the big

ideas and then he’ll go away and jam for a

few months. It probably takes him about six

months, working part time, for him to come

up with the core of a game. At that point we

bring in Gary; he is our Chris multiplier. Gary is

great at seeing the themes that Chris has cre-

ated and jamming around them. Show Gary

a map, and he’ll come back a week later with

six. During this time, the other members of

the team will be adding new features or

extending ideas as directed by Chris.

Once we start to run out of money,

we all get scared and we work like

mad for a few months to get

the game bug free. Sound

simple?

9

Dev.Mag: Do you plan on releasing Darwinia mer-

chandise? Those Darwinians are a hot commodity.

Mark: We already have a store full of cool Darwinia stuff.

Check out http://store.introversion.co.uk

Dev.Mag: The entry point for great indie games is

getting higher and higher? Don't you think it is dis-

couraging for beginners?

Mark: Indie games are getting bigger and better, and there

are more and more tools out there to support the develop-

ment effort. I'm talking about the likes of XNA. This does

make it a lot harder for new people to get set up and pro-

ducing games, but I don't think that is a bad thing. It is

very, very hard to make a great video game, but if you want

it enough, you'll get there!

Dev.Mag: After working on the Xbox, do you still see

the PC as your main platform?

Mark: Yeah, we will always be principally a PC developer.

The PC is an open platform and that means that nobody

pushes us around or tells us what to do. We are fiercely

independent, and whilst I'd love to see our stuff on other

platforms, the big boys need to understand that they can't

have a hand in the design process. That said, Microsoft

have been really helpful and have given us loads of feedback

on how to improve Multiwinia.

Short and Sweet

Mark Morris
Peanuts or Raisins?

Diablo 3 or StarCraft 2?

DRM or No DRM?

Mark: Listening to DRM-free MP3’s whilst eating peanuts and playing StarCraft 2.

http://store.introversion.co.uk

10

BLURRINGThe lines

Last issue, we featured Luke Lamothe from Luma, talking about
their latest offering, BLUR - this issue, we finish off by talking to BLUR’s

lead artist, Chris Cunnington, and creative director, Dale Best, about some

of the challenges they faced bringing out this anticipated offering!

2

Sven ‘Fuzzyspoon’ Bergstrom

11

Dev.Mag: As lead artist on the BLUR project,

which aspects brought new challenges?

We came into BLUR just off the back of MINI#37.

With MINI we had been very restricted by TGE in

the way we produced the road & pavement sec-

tions, not allowing us to make flowing, curved

roads with textures that followed the curves. So

heading into BLUR one of the first things I wanted

to re-engineer was our road production. The out-

come of a couple of weeks work was a modular

system, that allowed for completely flowing sur-

faces. The drawbacks were that for each single

road section, I had two sections, one you see

and one you don’t. The visual improvement over

MINI#37 completely outweighed the drawbacks

of handling double the art assets. Otherwise, we

generally pushed the bar as much as we could, as

we always will, allowing a huge visual leap!

Dev.Mag: With developing for a browser

environment, were there any art limitations,

compared to desktop games?

The beauty of the InstantAction platform is that it

is able to load any game engine – obviously with a

few tech changes – into the browser. So when we

set out creating BLUR, we never limited ourselves

at all with any thoughts of, “It’s an in browser

game.” We created it as if it was a standard PC

game. We actually only got it into the browser

very late on in the project. The only limitation we

then set on ourselves was file size. We wanted to

keep it small and neat so that people don’t need

to download huge amounts of data.

Dev.Mag: Working on worlds with good de-

tail has its perks. What was your favourite

map or scene to create?

Hmmm, that’s a tough one! Each level has its own

unique quality that jumps out for me. SkyCity was

the first to be built, and I really dig the shiny clean

feel of this world. Par-

adiseCove was planned

to be more a gritty,

graffiti-cum-old–Eu-

ropean, coastal town;

but it got changed slowly into the world it is now.

Now it is awesome; who can complain about a

level filled with Palm Trees? Reactor Station was

great fun to make. We wanted an industrial, pip-

ing filled world, but went wild with it when we

added a huge glowing reactor to the scene. So

yeah, worlds with more detail are awesome, even

though racing games still don’t let you get to the

level of detail needed for a modern FPS.

Chris Cunnington

12

Dev.Mag: As an artist, what ‘ideal’ map would

you have made?

Hmmm, well, for a racing game, I pretty much got

my wish with ParadiseCove, making an island beach

level. Moving away from racing games, I am very

keen to start building more open, free worlds, with a

more sandbox feel!

Dev.Mag: Tips for aspiring 3D game artists?

Be prepared! Game art is not all that it appears on

game-artisans.org. A regular day is easily split be-

tween working out bugs with your art pipeline, asset

management, and somewhere in between, making

new art assets.

Dev.Mag: Any last comments?

As with most games, everyone always looks at the

quality of the art, but let’s not forget the program-

mers. As a game artist, I have to say a big thanks

to the programming guys. Without them so many

things would not have been possible visually. Being

able to ask for a custom tool to be made to help

your workflow, and watching it being developed, is

the coolest thing ever!

13

Dev.Mag: What part did you play in the overall pro-

duction of this game?

I oversaw the creative direction in terms of style and game

play, as well as the direction of the levels and cars.

Dev.Mag: What aspect slowed you down most as a

creative director?

Once I’ve had my third cup of coffee, there’s no place for

slowing down. We had milestones to meet as a require-

ment by our publisher, and that’s that.

Dev.Mag: What aspects of the game were swayed

by InstantAction integration, in terms of design

changes?

Well, the whole idea around InstantAction is that of ‘pick up

and play’, so that is a major consideration in the game de-

sign. Pushing the game into the, ‘hard to master’ territory

also is key, because you want to keep your players coming

back. We feel the game is nicely balanced in this regard,

and continue to get feedback from the closed beta stage it’s

currently in.

Dale best

14

Dev.Mag: If you were to make another rac-

ing game for InstantAction, what would you

choose?

LumaArcade won’t be making another racing game for

a while, unless we have to. We may incorporate a

racing component into new games we develop if the

design requires that. BLUR will continue to grow over

time, with new car packs that users can buy, and new

tracks as well. The game will grow, it won’t be re-

placed. We are happy with BLUR, and wouldn’t do it

another way. The old school arcade quality is spot on

for the platform, as far as I’m concerned.

Dev.Mag: Any tips for aspiring creative direc-

tors?

 Well, I just kind of moved ‘organically’ into this posi-

tion, and usually that’s the case. It becomes more

of a managerial role, but I’m still hands on, which is

cool. Just do what you enjoy doing. Take it seriously

enough to do well, but try to keep a balance in your

life. When you start getting symptoms of carpal tunnel

syndrome, you know you need to get out more!

15

There exists a theory; that to truly express your hatred of the zombies in Glyph Hunter,

would bring about a black hole of contempt, capable of devouring the universe and replac-

ing it with something even more frustrating. There is conjecture that this has already hap-

pened.

Glyph Hunter

Chris “Braaaaaaains” Dudley

http://www.gamedev.za.net/filecloset/data/files/589/GlyphHunter.zip

“The addiction lies

in the difficulty.”

http://www.gamedev.za.net/filecloset/data/files/589/GlyphHunter.zip

16

 That said, this is not a horrible game in any way.

While a mixture of dungeons, monsters, and swords,

is hardly the most innovative combination in the in-

dustry, for local indie developer Rodain “Nandrew”

Joubert to take those elements and create a game

as enjoyable as this one is quite a feat. Such a lot of

quality has been packed into this title, that it is easy

to get drawn into the action and forget the generic

‘magical quest’ storyline.

 The meat-and-potatoes of the game involves hack-

ing, slashing, and various combinations of the two

deadly assaults. The tutorial gives you the gist of

the simple gameplay, throwing a few enemies at the

player to get them started. After that, the game

lets the player get to the carnage, with the occa-

sional pop-up informing them of their progress. For

the most part, the gameplay is cut-and-dried; hack

through monstrous hordes to a certain point, flip a

switch, slash all the way back through more mon-

strous hordes.

 Along the way, tension and addictive frustration

mounts as the player watches their life slowly dwin-

dle. Mana steadily drops as they frantically attempt

to dispatch enemy mages who are lobbing flam-

ing balls of death. Desperate whimpers escape as

hordes of respawning zombies claw for the jugular.

It’s at these moments that the game shines; it cre-

ates tense, enjoyable fights that entertain and chal-

lenge (boy-oh-boy, do they challenge).

 This is where the aforementioned zombies come

into play, with their unsettling obsession of having

a chunk of cranium for dinner. The zombies don’t

merely gang up, they swarm. They amass. No mat-

ter how many times the player shoves the business

end of a sharp metal object into their faces, they

pick themselves up and stagger on, with a chorus of

“You’re never gonna keep me down!” A quick fireball

will turn them into a zombie flambé, and send their

tortured souls back to hell permanently; but mana

has to be used sparingly if the player is to make it

past the ghouls, and to the haven of the next save

point. Once there, they can rest assured with the

knowledge that the next section will prove to be far

more difficult.

 The sense of euphoria that the player receives upon

slipping into safety with their avatar on the verge of

a grisly death is so immensely satisfying, that they

will suddenly find themselves unable to tear away

from it, striving to reach ‘just one more checkpoint.”

The addiction lies in the difficulty though - be warned

- this is not the most relaxing of games, but still a

high quality production, coming out of the local dev

scene.

Warning: side effects of Glyph
Hunter may include hair loss; the
invention of new swearwords; and
spontaneous bursts of animalistic

battle cries.

17

Lost Garden
Solid game design knowledge is traditionally kept close to the hearts of
those who possess it; rarely does one find people willing to divulge their insights

into the art and even rarer still are those who are willing to do so regularly, for no gain

whatsoever other than the simple act of seeing others benefit because of it.

Claudio “Chippit” de Sa

http://lostgarden.com/

http://lostgarden.com/

18

Daniel Cook is one such person. Also a contributor

to the well-known development related sites Ga-

meDev.net and Gamasutra.com, Cook – under the

moniker Danc – helms a game design blog named

Lost Garden, where he regularly posts insightful

game design essays and thoughts, provides free

hand-drawn art for game prototypes, and occa-

sionally challenges his readers to create game

prototypes based on his design and theme.

 One such challenge, concluding just last month,

tasked developers with creating a game in which

world shadows are an inherent part of the game

dynamic. A player would need to lead mushrooms

harvested from the world back to a ‘home’ point.

Since the mushrooms would shrivel and die in the

sun, the player would need to hug dynamically

changing shadows created by the changing time

of day to achieve the best performance.

 The game design insights posted on Lost Gar-

den are also well presented and offer incredibly

handy knowledge for the indie developer. In fact,

all the offerings on the site will be invaluable for

an independent game developer: design chal-

lenges to test your skill; design essays to impart

useful tips; insights and knowledge; and artwork

to facilitate your masterpiece creation. All in all,

a priceless resource that should live on anyone’s

bookmark list.

“Game design insights

posted on Lost Garden

are well presented and

offer incredibly handy

knowledge.”

19

Level Design
Looking at

Paul "Nostrick" Myburgh

Have you ever had a really cool concept for a level of a game you
enjoy? Have you ever made a level, but it just didn't come out quite the way you

planned? Ever given up because you just couldn't find a way to get your (brilliant)

ideas out of your head and into the game? Perhaps, on the other hand, you have

never thought about level design or modding in the slightest; but someday you'd

like to give it a shot. Whatever your level designing experience may be, you are

reading the right article!

20

Here we aim to give you a grasp of the design aspect of

level creation; it’s a little something on how one might go

about the design process, the process by which you bring

your ideas into being, to create a playable and fantastic

level for all to enjoy! Although simplified, this explanation

should be effective enough to get you on your way. To

explain this process, we are going to use the example of

building a level (or track) in Track Mania. Explanation will

be as generic as possible, so that you may take these basic

concepts and apply them in other games as well.

 To understand what makes a good level in a game, it’s

always best to know the game well beforehand; experi-

ment with the game play mechanics, and take note of what

makes the levels fun to play. There is no better example to

follow in level design than that set by the creators of the

game. The most downloaded and highly rated user levels

are also great examples, so you might want to find a good

website with a database of levels pertaining to your game

of choice. Start by gathering ideas from these designers,

and taking that inspiration to fuel your own creations.

 Once kitted up with a bit of knowledge and inspiration,

it’s time to get started on the actual building and design

process. We have an idea, now how do we go about mak-

ing a track? Do not be intimidated by the ‘blank canvas’ of

the level editor; it is your playground, so treat it as such.

Just go at it with everything you have, and don't stop to

think twice. Begin by laying down the basic level design;

similar to sketching outlines on a drawing before you clean

up and shade in. In Track Mania, run tracks all around,

add loops, corners and little jumps. Just let loose; allow

that idea in your head to flow down your arm, into the

mouse and onto the screen!

Do not be intimidated by the ‘blank canvas’ of the level editor, it’s your

playground - use it as such!

21

Always begin rough; treat it as a draft. Don't be-

come concerned over little things such as how the

player is going to take the first corner, or perfecting

the first jump. This is just a distraction and will be

detrimental to your master plan; leave it for later.

 Once you've experimented a bit with the rough

draft, and found something that works, we move on

to the next step; the flow. This is where play-testing

begins to play a role, as refinements to the rough-

ness of the level take place, shaping it into some-

thing more playable. This is a very important step.

Ask yourself; could someone else race on this track

(or play through this level) without becoming too

frustrated? Make sure that the overall flow of your

level provides a fun experience, while still providing

a challenge.

 By first creating the ‘skeleton’ of your level, you

will find it easy to go back and add more interesting

and fun ways to link areas together, and fine tune

certain areas for an even better experience. You

should constantly have your mind focused on how

the first-timer to your level would experience it and

how they will either grow to like it or hate it. Never,

ever, forget about the end user.

 Once finished with fine tuning the mechanics of the

level, the beautification begins. Try to add hints, such

as which way one should be turning next, or in which

direction you should be facing to make a jump, by

strategically placing surroundings. As much as some

people find beautifying a level/track unimportant, I'd

say it plays a big role in the overall experience, but

remember - don't overdo it! Sometimes less is better

than more!

 Finally, and most importantly, have lots of fun! It

should be something you do in good spirits and enjoy

as you design and play-test your very own creation.

If you are having fun, you will be more involved and

proud of your creation, and you might find yourself

tweaking and play-testing to perfection right through

the night!

 So, find a fun game, get those creative juices flow-

ing and just go at it. You might be surprised by the

awesome things you can come up with. Happy level

making everyone!

When design ideas run low, nature is

often our best resource

Trackmania has an excellent level editor

which lets you imagination run wild!
The best part about designing a level -

is testing it out!

22

23

Audacity
Looking at Effects with

“Turn your humble

‘blink-blonks’ into fan-

tastic ‘kaphwooms!’”

Interested in making your own sound effects for videogames?

This month we'll be looking at Audacity and a few of the common effects that

can be used to turn your humble “blink-blonks” into fantastic “kaphwooms!”

24

This article deals with the mildly technical side of

sound production in Audacity, so it'll assume that

you already have a wave file loaded up and ready

for priming. In terms of format, you may want to

look for a file that's based on the standard PCM

WAV structure (it's the most common WAV file

format, so you're probably using it already) with

a 16-bit, 44100Hz quality (these details will be

shown in the info box to the left of the file when

you load it up in Audacity.)

You can also opt for a stereo sound format, but

mono means a smaller file size and will usually do

the job just fine unless you specifically need two

channels.

So, to clarify, you'll prefer these settings for an

input file:

•	 PCM WAV format;

•	 16 bit;

•	 44100Hz (or similar);

•	 Mono.

Higher quality is optional, but isn't always neces-

sary.

If you really can't find an input file to meet these

requirements, no biggie – you can still try to con-

vert them to the desired format by clicking on the

filename in the left info box and selecting the nec-

essary properties in the pop-up menu. Also check

the Edit -> Preferences -> File Format menu to

make sure that your uncompressed export format

is set to the 16-bit PCM.

Maybe some of you remember that funky little

sound idea thing back in Issue 24? If you haven't

checked it out yet, don't panic – you'll be able to

understand this article just the same, but try and

have a gander at it anyway. Also, be sure to grab

your own copy of Audacity from http://audac-

ity.sourceforge.net/. Right, now that we've

got all the details out of the way, let's look at the

interesting stuff.

http://audacity.sourceforge.net/

25

The Audacity effects
Select all, or part of the file that you've loaded up in Audacity (this can be done by clicking and dragging the mouse over the desired file component). This is going to be the

section of the file that you apply your effects and filters to. Now select Effects from the top menu. You'll see a whole list of neat things that can be done to the innocent

sound file which is now under your control.

We won't be looking at every effect that's on display, but a few of the simpler ones will be covered. What follows is a description of several effects, giving you their job,

their potential for game development and a few useful pointers to get you going in the right direction. Let's go!

Change Pitch
Change TempoTechnical Description:

This effect alters, well, the

pitch of the sound. How

high or low the notes are, so to speak. You can plug in a spo-

ken sentence and decrease the pitch for a deep, manly-man voice

or conversely increase the pitch to make it sound like a chipmunk.

Wheee!

Game Use: This is one of the most commonly used effects to tweak sounds. You may want

to change the pitch of an in-game explosion. Perhaps you have a piano somewhere in your

game and you want to get several pitch variations of the same sound clip. Or you have a

nice cartoony game where you want to take a standard set of sound effects and make them

all cutesy by swinging the pitch up.

Hints: This filter is great if you want to speak in your game but need to mask your voice or

simply make it sound cooler. Lowering or heightening the pitch ever-so-slightly will greatly

improve the sound in your own ears, and you could potentially voice several in-game charac-

ters simply by altering the way you speak each time and applying a pitch effect.

Technical Description: This is the counterpart of changing

pitch. Do you want the same sound to play much faster or a little

bit slower than the one you currently have? Tempo can make a

“bwooooooooooom” into a “bwumph,” and vice versa.

Game Use: Maybe you want a quick and tiny explosion noise

but only have the Manhattan Project on hand. Or maybe your character is using a

weapon with a high rate of fire and you've only got sound effects which last for at

least two seconds. No problemo! Increase the tempo until you're able to justifiably

go “powpowpow” for as long as your character needs.

Hint: By doing some extreme compression or extension of sound effects with the

tempo changer, you'll actually start hearing some very, very weird things. This can

be rather neat if you're looking for some exotic and/or sci-fi sound effects, so give

it a shot.

26

Technical Description: This function is the equivalent of chang-

ing both the pitch and tempo in one go. A higher pitch delivers a

faster tempo, and vice versa.

Game Use: If you're going to be using both pitch and tempo

change for a sound effect, this can be handy for doing it with one

effect.

Technical Description: Gradually brings a sound clip from zero

volume to full, or vice versa.

Game Use: A very specific effect which is probably most useful for

tailoring background music or longer sound effects (power up and

power down sequences, for example). Can replace amplify in certain

circumstances.

Technical Description: Adds a basic echo.

Game Use: Handy for dramatic announcements or sound effects in

a cave.

Hints: Most uses for the echo will involve decreasing the default

delay time. A high delay time may sound good in certain areas (ex-

perimenting to find exotic sound effects is great) but generally it just

makes the effect rather confusing.

Technical Description: Puts the sound clip back-to-front, so that the

end plays first.

Game Use: Can be used for a wide range of funky effects. If you're

keen to experiment with a sound, try reversing it and see how it comes

out!

Hints: If you know how to use stereo tracks in Audacity (it's a more

convoluted process than you may experience in some other programs –

check Audacity's help file for more details), you can reverse one of the

channels and leave the other one playing normally. This occasionally

grants a really cool effect.

Change Speed
Fade In / Out

Reverse
Echo (Echo)

27

These are just a few of the simpler effects in Audacity. Fiddling with some of the more complex tools can lend more interesting effects, but the point

of this tutorial is to provide you with the basics, to be able to confidently tweak your own sounds and get rid of the more glaring problems in your

files. If you seriously want to go into sound editing and file fixing, it's worthwhile to consider finding a more powerful and/or specialised application

to do the job. Many programs come with sets of filters and tweaks that can offer you a wider variety of sound wizardry (useful in generating robot

voices, impacts and other common effects). However, do not to underestimate the power of a well-recorded sound and a few choice effects – after

giving it a shot, you'll wonder how you ever settled for your database of 1001 Free Sounds for your day-to-day gamecrafting.

Remove ClicksAmplify
Technical Description: Increases or decreases the volume of the selected sound clip.

Game Use: This is mainly to place emphasis on a certain portion of a sound. For example,

if you want an explosion to start off loud and then trail off, you can use amplification to tweak

various parts of the sound. You can also use it to get all the sound effects in your game on

acceptable volume levels. There's no point in your water sound effects drowning out the sound

of loud bangs, after all.

Hints: If you're recording your own sounds, don't rely too heavily on amplify to fix your

volume. Making sounds louder will increase the chance of background noise becoming no-

ticeable. Conversely, screaming into the microphone and then

reducing the volume probably won't get rid of the distortion that

sometimes crops up. Use amplification for minor tweaking only.

Also note that there are several more advanced amplification

tools in Audacity (Normalize, Compressor, Equalize, etc). Learn

to use these if you want to fine-tune, or perform finicky volume

tasks, otherwise you should be able to ignore them.

In Conclusion

Technical Description: This is the easiest way to remove that

horrible crackly effect that one typically encounters when using ama-

teur recording equipment. Make your sounds crisper and less ‘pol-

luted’ with this filter.

Game Use: If you've got ‘clean’ sound effects mixed with crumbly

messes in your game, it helps to apply this effect to the culprits.

Hints: This isn't a perfect effect, so try not to rely on it too heavily.

Rather make an effort to generate a smooth sound before it goes into

the Audacity editor. If you truly feel confident, try using the Noise Re-

moval effect instead (this will require you to capture a separate noise

profile and then use it to remove noise in other parts of your clip).

28

Quad Trees

Quad trees are 2D data structures, useful for efficient representation of 2D data (such as images), and look-

up in a 2D space (where are those monsters?). In this tutorial, we focus on the implementation of quad trees that represent 2D data

efficiently; that is, where quadtrees can be used to compress data. Although quadtrees can be used with a variety of data types,

we will focus on colour data (images) in this tutorial. In part 2 we will look at more general applications, such as occupancy maps

and force fields. We also look at the properties of data that determines whether it is suitable to represent as a quadtree.

 Quadtrees take advantage of the fact that cells in a grid are often the same as adjacent cells – for example, a red pixel is very

likely surrounded by other red pixels. Thus, we do not need a data point for every pixel, as we do when we use a grid – we can use

a single point for an entire section of the grid.

Herman Tulleken.

29

Implementation

Every node on a quad tree has exactly 4 or 0 children. A quad tree is always constructed from a grid that contains the raw data. The root

node represents the entire grid. If the grid does not have enough detail, no children are necessary, and the entire grid is represented by one

data item contained in the root. If, however, the data is interesting enough, every quadrant of the grid is represented by a child node. These

nodes can be further divided based on the squares of the original image they are to represent, and so on, until every piece of the image is

represented by a single node.

New groupings for the quad tree, with no toler-

ance. Note that there is not any detail in the larg-

er blocks, so we do not need to subdivide them.

New groupings for the quad

tree, with a higher tolerance.
The original image, represented as

a grid.

The tree representation.The tree representation.

30

Quad Tree with RectanglesQuad TreeOriginal

To implement a quad tree, you need to do five things:
•	 define a QuadTree class;
•	 define a Node class;
•	 implement a detail measuring function;
•	 implement a construction algorithm;
•	 implement an access algorithm.

These are explained below.

31

Defining the Quad Tree Class

This class is very simple: it stores the root node and the algo-

rithms, which are explained in the sections below. Here is how

that would look in Java:

class Quadtree
{
 Node root;

 QuadTree(Grid grid){…}
	
 Color get(int x, int y){…}	
}

Defining the Node class

The node class is where most of the work is done. It should store its four

children (possibly all Null), and be able to handle construction and access

functions.

class Node
{
 Node children[];
 int x, y;
 int width, height;

 Node(Grid grid, int x, int y, int width, int
height){…}

 Color get(int x, int y){…}
}

32

Detail Measure Algorithm

This algorithm calculates the amount of detail on a rectangle of the grid. How that detail is measured, depends on the application. For images, the average Manhattan

distance between colours and the average colour is a crude measure that often works well. The Manhattan distance between two colours is defined as:

d = |r1 – r2| + |g1 – g2| + |b1 – b2|,

Where ‘r1’ is the red component of colour 1, and so on. Note that the entire grid is passed to the algorithm, with extra parameters to indicate the boundaries of the piece

we actually want to measure. We also define a help function to calculate the average of a rectangle in a grid.

// Calculates the average color of a rectangular region
of a grid
Color average(Grid grid, int x, int y, int width, int
height)
{
 int redSum = 0;
 int greenSum = 0;
 int blueSum = 0;

 //Adds the color values for each channel.
 for(int i = 0; i < x + width; i++)
 for(int j = 0; j < y + height; j++)
 {
 Color color = grid.get(i, j);
 redSum += color.getRed();
 greenSum += color.getGreen();
 blueSum += color.getBlue();
 }

 //number of pixels evaluated
 int area = width * height;

 // Returns the color that represent the average.
 return Color(redSum / area, greenSum / area, blueSum
/ area);
}

// Measures the amount of detail of a rectangular re-
gion of a grid
Color measureDetail(Grid grid, int x int y, int width,
int height)

{
 Color averageColor = average(grid, x, y, width,
height);

 int red = averageColor.getRed();
 int green = averageColor.getGreen();
 int blue = averageColor.getBlue();
 int colorSum = 0;

 // Calculates the distance between every pixel in the
region
 // and the average color. The Manhattan distance is
used, and
 // all the distances are added.
 for(int i = 0; i < x + width; i++)
 for(int j = 0; j < y + height; j++)
 {
 Color cellColor = grid.get(i, j);
 colorSum += abs (red – cellColor.getRed());
 colorSum += abs(green – cellColor.getGreen());
 colorSum += abs (blue – cellColor.getBlue());
 }

 // Calculates the average distance, and returns the
result.
 // We divide by three, because we are averaging over
3 channels.
 return colorSum / (3 * area);
}

33

Construction Algorithm

The construction algorithm can be put in the constructor of the Node class. The constructor of the actual QuadTree class simply constructs the root node. The al-

gorithm is simple: the detail is measured over the part of the grid that the node is meant to represent. If it is higher than some threshold, the node constructs four

children nodes, each representing a quadrant of the original rectangle. If the detail in the rectangle is lower than the threshold, the average colour is calculated for

the rectangle, and stored in the node. The threshold value passed to the function is often determined empirically – that is, you change it until you get what you want.

Obviously, the smaller it is, the more accurately the quadtree will represent the original data, and the more memory and processing time will be used.

// Constructs a new Quadtree node from a grid, and pa-
rameters
// that indicate the region this node is to represent,
as well as
// the threshold to use to decide wether to split this
node further.
Node(Grid grid, int x, int y, int width, int height,
threshold)
{
 this.x = x;
 this.y = x;
 this.width = width;
 this.height = height;

 if (measureDetail(grid, x, y, width, height) <
threshold)
 {//too little detail
 color = average(grid, x, y, width, height);
 }
 else
 {//enough detail to split

 children = new Node[4];

 //upper left quadrant
 children[0] = new Node(data, x, y, width/2,
height/2);

 //upper right quadrant
 children[1] = new Node(data, x + width/2, y,
 width - width/2, height/2);

 //lower left quadrant
 children[2] = new Node(data, x, y + height/2,
 width/2, height - height/2);

 //lower right corner
 children[3] = new Node(data, x + width/2, y +
height / 2,
 width - width/2, height - height/2);
 }
}

34

// Returns whether this node has any children.
boolean isLeaf()
{
 return children == null;
}

// Gets the colour at the given pixel location.
Color get(int i, int j)
{
 if isLeaf()
 {
 return color;
 }
 else
 { // Decides in which quadrant the pixel lies,
 // and delegates the method to the appropriate
node.
 if(i < x + width/ 2)
 {
 if(j < y + height / 2)
 {

 return ((Node) children[0]).get(i, j);	
 }
 else
 {
 return ((Node) children[2]).get(i, j);
 }				
 }
 else
 {
 if(j < y + height / 2)
 {
 return ((Node) children[1]).get(i, j);
 }
 else
 {
 return ((Node) children[3]).get(i, j);
 }	
 }
 }
}

Access Algorithm

The access works as follows: if the node from which the method is called is a leaf (a node without any children),

that node’s colour is returned. Otherwise, the call is delegated to the child node of the correct quadrant. The

method is shown below:

35

Real-world Implementation

The typical real-world implementation will differ in sev-

eral respects from the simple implementation described

above:

•	 Integers will be used to represent colours in the

raw data and Nodes, rather than Colour objects;

•	 Intermediate values of colours will be stored as

floats, where component values are scaled to lie between

0 and 1;

•	 Whatever detail function is used, its output will be

scaled to lie between 0 and 1. (This makes it easier to

determine a correct threshold);

•	 Adding several hundred (or even thousand) red,

blue and green values will cause overflow problems. The

summands are often scaled before they are added (for

example, the division by the area can be done before they

are added to the sums);

Calculating the average is expensive; where it is used as

part of the detail measuring algorithm, it will be calculated

separately, and passed to this function, so that the value

can be reused.

Debugging Tips

•	 Implement a way to visualise the quad tree, even

if the quad tree does not represent an image. In addition

to the normal visualisation, also implement visualisations

that:

o	 render every square in a different colour (see exam-

ple algorithms http://arxiv.org/abs/cs.CG/9907030);

o	 render outlines of blocks over the normal visualisa-

tion.

•	 Implement a visualisation of the error of your quad

tree representation against the original;

•	 For benchmarking, implement node count methods

for counting:

o	 all nodes;

o	 all leaf nodes.

This is useful to make sure that a quad tree is indeed a more

efficient representation of you data (for example, white

noise will be better represented by a grid).

Resources
http://www.ics.uci.edu/~eppstein/gina/quadtree.html A list of quadtree re-

sources from Geometry in Action.

Downloads
You can download examples of implementations in Java and Python on code-spot:

http://www.code-spot.co.za/2008/10/06/quadtrees

http://arxiv.org/abs/cs.CG/9907030
http://www.ics.uci.edu/~eppstein/gina/quadtree.html
http://www.code-spot.co.za/2008/10/06/quadtrees

36

37

Rigid body dynamics is a term used to describe the motion and behavior of solid physical objects;
simulating such things as friction, gravity and collision responses, in the six degrees of freedom that describe the state of

most physical objects. A movement along any of the three dimensional axes is referred to as ‘translation’, and is described

by the nautical terms of heaving, swaying and surging. ‘Rotation’ around the axes is described by roll, pitch and yaw. Rigid

body physics ignores the potential deformations of objects during collision and motion, and focuses only on linear momen-

tum (movement and force in a certain direction) and angular momentum and torque (governing rotation and rotational

force). This is commonly used in the current generation of video game engines and is also simulated by Blender’s Game

Engine.

Blender
RigiD Body Physics

Claudio “Chippit” de Sa

38

Blender Game Engine

An underused feature of Blender, the ability to create games in its engine,

has been steadily increasing in flexibility and power, as is true for most other

aspects of Blender’s functionality. While the more advanced features of the

BGE are reserved for future issues, and out of the scope of this tutorial, we’ll

be using some of its basic functionality to create rigid body physical simula-

tions. The ‘record to IPO’ feature and the physics engine itself.

 To get started, you need to ensure that Blender is set to simulate using the

Bullet physics engine – the most advanced engine currently implemented.

This should be the default setting for all Blender versions newer than 2.42.

If you don’t have it, it’s probably time to upgrade. The relevant options are

grouped under the Shader context menu -> World buttons. In the ‘Mist/

Stars/Physics’ tab you’ll find the choice of physics engine, as well as a global

gravity value.

Scene set up

Physics engines need objects to operate on. Whilst the bullet engine can op-

erate on complex objects; boxes, spheres and planes are the fastest and sim-

plest to use. I’ve set up a quick example scene using a haphazardly stacked

pile of boxes, a ball, a plane to represent the floor, and another plane for the

ball to roll down.

The key to a successful rigid body simulation is - as with the other simulations

previously covered - a good setup. Every object needs to have certain prop-

erties defined, the most important being their collision type and their mass.

All the relevant options are visible in the Logic context. Note that before you

place a large quantity of objects in your scene, you will need to define physi-

cal properties for each item individually. If you plan to have a lot of items in

the scene with identical or similar properties, it is often best to create a single

one, set up its collision properties, then make duplicates of it.

39

Object Properties

Rigid body objects are actually comparatively simple to set up and use. A

quick overview of each relevant option follows:

Actor: This object is active and will be evaluated by the game engine.

Ghost: This object will not collide.

Dynamic: Object obeys the laws of physics.

Rigid Body: For accurate rigid body calculations, including angular veloc-

ity and momentum, necessary for rolling motions.

No sleeping: Object will never enter a ‘rest’ state where simulation stops

running on it.

Mass: Total mass of the object.

Radius: The radius of the sphere that represents this object’s bounds.

Only necessary for a spherical collision setting.

Damp / RotDamp: Damping values for all movement and rotation.

Bounds: Specify object collision bounds for physics. If you do not specify

one of these, the collision engine will use the actual mesh. Choosing one

of these usually speeds up your computation time, however, so it is recom-

mended where possible. Within the bound menu are three settings.

Static triangle mesh: For complex shapes that do not move, commonly

used for terrain or static obstacles.

Convex hull polytope: Will use the smallest convex hull as the collision

mesh for this object.

Sphere/Cone/Cylinder/Box: Uses the specified shape as a collision

mesh for the object.

Compound: The object is made of multiple compound shapes. Used for

more complex simulations where objects are tied together with child/par-

ent relationships, to make more complex shapes.

Because our planes aren’t going to move, we don’t need to do anything

to them; they’ll collide with objects automatically. The other’s need a few

changes, however. The boxes should have ‘Actor’, ‘Dynamic’, and ‘Rigid Body’

enabled, together with Box bounds. The ball is the same, but with spherical

bounds. Be sure to set the radius setting to match the size of the sphere.

You’ll notice that the radius is represented graphically in the Blender 3D view,

though it’s often easier to see in wireframe mode.

40

Tying everything up

Once you’re confident that all your objects are set up, simply

press P or select Start Game from the Game menu in the

main Blender menu bar to start the simulation. If all goes

well, you should see the ball roll down the slope and strike

the boxes placed at the bottom, all in real-time. Press Escape

to end the game simulation when you’re done.

Now, it’s all well and good that everything is moving as it

should, but it still won’t do any good if we want to render this

as a proper scene. The BGE provides a Record Game Phys-

ics to IPO feature that will take all movement in a game and

record it to all the involved object’s IPO curves, for tweaking

and proper rendering. Enable the option in the Game menu

then run the simulation again.

Once it completes, you’ll see that you can step through the

baked animation just like any normal keyframed animation.

You can also edit the IPO curve, just as you would do other-

wise. Note that the IPO curve also defines where an object

will be at the beginning of the game simulation. If you wish

to move an object after you’ve already recorded a previous

animation to IPO, you’ll either need to clear the IPO curve or

add a keyframe with the new position at the starting frame.

That’s all for this month. Next time we’ll get to actually using

the BGE for what it was intended. Interaction and making

games! Have fun till then.

41

42

A Retrospective glance at

Game.Dev Competions
Part 1

Compared to most other game development competitions, Game.Dev's fondly-named “Comps” have always
stood out on one particular front: each new incarnation has always set out to challenge, direct and develop entrants within the

field of game development. Instead of the oh-so-typical “create a game about kitties and/or mudkips” mentality that many mainstream

events focus on, the Game.Dev competitions have always sought to home in on an aspect of game development that people don't always

consider, and try to train new developers in the techniques that it describes. Although some may frown upon this method and drop out

as a result, those who engage with the competitions often emerge from the experience as more mature and insightful developers.

 Since January 2005, Game.Dev has worked to inspire and lead game developers with these competitions, and some truly intriguing

titles have come about as a result. What follows is an overview of early Game.Dev Comp history, along with the lessons that people have

learned along the way. Read on and be inspired.

GLEach Comp has a lesson to be learned

Look out for the Game Develop-

ment Lesson from each one!

Rodain “Nandrew” Joubert

43

The Game.Dev competitions had very humble be-

ginnings, as most things tend to. Comp 1 started

off as a simple idea posted on the NAG forums

in January 2005, before Game.Dev itself even ex-

isted. The concept was basic and the criteria were

broad: make a game, any game, and post it on

the forums for judgement. The competition even-

tually produced five games, most of them using

the recommended development tool, Game Maker.

These entries were crude compared to later of-

ferings, but they proved one thing: there was an

interest in game development amongst gamers

(who would have thought?). Even though some

people scoffed at the idea of such a 'childish' tool

being used to craft games, anyone who bothered

to download this free application and take the

time to fiddle about with it was generally able to

produce results by the time the competition came

to an end.

Make a game. Any game.
Go for it.

It's possible to make videog-
ames, whoever you are, what-

ever your experience level.

After a month of downtime (and the creation of

its own forum), Game.Dev decided to host its sec-

ond competition, themed around circles versus

squares. The group was still rather young and

wide-eyed at this point, but the competition pro-

vided several entries from members who would

later become influential components of the Game.

Dev group. In any game, it’s important to look at

the fun factor first – you can get to the rest of it

later. Comp 2 produced some hearty entries from

people who used circles and squares to their best

effect to create a fun and engaging experience,

limited to a simple graphics set and forced to fig-

ure out how they can make their game stand out

from a field of similar-looking entries.

Game.Dev’s Comp 3 asked gamers to do a remake

of famous old-school games (aside from a few hor-

ribly cliché ones such as Pong and Tetris). The re-

sults were interesting, to say the least. Some opted

to take the classics and improve upon old dynamics

with the availability of better development tools and

greater processing power. Others took even more

creative routes and merged several classics to cre-

ate an entirely new game using rules from each.

This competition was possibly the first to display the

game development maturity of entrants: the top

games homed in on the most fun aspects of these

bygone offerings, proving that they understood what

made great games great; adding improvements in

the correct places to make these titles even better.

After all, everybody knows that PacMan is famous;

not everybody truly understands why. To excel in

game development, Game.Dev wanted entrants to

analyse the games they play more critically, and

adopt that special ‘game developer’ mindset that’s

critical for anybody who wants to do gamecrafting

for a living.

Great games can be made with
the simplest of graphics.

Circles vs Squares

It pays to study the classics.

Remakes

GL

Comp1

Comp2

Comp3

GLGL

44

Simple Rules,
Complex Game

Action!

Polishing an Old Game

Too often, game developers try to make a good game

by adding more bells and whistles. Not enough va-

riety in your project? No problem, just add more

enemies and abilities... Right? Wrong. A flawed

game doesn’t become better simply because you

add more features – it’s the core dynamic, that little

kernel of your game which defines it and makes it

special. This was an exercise to create a few rules

that the game developer could twist and manipulate

to generate a massive variety of gaming scenarios,

and exercised the creativity and flexibility of devel-

opers. This particular competition produced one of

the finest games of Game.Dev’s early era – an of-

fering titled Roach Toaster which stood head and

shoulders above the rest of the entries up until that

point and raised the bar for all competitions that

followed. It didn’t have mind-blowing graphics. It

didn’t have a load of flashy scripted events. It didn’t

even have sound effects. It just had a basic roach

generation algorithm and a few well-balanced roach

busting tools that were meticulously considered;

providing a player with a simple experience that felt

like an epic.

Action games are difficult. They tend to be real-time

and a lot of control leaves the developer: you can’t

force the player to take a turn, deal a specific amount

of damage and tailor the enemy response to provide

a balanced counter-attack. Every split-second mat-

ters; which means that the developer needed a lot

of help to make sure that the game felt ‘just right’

no matter who played it. By the time Comp 5 came

about, a flood of new developers had entered the

forum and it fell upon the established crowd to help

them get into the swing of things. This revealed

a trait about the community which has successfully

lasted to this very day: an openness and friendli-

ness which is crucial for allowing good game devel-

opment. Whether an entrant was a development

veteran or a complete newbie who had just learned

the concept of ‘player.x + 1’, feedback from the com-

munity was inevitably constructive and helped make

early, clumsy offerings into golden games by the end

of the competition month. Those who posted early

drafts excelled in this competition, because instead

of relying on a single developer to playtest and hunt

for bugs in their title, these entries had the feedback

and collective expertise of at least a dozen enthusi-

asts to back them up.

Game.Dev’s Comp 6 decided to go in a slightly differ-

ent direction and forced entrants to look at previous

work for inspiration. Most new game developers are

quick to generate a fun or quirky title, but tend to

lose steam after they’ve finished a “full go” of the

game or realised that there were too many extra re-

sources to generate easily. Comp 6 was very much

a discipline competition – people are often reluctant

to revisit their old creations, favouring a hop to new

titles, rather than lingering with the old. But polish

is important for good game creation, and most of

the successful games out there weren’t simply done

with one take – they repeatedly changed as develop-

ment progressed, and no matter how heartbreaking

it may be to throw away a particular piece of code

or artwork and start again, it’s necessary to allow

growth in your game where it’s needed. Successful

competitors were also generally able to modify their

games quite easily – they’d left enough room in the

design for change, rather than creating a static game

with no opportunity for expansion. Remember to

plan ahead when designing your game – you never

know how it may change at the end, and it’s much

better to modify a small amount of code rather than

being forced to restart the whole mess.

Less is more.

Playtesting and fellow
developers are golden.

You can always improve.

Comp4 Comp6

Comp5

GL

GL GL

45
Style.

Consume!

Google it!

Have you ever played a game with that certain X

factor that made it really special? That feeling or

vibe which turns an average Joe game into some-

thing a little more involving? Style is an elusive as-

pect of game development and competitors found

it difficult to define. In all respects, this was the

most advanced Game.Dev Comp to date – not only

were people required to craft a game, but they had

to grasp an abstract concept and try make it show

in their final work. To ease the process, this com-

petition was once again oriented around remakes,

to ensure that game developers had a springboard

to launch from instead of floating about in a haze.

Many of today’s remakes often have some sort of re-

vamp or stylish factor to make them more appealing

to players, whether it’s a particular colour theme,

the type of sound effects employed or even just a

funky change of art direction. Once consolidated in

a remake, these sort of ideas can be carried over

and used in original games, to put your own unique

stamp on your work.

By this time, Game.Dev had evolved even further and

was beginning to look at other development groups

for inspiration and ideas. The idea for this Comp

came from Experimental Gameplay, a site known

for its interesting prototypes, which was holding a

similar competition at the time. There were two

major points in this competition: firstly, the descrip-

tion was simply ’Consume’, affording a great deal of

flexibility to entrants keen to pump up their creativ-

ity. Secondly, each entrant was required to submit

two games instead of one. The result was that de-

velopers had to learn the skill of prototyping – rap-

idly conceptualising and establishing the framework

for potential games without getting bogged down in

details or long-term development. Prototyping is an

incredibly important skill in game development: new

developers often try to make “the next big game”

and end up getting bogged down with a concept

that often isn’t all that good. A far better idea is the

rapid generation of several minor game concepts,

allowing the developer to gather a broader range of

experience and browse through an entire collection

of ideas to see which one works the best.

Comp 9 was odd in the way that the lesson it taught

was quite dramatically different from the one which

was originally thought up. After more than a year

of competitions (running one every two months),

Game.Dev decided to engage developers a little

more and have them looking in rather exotic direc-

tions. The premise for this one was therefore quite

creative: entrants were each given three words to

use, and all of their in-game graphics needed to

consist of imagery extracted from Google image

searches based on these three words. This was

meant to be another competition which focused

on the generation of good gameplay, while forget-

ting about complicated graphics. Unfortunately, for

some developers, this task was a little too restric-

tive – they found themselves developing games that

they didn’t feel entirely comfortable with, and the

results showed in these cases. Discipline is impor-

tant in game development, but it’s also important

to remember that game development is an expres-

sion of your own creativity and enjoyment, and that

the best titles are created when the developers love

what they’re doing.

Style counts too.

Prototyping is vital.

Game ideas can’t be
pulled out of a hat.

Comp7

Comp8

Comp9

GL
GL

GL

46

Management Games

By the time Game.Dev had hit the double digits for its com-

petitions, it had gained enough influence and enough of a

following, to attract a sponsorship of a R10 000 (just over

$1000) cash pool for Comp 10. This was met with consider-

able enthusiasm from the community, and to do justice to this

cash sponsorship, it was decided that the competition would

run for an extra month, focusing on a particularly challenging

subject: management games. This genre, more than most,

requires developers to carefully think out their game design

in advance, considering every addition to their game and how

such an addition would affect the rest of the objects already

in play. Although it was the players who would ultimately be

keeping track of resources and variables, it was the developer

who needed to pay meticulous attention to ALL of these val-

ues to ensure that the game remained consistently challeng-

ing and fun to play. Planning was key, and the winner of the

competition (a game titled “Fast Food in Space”) exemplified

this principle by providing players with a management game

that kept developing and offering new challenges as play-time

increased, ultimately providing a steadily rising difficulty curve,

which managed to keep gamers hooked for multiple playing

sessions.

Balancing is trickier than you
think.

This concludes Part 1 of the Game.Dev Comp series. Check next month's
Dev.Mag for the second half of the series, where we investigate more
contemporary competitions, and see where they've taken participants fol-
lowing their first tender steps nearly four years ago. If you're from South
Africa and are interested in entering Game.Dev's latest competition, keep
an eye on the Website (www.gamedotdev.co.za) and scout about on

the forums for news of the most recent offering.

Comp10

GL

That’s it...for now

www.gamedotdev.co.za

47

www.devmag.org.za

Gear Count:

It’s time for our

favourite game!

Ho-down!

Go call your

mom.

OHsnap!

	2 - Home
	3 - Editorial
	4 - News
	5 - Feature - Multiwinia
	9 - Feature - BLUR
	14 - Review - Glyph Hunter
	16 - Review - Lost Garden
	18 - Dev - Level Design
	22 - Dev - Audacity
	27 - Dev - Quad Trees
	36 - Dev - Blender
	41 - Tailpiece

	Button 60:
	Page 1: Off
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:

	blender:
	Button 48:
	Button 49:
	Button 50:
	Button 51:
	Button 54:
	Button 55:
	Button 56:
	Button 57:
	Button 58:
	Button 59:
	Button 61:

