
1

INSIDE: Multiwinia O LUMA on BLUR O Looking at DreamBuildPlay 2007 O Making your own
webgames with the Google App Engine O Monochrome reviewed O News + Reviews

+ Other stuff too!

Issue 25 September 200808

2

Development

Features

REGULARS

We take a first look at the Survival of the Flattest, the antici-
pated sequel to Darwinia!

3

In part 2 of our Google App Engine tutorial, we have look
at making a basic web game! Includes epic page count!

This issue we have a look at Fluid Dynamics, and making
things go splash!

17

31

4

5

Reviews

We have a look at Monochrome and find out
it’s black and white, and everything in between

13

Tailpiece

We take a gander at the DreamBuildPlay
competition

36

We sit down with LUMA’s developers and talk about their new
LumaArcade title, BLUR!

8

Find us on Facebook! Become a fan of Dev.Mag and help

spread the word!

http://www.new.facebook.com/pages/DevMag/35132917515

3

EDITOR
Claudio “Chippit” de Sa

DEPUTY EDITOR
James “Nighttimehornets” Etherington-

Smith

DESIGNER
Quinton “Q-Man” Bronkhorst

CONTRIBUTORS
Rodain “Nandrew” Joubert

Simon “Tr00jg” de la Rouviere
Ricky “Insomniac” Abell

William “Cairnswm” Cairns
Danny “Dislekcia” Day

Andre “Fengol” Odendaal
Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans
Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom
Kyle “SkinkLizzard” van Duffelen

Chris “LionsInnards” Dudley
Herman Tulleken

WEBSITE ADMIN
Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the South African
Game.Dev community. Visit us at:

www.devmag.org.za

All images used in the mag are copyright and
belong to their respective owners.

Sarah was a pretty little girl, but she didn’t
live to see past the age of 7, much thanks to
the HADRON COLLIDER MAKING THE

ENTIRE UNIVERSE FOLD IN ON IT-
SELF! DEATH! SCREAMS OF TERROR!

DEAAAAAAAAATH!

So things are getting a little frantic now. The

local rAge expo is literally around the corner,

and, in order to keep up traditional presence

there we’ve had to shift up our release sched-

ule by one week to have the next issue of the

magazine ready by then. Which means we’re

all scrambling to make sure we’ll have some

great content to offer for that special issue;

it also means that the magazine will be ready

quite a bit earlier than usual. Rejoice, dear
reader, rejoice!
 Additionally, there is a little under two weeks

left before the DreamBuildPlay entry dead-

lines as I write this, and the teams are start-

ing to feel the strain and pressure; fears about

whether or not the games will actually be done

in time niggle at the edges of our minds as

final gameplay is tweaked and proper content

is added. And all that means that I don’t re-

ally have all that much to say this month that

won’t be tainted with the C# and sheep that

are breeding in my mind at the moment.

 Content for this issue is unfortunately a bit

sparse as a result of the overly eloquent ex-

cuses listed above, but we haven’t skimped on

what we have. And that includes a positively

gargantuan conclusion to the Google App
Engine tutorial we started last month. And,

because we’re currently a little DBP crazy,

we’ve got a nice informative tailpiece on how

the competition turned out last year. But you’ll

certainly see all this more efficiently with a

glance at the index page, so I’ll leave it there.

 That means it’s about time I get back to mak-

ing fluffy sheep… fluffy. Till next month, (which

is actually the end of this one, but that’s al-

most too confusing and daunting to

think about right now) enjoy!

~ Claudio, Editor

4

Castle Crashers finally released
on XBLA

http://www.castlecrashers.com/

After many delays, indie devs The Be-

hemoth’s newest title, Castle Crashers,

finally joins Alien Hominid in their Xbox

Live Arcade portfolio. Despite reports of

persistent bugs that still plague the game

even after its long trek through Microsoft’s

preliminary tests, the game is as fun as

expected and its numerous references to

internet culture show that it doesn’t com-

promise on any of its roots. The game’s

soundtrack also primarily consists of con-

tent submitted to Newgrounds’ Audio

Portal.

DreamBuildPlay Warm-Up
Challenge winners

http://www.dreambuildplay.

com/main/winners.aspx

This year’s DreamBuildPlay content was

preceded by a ‘warm-up challenge’, fo-

cusing mostly on artificial intelligence

and production quality, all to get devel-

opers into the swing of things for the

main DBP contest. The winners of the

Warm-Up Challenge were recently an-

nounced, netting themselves a small

but not insignificant cash prize as well

as potential opportunities at studies like

Rare Ltd. and Lionhead Studios, who

will interview the winning developers.

Knytt Stories bound for
DS?

h t t p : / / t i g s o u r c e . c o m /

articles/2008/08/28/knytt-

stories-on-the-ds

A video recently floating around

on video-sharing site, Youtube,

has shown a dedicated fan’s ini-

tial efforts in porting Knytt Sto-

ries to the Nintendo DS handheld

platform. While it hasn’t come

very far, and it appears to be an

unsupported venture and doesn’t

appear to have come very far yet,

such gestures are a massive boon

to developer morale.

http://www.castlecrashers.com/
http://www.dreambuildplay.com/main/winners.aspx
http://tigsource.com/articles/2008/08/28/knytt-stories-on-the-ds

5

Multiwinia: Survival of the Flattest is the latest addition to a stream of
great games made by Introversion. If the name Introversion doesn’t ring a

bell, one might recall the likes of the hacking simulator Uplink, the retro revivalism of

Darwinia and the ICBM fan club’s favourite game, DEFCON.

Simon “Tr00jg” de la Rouviere

Multiwinia
Survival of the Flattest

it's here...

6

Sandwiched between an array of great games and a very promising lineup of future

titles – which include the likes of Subversion and Chronometer – is Multiwinia, the

multiplayer adaptation of Darwinia. After droves of Darwinia fans drooled over the

concept of loads of bitty hominids destroying each other, their greatest wish was

confirmed when Introversion announced Multiwinia early in 2007. Armed with the

knowledge gathered during the creation of DEFCON and the acclaimed Darwinia,

could Introversion possibly go wrong? Once the preview code landed on the Dev.

Mag desk (well technically it arrived in the postbox), we were ready to find out!

Apart from the preview code there came packaged a really neat blue spongy-type

Darwinian. He knew better than to be involved in the

mess of war and promptly escaped!

 The game takes place in Darwinia, a virtual world

created by Dr. Sepulveda. In this fractal world, live the

peaceful and law-abiding virtual life forms called Dar-

winians. In Multiwinia’s predecessor, the player fought

against a virus that ravaged across the lands. After de-

feating the virus that infected their land of Darwinia, the

Darwinians decided to do what the humans do: break

up into factions and wage war on each other for (virtual)

world supremacy!

 All of the great elements of Darwinia are back, such the

gorgeous fractal graphics. In the age of ultra-high-def

graphics, it is a relief to see a game with some real style.

The simple controls make a return, ensuring

that commanding Darwinians is as

easy as drawing one. With ‘WASD’

the camera is moved, and the rota-

tion is done with the mouse. A ring

expands when the left mouse button is held down; all of the Darwinians inside the

ring will then be selected, ready to be issued commands.

 There are no unit buildings, only spawn points. If the player is in control of one,

Darwinians will start pouring out. A very useful feature is the ability to promote a

Darwinian to give directions. If an idle Darwinian falls beneath the line of direction

indicated by the promoted Darwinian, it will move that way. To sway the tide of

battle, crates drop from the sky, carrying power-ups such as air strikes, reinforce-

ments and turrets. It is strange to think of it this way, but that is all there is to

Multiwinia; very simple and straight forward.

“He knew better than to be involved in the mess

of war and promptly escaped!”

7

 The preview code only had skirmishes in two of the game modes;

King of the Hill and Capture the Statue. King of the Hill is a fairly tra-

ditional game mode; the longer a player holds a certain location on

the map, the more points that player earns. In Capture the Statue,

the player must fetch a statue on the map and take it back to their

base.

 The other game modes available in the full version are Domina-

tion; Rocket Riot; Assault; and Blitzkrieg. In Domination, one simply

has to annihilate all of their opponents to win. In Rocket Riot, the

player has to protect their rocket and capture solar panel arrays to

power it up for launch. In Assault, one player starts behind a heavily

fortified base. The players take turns to see who protects their base

the longest. In Blitzkrieg the player must capture crucial flag points

across the map.

 Multiwinia doesn’t start off slow like some other RTS games. It is

a very frenetic affair right from the start. Considering the simplicity

of the game, Multiwinia is very easy to pick up. Strategy fans look-

ing for elements such as complex technology tiers and unit strengths

and weaknesses won’t find them with Multiwinia.

 In most modern RTS titles, doing everything very fast usually

ends in victory. Whether that constitutes a true strategy is another

debate. With Multiwinia, it is refreshing to see a competitive RTS in

which being tactical usually wins over being fast.

 As mentioned, there isn’t really much depth to the game and thus

it is unlikely to see Multiwinia becoming something more than a ca-

sual multiplayer game. While Multiwinia is perfect for those coffee-

break games, the game really comes into its own when played at a

LAN with lots of players on one huge map. It is therapeutic to see

armies upon armies of Darwinians duking it out across the gorgeous

fractal world.

“The Darwinians decided to do

what the humans do: break up

into factions and wage war on

each other for (virtual) world

supremacy!”

8

LumaArcade is a prominent figure in South African game de-
velopment, showcasing successful projects such as Mini #37. Dev.
Mag managed to nab a few of the key developers; and in this, part 1,
we chat to Luke Lamothe, focusing on their newest offer, BLUR, which
will be available on InstantAction for free play soon.

BLURRINGThe lines

Sven ‘Fuzzyspoon’ Bergstrom

9

Dev.Mag: As lead developer on BLUR,
what facets of development did you enjoy
most?

In terms of programming for BLUR, there wasn’t a

single aspect that really stood out as being enjoy-

able per se. As we were using a ‘complete’ game

engine in the form of the Torque Game Engine

(TGE), I wasn’t really responsible for doing anything

too exciting. Game development isn’t all HDR and

occlusion mapping! If I had to pick something, it

would probably be a tossup between

the fixes and tweaks to the physics

and collision system required

by TGE in order for as best

a feeling, and behaving

racing

game as possible; and all of the little graphical ad-

ditions that we made to TGE, like skid marks and

ambient lighting lookup maps. As I wore a few hats

during development, I would have to say that over-

all, what I enjoyed most was working with the great

guys at GarageGames during the entire develop-

ment process. It was really nice to work with in-

dustry professionals again, and especially ones who

understand how a small studio works and can give

us the freedom and responsibility to get things done

as we feel best.

Dev.Mag: Conversely, what aspects had
you pulling your hair out?

TGE’s award winning networking. In all

fairness, Torque has a great network-

ing infrastructure that makes it

uber-simplistic to get any

game up and running

in a networked en-

vironment almost

from the word go.

However, this

n e t w o r k -

ing sys-

tem has

some pret-

ty severe flaws in it

when it comes to dy-

namic physical inter-

actions between high

speed bodies, especially

when their relative posi-

tioning is close; in other

words, a car racing game.

Luckily, someone at Garage-

Games had actually already

developed improvements to

the networking system that

all but alleviate these issues,

if used correctly, so I was able

to integrate that code into BLUR,

and after only a few more weeks

of tweaking and fixing things, our

networking was top notch!

10

Dev.Mag: In terms of integration with In-
stantAction, and the in-browser gaming;
how was it different to ‘normal’ develop-
ment?

Making a game for InstantAction doesn’t require

things to be that much different than creating a

game normally. The most important thing is that

the game is designed to be a multiplayer, arcade-

like experience, which people can pick up and play

and have fun with for 5 minutes at a time. Like a

car racing game! In terms of design, the only real

challenge is to make your game mouse friendly, as

the game is run in an Internet web browser and all

of your users will expect to be able to interact with

your game with the mouse. In terms of art, you

have to be very careful about the amount of re-

sources that your game uses so that you can have

the smallest download possible. Ideally, anything

under 20 MB is a good target to aim for. I believe

that BLUR is currently sitting at about 45 MB or so

right now. It was over 100 MB before we converted

all of our images to JPG and JNG. It is broken up into

multiple packages that are downloaded in the back-

ground once a player first starts up the game and

enters the menu

system. In terms

of programming, Ga-

rageGames provides

an SDK which is used to interact with the

InstantAction system, and for tracking the various

states of the game, so that the game and the web

browser are always talking the same language.

Dev.Mag: Which aspects of system layout
and design changed due to InstantAction
integration?

As I kind of touched on already, the biggest chang-

es that we had to make were our menu system

and the size of the game itself. BLUR’s menu ex-

ists almost entirely now in JavaScript in your web

browser. However, we really wanted to have the

car selection screen in full 3D like it was part of the

game (and not just some static webpage), so we

worked with the guys at GarageGames to extend

the functionality of their SDK. Our collective aim

was to allow for game-based widgets to be active

inside of InstantAction, which allowed us to keep

our car selection menu as it was initially designed

to look and function. In order for us to reduce the

download size of BLUR, we first addressed the usual

suspects; reducing texture dimensions as much as

possible, cutting out textures that maybe weren’t

necessary, and reducing sound and music to lower

fidelities. However, our biggest win came from us-

ing lossy compression on our textures, which I was

initially against, as I was worried about the texture

quality suffering. Luckily, after doing quite a few

tests we found that all textures used on 3D models

could easily use a 60% JPEG compression without

any real noticeable quality loss in game. This was

great for our BMP’s that had no alpha channel, but

for out TGA’s with alpha, probably about half of our

texture memory, we needed to come up with an-

other solution. We tried using PNG’s, but they are

essentially just zipped TGA’s, and as the game itself

comes zipped, we didn’t really get a savings by go-

ing to PNG. After talking to GarageGames, they

pointed us towards JNG files which are basically

PNG images saved with JPEG compression.

11

Once we implemented support for these into TGE and

found a good compression scheme, we were able to

save another very large amount of memory, upwards

of 25MB I believe! Textures used for 2D GUI elements

were another matter as any compression on them was

fairly noticeable, so we just stuck with PNG compres-

sion or very lightly compressed JPG’s for them.

Dev.Mag: For BLUR, how did the develop-
ment cycle compare to your first racing title,
Mini#37?

Due to the fact that we cut our teeth working on TGE

by way of MINI#37, most of the development for BLUR

was a much easier process. We did raise the bar a lot

in terms of our art quality, and the physics behaviour

of the game, so there was still a lot of hard work in-

volved. However, as we now knew what to expect with

TGE, we were much better prepared to handle any is-

sues that came up, or to add support for features that

we needed, in order to achieve what we wanted out

of the game. Also, as BLUR was designed from day

one to be a commercial release, it immediately had a

much higher profile, and therefore expectations, than

MINI#37 had. [MINI#37] was really only designed to

be a branding experience in the form of a computer

game that was free to play.

Dev.Mag: For aspiring
developers, what tips
could you pass on?

Always a tough question, no matter how many times I

am asked it. All that I can really say is that if you have a

passion for doing something, whether it is game devel-

opment or something else, then you should stick with

it and do what it takes in order to make a career out of

it. Game development isn’t a traditional career, espe-

cially in South Africa. The avenues that you can take

to further yourself in this discipline are quite often few

and far between unfortunately. Beginners, or people

looking to get into game development, need to learn to

start small and have patience with what they are doing.

Nobody in the industry is where they are now because

they only spent three months making a really rubbish

space invaders clone. It takes years and years of study,

self or institutional, and practice in order to learn what is

ne c -

essary to succeed

as a game developer. For people who have

been doing this for a while now and who still love it,

getting an actual job in the industry can be a diffi-

cult and frustrating process. My best advice for those

people is to keep on making games and to keep on

applying to game development companies if you have

cool stuff to show them. Don’t send them that rubbish

space invaders clone that you made 4 years ago!

 In terms of practice and portfolio, working in teams

is a very important thing to try to do as it shows pro-

spective employers that you can work in a team en-

vironment. It is quite different to being a one man

show. However, the most important advice that I can

give is that you need to finish your games. It doesn’t

matter if you are an artist, a programmer, a designer,

or a sound guy. Employers in the game development

industry want to see that you can stick to your guns

and get the job done.

12

The most exciting part of working on a game is always that initial
phase where your ideas are coming together, you are doing new and

interesting things, and you are seeing immediate results.

The most boring and difficult part is that last 10% when you need
to fix all of your bugs, go over your game play with a fine-toothed comb, and

tweak it until it is just right. Polish, polish, polish! I’ll be the first to admit, that

part of game development sucks. Like, seriously.

Unfortunately, a game isn’t done until it is done, and without the experience of

finishing off projects completely, you really won’t be ready for what awaits you

when you start to develop games for a living.

That ’s what he said...

13

Have you ever felt the urge to kill your friends, but held back because those blood

stains are such a pain to get out of the carpet? Well then, Danny “dislekcia” Day is once again

to the rescue, with top-down multiplayer arcade shooter, Monochrome! You might also need to

get some professional help, but Dev.Mag is not here to judge!

Chris “TheLionsInnards” Dudley

14

 It is a difficult genre to stand out in, as there are

a lot of reflex-heavy free shooters out there, but

Monochrome manages to give a slightly more tac-

tical experience by adjusting the gameplay accord-

ing to the player’s health. As the game starts, each

player spawns as a disk and sets off to make good

on all those pent up grudges held against their

mates. When the carnage begins, and a player is

hit, their avatar diminishes in size, allowing them

to quickly slip away and seek a health pack.

 Monochrome could be said to be ‘frenetic,’ in the

same way as Michael Jackson might be described

as ‘a tad eccentric.’ Projectiles fly everywhere and

it becomes especially intense as deadly sniper

rounds and ice shards whiz past. A couple of dif-

ferent weapons, including a flamethrower, a light-

ning gun and a gun that shoots bouncing bullets,

mix up the gameplay nicely. The ability to leap

out of harm’s way, or in for a close quarters flame-

thrower kill means that one must be constantly

aware of possible hiding spots and getaways.

“it becomes especial-

ly intense as deadly

sniper rounds and ice

shards whiz past.”

15

The three available maps are quite bland, but

one hardly notices the graphics. They offer a

nice variety of open spaces for the ranged fire-

fights and tight corridors for sneaky ambushes.

Occasionally the walls of the maze-like maps

obscure enemies, but it isn’t a major issue, and

can be used to ones advantage.

 Playing by oneself will definitely get boring;

the bots are fully functional, and are fine for a

bit of practice, but the game’s main attraction

is to be able to relax with friends and de-stress

while blowing each other away.

“relax with

friends and

de-stress

while blowing

each other

away.”

16

17

In last month’s issue, I explained how the Google App Engine works in broad strokes,
and how you can use it for your games. Now it is time to get our hands dirty, and look at how an

application is actually implemented. This tutorial explains how to make possibly the simplest game that

can be made: the Guess the Number game. This tutorial covers a lot of ground. Typical of a web app, it

uses lots of technologies, some or all of which you might not be familiar with. In a nutshell, this tutorial will

show you how to program a Python application that generates HTML from Django templates and interacts

with our datastore through GQL queries when the user requests specific URLs through his or her browser.

Making games with

Google App Engine
part 2

Herman Tulleken

18

Before you Start

For this tutorial you will need:

•	 Python runtime (http://www.python.org/download/);

•	 A Google App Engine account (http://appengine.google.com/ – see last month’s issue for

some pointers before you sign up);

•	 The Google App Engine SDK (http://code.google.com/appengine/downloads.html);

•	 The files for this tutorial (http://code-spot.googlecode.com/files/code-spot_0.1.zip);

•	 Your favourite web browser and general purpose code editor;

•	 A working version of this tutorial is located at http://code-spot.appspot.com.

The zip contains these files:

•	 The application setup file (main.yaml);

•	 the Python server side code (main.py, game.py);

•	 some Django HTML templates (*.html), and;

•	 a style sheet (game.css).

Install Python and the GAE SDK. If you are unfamiliar with Python, learn it in 10 minutes from: http://www.

poromenos.org/tutorials/python (provided you can already program in another language).

It is worth going through the SDK Getting Started Guide: http://code.google.com/appengine/docs/

gettingstarted/.

Once you have everything installed, follow these steps:

1.	 Extract the zip file anywhere convenient (for example, C:\code-spot).

2.	 Rename the folder containing the extracted files to your GAE application name (for example, rename

C:\code-spot to C:\my_app).

3.	 Open the main.yaml file with your code editor, and change the application name from code-spot to

your GAE application name (in our example, my_app).

http://www.python.org/download/
http://appengine.google.com/
http://code.google.com/appengine/downloads.html
http://code-spot.googlecode.com/files/code-spot_0.1.zip
http://code-spot.appspot.com
http://code.google.com/appengine/docs/gettingstarted/

19

To test the application locally, from the command prompt, navigate to the application

folder and start up the development server with the following command:

dev_appserver.py .

Note the space and dot at the end. This is the command for Windows – it should be simi-

lar on other operating systems. The dot simply denotes the current folder.

In your web browser, type in the following URL: http://localhost:8080/

Your web browser should now display the interface for the application.

To test your application on the actual server, from the command prompt, navigate to your

application folder, and upload the application with the following command:

appconfig.py update .

Again, note the space and dot at the end. To test the application, navigate to the URL of

your application, for example: http://my_app.appspot.com/.

20

Page Handlers

This project contains two handler applications. The one (main.py) is used to render the page for the root URL; the other (game.py) is used for the

actual game. These files work entirely independently, which makes it easier to move the game, or add other applications to the same domain.

So how does the application server know which python files to execute? It gets this information from the app.yaml file, which associates URL

patterns with handler scripts, or marks them as static content. The handler application file is responsible for mapping specific URL’s with Handler

classes. The file main.py is a very simple example:

main.py

#... imports...

class IndexPage(RequestHandler):
 def get(self):
 # This page does not require any variable values,
 # thus an empty dictionary will do
 template_values = {}

 # Calculate a new path
 path = join(dirname(__file__), 'index.html')

 # Render the template
 self.response.out.write(template.render(path, template_values))

###
Handler mappings
###

handlers = [
 ('/', IndexPage)
]
#

def main():
 application = WSGIApplication(handlers, debug=True)
 CGIHandler().run(application)

if __name__ == "__main__":
 main()

21

The main function is the entry point of the application. It does two things: it constructs a new WSGIApplication in-

stance, with the appropriate list of handlers; and it runs that instance. The list of handlers contains tuples. Each tuple

consists out of a URL and a handler for that URL – a class that extends from RequestHandler. In this case, we have a

single handler mapped to the root URL of our application. The handler defines a get function (this is executed when

you go to the root URL in your browser, for example), that renders an HTML page from a template. Templates are

discussed in more detail below. The HTML is written as the response, which means it would be served to the browser.

The game application follows the same structure; the only difference is that the list of handlers is more elaborate:

Every URL that is part of the game has its own handler class, all of which extends

(perhaps indirectly) from RequestHandler. Rendering a simple page (one that does

not require any template variables), is normally so common, that the functionality has

been put in a base class. Simple pages extend from this class (called SimplePage),

and merely sets up the actual template to render. In addition to the Handlers, game.

py also defines a data class (GameRecord), and some helper functions. Sections below

describe these in more detail.

handlers = [
 ('/game/', IndexPage),
 ('/game/clear', ClearPage),
 ('/game/hello', HelloWorldPage),
 ('/game/play', PlayPage),
 ('/game/test', TestPage),
 ('/game/finish', FinishPage),
 ('/game/your_best_scores', YourBestScoresPage),
 ('/game/overall_best_scores', OverallBestScoresPage),
 ('/game/new_game', NewGamePage)
]

22

Django Templates

It is possible to write HTML directly. For example, the function

that renders the root URL could be defined as follows:

Although writing HTML code to the stream is convenient for simple pages, code can become ex-

tremely messy, very quickly, especially if you have pieces of HTML code that is reused frequently.

A better alternative is to use an HTML template – a file that contains the basic HTML code that

can be configured with variables (similar to embedded PHP). There are many template systems

as it happens; GAE already supports Django templates – simple HTML files with Django markup

in between. Below follows a crash course in Django templates. You can find a complete refer-

ence here: http://www.djangoproject.com/documentation/templates/.

class IndexPage(RequestHandler):
 def get(self):
 self.response.out.write('''
<html>
<head>
 <link type="text/css" rel="stylesheet" href="/stylesheets/main.css" />
</head>
<body>
 <p class="navigation">
 <ul class="navigation">
 Game
 1
 2
 3
 4

 </p>
</body>
</html>'''

http://www.djangoproject.com/documentation/templates/

23

Printing Variables

The value of a variable can be printed by putting it between double braces, like this:

<h1>{{ var }}</h1>

Note that the spaces surrounding the variable are compulsory.

Simple Logic

The following snippet (taken from play.html) shows how conditional statements work in Django tem-

plates. This example will only render the error message if it is not empty:

{% if error_message %}
 <p class="error">
 {{ error_message }}
 </p>
{% endif %}

The example below (taken from records.html) shows how to use iteration to render a dynamic table.

The variable records should contain a list; the syntax works the same as in Python:

<table>
 <tr class="heading">
 <td class="odd">player</td>
 <td>number</td>
 <td class="odd">steps</td>
 </tr>
 {% for record in records %}
 <tr>
 <td class="odd"> {{ record.player }}
 <td> {{ record.number }}
 <td class="odd"> {{ record.steps }}
 </tr>
 {% endfor %}
</table>

24

This image shows how the rendered table displays in a browser.

Inheritance

Every template can define named

blocks. A template can inherit from

another template, and override some

of these named blocks. In the exam-

ple below, the parent HTML sets up

all the HTML that will be shared by all

the files, and defines a block (called

content) that can be overridden by

children. The index file extends from

base, and overrides the content block.

Note that the index file does not con-

tain the HTML and body tags – these

are all defined in the root template:

<!-- base.html (the parent) -->
<html>
 <head>
 <link type=”text/css” rel=”stylesheet”
 href=”/stylesheets/main.css”
/>
 </head>
 <body>
 <ul class=”navigation”>
 New game
 Your
best
 <a href=”overall_best_
scores”>Overall best

 {% block content %}
 {% endblock content %}
 </body>
</html>

<!-- index.html (the child)-->
{% extends “base.html” %}
{% block content %}
<h1>Game</h1>
 <ul class=”navigation”>
 Play

<p>
</p>
{% endblock content %}

25

Includes

Another way to reuse code is to include templates in

other templates. The example below (overall_best_

scores.html) includes the template, records.html,

which is also included in, your_best_scores.html.

Template variables defined in the outer template will

also be defined in the included template.

{% extends "base.html" %}
{% block content %}
 <h1>Overall Top 10 </h1>
 {% include "records.html" %}
{% endblock content %}

How to render templates

Rendering templates is very simple; simply fill a dictionary with the variable that

you expect in your templates, and call the render function with the template path

and template dictionary. Here is an example that renders all the best scores in the

game:

class OverallBestScoresPage(RequestHandler):
 def get(self):
 records = get_overall_best_scores()

 template_values = {
 'records': records
 }

 path = join(dirname(__file__), 'overall_best_scores.
html')
 self.response.out.write(render(path, template_values))

You almost always render a template in the get handler of a class.

Templates are not only for HTML

The nice thing about Django templates is that they can be used for any text format,

not just HTML. That means, for example, that you can generate spreadsheets and

SVG files directly from your data.

26

Defining Data Classes

Making a data class that will work with the record store is easy.

Here is the data model for a game:

class GameRecord(Model):
 player = UserProperty()
 active = BooleanProperty(default=True)

 number = IntegerProperty()
 steps = IntegerProperty(default=0)
 guess = IntegerProperty()

Any class that will be put in the record store must do two things:

1.	 extend from Model (a class in google.appengine.ext.db),

and;

2.	 define class variables as properties that will be the fields

stored in the data store for this kind of record.

The second item needs some explanation. Class variables are similar

to static variables in other languages – that is, they are associated with

a class rather than an instance of that class. In Python though, it is

possible, through a bit of magic, to make class variables change the

way instance variables behave. In this case, the Google API authors

set things up so that a class variable defines the type of an instance

variable, and moreover write and read the instance value from the data

store when required. This means, you do not have to worry about how

these records are managed behind the scenes. Once you have defined

your class, you can simply use it as any other Python class, as long as

you remember to call the “put” or “get” commands as required. Here

is the function that makes a new GameRecord, and commits it to the

database:

def make_new_game():
 active_game = GameRecord()

 active_game.player = get_current_user()
 active_game.number = randint(1, 100)

 active_game.put() #commit to database

 return active_game

27

Queries

Google provides a SQL language with which queries can be made

(called Google Query Language; GQL):

def get_your_best_scores():
 """Returns the ten best scores of the current
player."""
 query = GqlQuery('SELECT * FROM GameRecord '
 'WHERE player = :1 '
 'and active = :2 '
 'and steps >= 0 '
 'ORDER BY steps ASC',
 get_current_user(),
 False)

 records = query.fetch(10)

 return records

Note that every query needs to be fetched after it is constructed.

The fetch method takes a number, which is the maximum number

of records the fetch will return. No fetch can return more than a

1000 queries. Explaining the full syntax of the query language falls

beyond the scope of this tutorial. This example selects all the re-

cords where the player is the current user, the game is active (i.e.

not done), and the number of steps taken so far is positive. For

more detail on GQL consult this reference: http://code.google.

com/appengine/docs/datastore/gqlreference.html.

Getting data from post requests

The player input for the game is obtained with an HTML form, whose

data is posted to the PlayPageHandler. In the post method of this

handler, the following piece of code retrieves the data:

def post(self):
 active_game = get_active_game()

 try:
 active_game.guess = int(self.request.
get('guess'))
 #...perform some game logic...

 except ValueError:
 self.redirect('/game/play?error=' +
 str(ERROR_NOT_A_NUMBER))

Note that the try-catch block surrounds the code, in case the user

enters a non-numeric string. If this happens, we re-request the page

(with GET), but with an error parameter set (see below). POST com-

mands are usually issued from HTML forms, with their action set to

POST. The command is issued when the user presses the submit

button.

http://code.google.com/appengine/docs/datastore/gglreference.html

28

This is the HTML form that is used to issue the POST command.

Getting data from get requests

The following code snippet shows how to retrieve data from a get request (PlayPageHadler’s get method, in game.py):

error = self.request.get('error')

if error:
 error_message = error_messages[int(error)]
else:
 error_message = None

For example, if we get the following URL: /game/play?error=0 the piece of code above will assign the string '0' to error, and then the

string 'You must enter a number!' to error_message. When we simply do not assign an error number (/game/play), error is assigned

None, and so is error_message.

29

Remember to set up static files:
It is easy to forget this. Whenever an image, or

other media type file does not display, check that

it is in a static content directory; as set up in the

app.yaml file.

Check that you always put data after you
modified it:
Another easy mistake to make is to modify a record

(by reassigning properties), but then forget to call

the put method on that record. Get into the habit

of always checking that this method is called after

data has been modified.

Use the following URL to access the local
admin console:
When the server is running locally, you can access

the admin panel with the following URL: http://

localhost:8080/_ah/admin

It is not as powerful as the online version, but is still

very useful.

Define your own Property classes:
You can define your own Property classes that ex-

tend from the Property classes supplied. This is

useful when you want to:

•	 treat certain properties differently from oth-

ers (in formatting them on screen, for example),

even though they have the same type, or;

•	 to add some extra description data with

properties.

Define a debug page which allows
easy access to debug functions:
Debugging a web app can be made a lot

easier if you define a page that contains

links that will:

•	 give you special views of your data;

•	 fill your database in bulk, and;

•	 clear your entire database.

Make sure that you (and other develop-

ers on the project) are the only ones that

can access this file. Take special precau-

tions to make sure that these functions are

not called in the production version – just

imagine debugging the live version and ac-

cidentally deleting all your users’ informa-

tion!

Be careful not to corrupt your data-
base:
Once you start collecting real data, it is im-

portant to prevent making changes that will

affect the structure of the datastore. It is

very easy to corrupt your database, making

it necessary to either write code to correct

the error, or to delete entries from the data-

store. As an example: when working with a

string property with choices (as can be used

in a drop-down list), changing the choices can

corrupt the datastore – when an existing ele-

ment has a property defined as a choice that

does not exist after the change. If you do not

immediately spot this mistake, entries can be

added that uses the new type, making it hard

to revert!

Use function decorators for checks before pro-
cessing commands:
Function decorators are great for doing a bit of pre-pro-

cessing before processing HTTP commands. For example,

the following function decorator will check whether the user

is logged in, and if not, redirect the user to an error page.

Otherwise, the get is processed as usual. The example also

shows how the decorator is applied to the get method of

the YourBestScoresPage. Note that the decoration is done

where the function is defined (not where it is called); this

means that once you have decorated the function, you can

always be sure the decorator will be executed, no matter

where the function is called:

def check_logged_in(fn):
 """This decorators redirects the user to
an error page if
He / she is not logged in."""
 def wrapper(self):
 if get_current_user():
 fn(self)
 else:
 self.redirect(create_login_url(self.
request.uri))
 return wrapper

class YourBestScoresPage(RequestHandler):
 @check_logged_in
 def get(self):
 records = get_your_best_scores()

 template_values = {
 'records': records
 }

 path = join(dirname(__file__), 'your_
best_scores.html')
 self.response.out.write(render(path,
template_values))

30

31

Blender’s fluid simulator is quite possibly the most complex and powerful feature in its sim-
ulation arsenal. It is capable of modelling the behaviour of liquids of variable viscosity; so anything
from the flow of water to that of lucent toxic sludge can be simulated fairly accurately, and often in quite
a visually spectacular fashion.

Blender
Fluid dynamics

Claudio “Chippit” de Sa

32

Initial setup

The setup of the fluid system is a different and

slightly more cumbersome process in comparison to

the other simulations. The most important part of

this procedure is defining the fluid domain. Imagine

this as a fixed, invisible box in which all fluids in the

simulation will be contained. No fluids can pass out-

side the box, and all objects that will interact with

the simulation must be placed within its bounds. To

define the fluid domain, create a cube object and

then, in the Physics Buttons’ fluid tab, enable the

Fluid button, then the Domain button. This tells

Blender that the cube will be involved in the simula-

tion by serving as the encompassing domain.

 It’s important to note that the domain object will

actually become the fluid itself when the simulation

is done. Therefore the material you wish the fluid to

be drawn with must be applied to the domain object

itself. At the moment, every blender project is also

limited to a single domain object.

33

Domain settings

The domain object contains the most impor-

tant settings for the simulation. These are

divided into 3 subcategories, toggled with

the Std (standard), Ad (Advanced), and Bn

(Boundary) buttons on the fluid tab. Impor-

tant settings will be explained below.

 The most important option in the simula-

tor is the Resolution setting. The fluid do-

main is essentially three-dimensional grid,

and the resolution setting defines the size

of the grid along the domain’s longest axis

(or all of them, if the domain is cubic). A

higher setting means smaller grid units re-

sulting in a more accurate simulation. The

amount of memory required for the simu-

lation increases exponentially with this set-

ting. Make sure it is never set such that the

required memory higher than your available

system resources; this may cause unexpect-

ed behaviour such as extreme slowdowns

or crashes. The Preview-Res setting defines

the resolution of the preview mesh that can

be displayed in the client or used for test

renders, but doesn’t affect render times or

memory requirements. It must be smaller

or equal to the Resolution setting.

 The Start time and End time settings define

the time span of the simulation in seconds. The

difference between the two values is the amount

of ‘fluid-time’ that will be simulated over the du-

ration of the animation, as set by the starting

and ending frames in the Anim tab, under Scene

buttons. The two Display-quality settings define

whether the full resolution mesh is used in the

graphical user interface and in renders.

 The advanced tab exposes a few less frequent-

ly used options, such as the ability to manipulate

gravitational forces on the liquid in all 3 axes,

as well as setting the viscosity of fluids in the

domain. The most important option here, how-

ever, is the Realworld-size setting. This controls

the size of the largest domain axis in meters, de-

fining how the liquids inside the domain should

behave.

 The boundary tab lets you define some set-

tings relating to the domain itself. The Noslip,

Part, and Free settings control how much fric-

tion will be experienced by liquids colliding with

the domain boundary. The other notable option

is the Generate particles field, which will create

additional particles for splashes, greatly increas-

ing the visual effect. For this to work, however,

the Surface subdiv setting must be 2 or greater.

This is similar to the standard subdivision modi-

fier, but is processed slightly differently for better

results on the fluids and, as such, is preferable.

34

Actual simulation

Now for the fun bit. Create any solid mesh object (it should have

volume, so planes and circles won’t do here), and place it inside the

domain cube. This mesh will become the fluid in our domain. Scale it

down a little bit so that it doesn’t fill a significant portion of the domain

volume, and, when you’re satisfied with it, enable fluid simulation, and

click the Fluid button. You can use Inflow for this purpose too; the dif-

ference between the two is that inflow will constantly generate more

liquids for the duration of the animation. This can potentially fill up a

domain quite quickly.

 Once you’ve added and set up your fluid object, select the domain,

and click bake. Be warned that this is a lengthy process, though it can

be cancelled with the escape key at any time. When you’re done, use

ALT-A, or the arrow keys to step through the animation and see the

results. When you render it, you’ll want to move the mesh you’ve just

created to a different render layer so that it isn’t drawn and doesn’t

interfere with your output.

 In order to make things slightly more interesting, we’re going to add

an object for the fluids to collide with. Add another solid mesh object,

move it into domain space, then enable Obstacle in the fluid settings

tab. You’ll notice that obstacles share the Noslip, Part and Free friction

settings of the domain boundary. Obstacles can also use keyframe

animation settings for fluids. Once you’re satisfied with the obstacle,

select your domain and bake the simulation again. Check your output

and tweak as necessary.

 Once you’re satisfied with the scene, it’s time to ramp up some set-

tings for quality. Depending on the size of your domain and the re-

quired quality, the resolution setting needs to be increased to anything

between 80 and 160. The generate particles setting in the boundary

tab will also help the simulation appear as realistic as possible and,

with the right material settings, you’ll have incredibly realistic looking

fluids for your renders. The example file this month, available in the

Dev.Mag website’s content section, contains everything I used to cre-

ate the render displayed here. You will, however, need to bake the

simulation yourself; the raw simulation files are far too large for us to

upload on our site. Be warned, however; on the settings I’ve used,

render and baking times are rather significant.

35

Performance

Fluid simulations are slow. Adjustment of practical-

ly every setting on the domain object affects baking

time. Resolution and simulation frame count has the

largest negative impact, closely followed by the par-

ticle generation and surface subdivision settings. It’s

best, in larger scenes, to test smaller sections of your

simulation at a time (if possible), as well as doing so

on lower settings. Only ramp up the resolution settings

for the final render, and then be prepared to wait quite

some time for it to complete.

36

the stuff of

Dreams

Last year, Microsoft brought Dream-
Build-Play into the world – a mewling

babe of a game development contest which en-

joyed great popularity and a host of high-quality en-

tries. Now, its second incarnation promises to deliver

just as much fun, using the XNA 2.0 game development

framework to create gems of gaming wizardry for the Xbox

360 console.

Rodain “Nandrew” Joubert

37

 As you read this, bunches of eager game developers

all over the world are huddling around their systems

and scribbling out designs, artwork and code for their

very own DBP entries. They work in earnest; with a

US$75 000 prize pool and the potential for exposure

on the Xbox LIVE marketplace, there's a lot to gain by

putting forward the winning entry.

 The scope of the competition is considerable, and it

produces some very real results. The first DBP contest

garnered more than 4500 entries, four of which were

actually offered LIVE contracts for mainstream distribu-

tion. If other game development contests serve as any

sort of testament, it is likely that even more hopefuls

will be entering this time around to get a shot at the

same opportunity.

 So far, each DBP competition has consisted of two

main phases: a warm-up challenge and a main chal-

lenge. The warm-up is self-explanatory: it's a 'practice

round' of sorts to allow entrants to get a feel for the

DBP environment and have a go at making a game

before the proper competition starts. The really nice

thing about these warm-ups, though, is the fact that

entrants have the opportunity to win expo passes, in-

ternships and Creator's Club subscriptions if their ef-

forts find favour with the judges. This year, warm-

up games focused around AI as a core value of their

gameplay – winners ranged from hive-mind controllers

to sheepdog simulators.

“Microsoft has

brought about a com-

petition which proves

to be beneficial for

all involved.”

38

A notable trait in Dream-Build-Play which is not al-

ways present in other high-profile competitions is its

stress on the fun factor and innovation for the judging

process. Production value counts for a humble thirty

percent of an entrant's final score, leaving the rest to

criteria such as ingenuity and the eternally sought-

after desire to continue playing.

 Microsoft has brought about a competition which

proves to be beneficial for all involved. Individual de-

velopers get an opportunity for money, exposure and

game development glory. The rest of us reap the ben-

efits of the high-quality indie games from Xbox LIVE

as a direct result of the competition, and one of the

biggest names in the console business gets to scout

for those hidden gems which are scattered through-

out the world of low-profile developers.

For those who have entered, remember that entries for Dream-Build-Play

close on 23 September! Winners are scheduled to be announced in Octo-

ber. For more information on the DreamBuildPlay competition visit http://

www.dreambuildplay.com/ , or see a showcase of the warm-up challenge

winners available at http://www.dreambuildplay.com/main/winners.

aspx

Also keep an eye out for the two Game.Dev entries, Ultimate Quest II and

SpaceHack. Good luck to those who have entered, and to those who haven't

– hopefully you'll change your mind next year!

A Never-before-seen screenshot from Ultimate Quest 2

“There’s a lot

to gain by

putting for-

ward the win-

ning entry.”

http://www.dreambuildplay.com/
http://www.dreambuildplay.com/main/winners.aspx

39

www.devmag.org.za

Gear Count:

hey guys! I

divided the

gear count

by 0 and it

wor- OH shi-!

	2 - Home
	3 - Editorial
	4 - News
	5 - Feature Multiwinia
	8 - LUMA on BLUR
	13 - Review Monochrome
	17 - Dev Google App Engine
	31 - Dev Blender
	36 - Tailpiece What dreams are made of

	Button 60:
	Page 1: Off
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:

	gish:
	Button 48:
	Button 49:
	Button 51:
	Button 57:
	Button 58:
	blender:
	Button 59:
	Button 61:
	Button 62:

