
1

INSIDE: GISH o ERIC GOOCH o PHOTOSHOP PT 7 o BLENDER CLOTH SIMULATION o
gGUARDIAN POSTMORTEM o NEWS and OPINION + MORE!

Being a blob of tar has never been so
much fun!

now in sexy 4:3 glory!

2

what’s new in
DEV.MAG?

As you all may have already noticed, there have been a few (Mi-
nor) changes to Dev.Mag’s look this issue: Our layout team (or
rather, person) has worked overtime to take Dev.Mag to the next
level of interactivity and style!

Gone is the “For-Print” A4 page layout! Dev.Mag is now giving you

the whole picture with complete 4:3 aspect ratio sexiness. That’s right! No

more edges! No more annoying zooming! Dev.Mag now takes up your entire

screen!*

As you may have noticed when you opened up this PDF document, no longer

are you forced to move your hand all the way to the bottom of your monitor

to hit the ‘full screen’ button! We’ve gone ahead and done it for you! No

need to thanks us.

Pressing the right buttons

*Does not apply to widescreen, obviously

Marvel at the navigational brilliance! Tired of scrolling through pages and pages of content?

Looking for something specific? Well, scroll no more! Using the newly featured nagivational

buttons, you can get to where you want to be, and back again, in no time at all.

Click any title on the contents page to be transported directly to your selected article

To get back, simply click on the title bar of any page - it’s that easy!

3

Design

Reviews

Features

REGULARS

Tutorial

Tailpiece

Chatting to Eric Gooch, and the lighter side of life

Swimming in innovation

For a limited time only!

Bring on the coding!

Covering GUI and menu components

We take a look at cloth simulation

...programming ninja by night!

4

5

6

9

13

16

20

27

32

37

4

So things have reorganized themselves a lit-

tle around here. A new name has mysteriously ap-

peared in the staff list. I’ve been informed that it

belongs to our new dedicated designer, Quinton

“Q-Man” Bronkhorst, who will be handling the

mystical art of making all the words look pretty.

James “NightTimeHornets” Etherington-

Smith was also surprised to find his own name

considerably higher on the ladder. He hasn’t quite

recovered from the shock yet, but I’m confident

he’ll convalesce in time for the next edition. There’s

the ice-cream too, but I’m not so sure that’s new,

or wise, for that matter, considering it’s winter

here now.

 We’ve also made a few changes on the presen-

tation front, most of which you’ve likely already

noticed by the time you got here: the layout is

specifically designed to be easier to read on a

monitor now, with a different orientation and the

introduction of hyperlinks. The other changes are

highlighted in our special “what’s new” page.

 Lastly, but certainly the most important, as well

as saddening, change: As you likely already know,

our beloved editor has unfortunately had to step

down, which leaves little ol’ me to occupy his

virtual office. I must say I’m impressed with the

place, though. He had a mahogany desk he never

told me about. If I’d known before I’d likely have

been very jealous for a very long time.

 But enough of me blathering on about notional

furniture. The magazine must live on, right? And

indeed it will, and has. Strong content is abound

like always, and in this issue we have an enlight-

ening feature interview with Eric Gooch, the art-

ist responsible for much of the graphics in West-

wood’s Command & Conquer series, and known

for playing the role of Seth, everyone’s favourite

dictator’s right-hand man. We then close things off

with a look at what our former ed really did in his

spare time.

 Finally, this is the time for me personally to wish

Rodain the best of luck and to thank him for the

dedication that brought us this far. The magazine

wouldn’t exist otherwise and it endures now be-

cause of your lasting influence.

Thank you, and farewell.

~ Claudio, Editor

EDITOR
Claudio “Chippit” de Sa

DEPUTY EDITOR
James “Nighttimehornets” Etherington-

Smith

COPY EDITOR
James “Nighttimehornets” Etherington-

Smith

DESIGNER
Quinton “Q-Man” Bronkhorst

CONTRIBUTORS
Rodain “Nandrew” Joubert

Simon “Tr00jg” de la Rouviere
Ricky “Insomniac” Abell

William “Cairnswm” Cairns
Danny “Dislekcia” Day

Andre “Fengol” Odendaal
Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans
Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom
Kyle “SkinkLizzard” van Duffelen

WEBSITE ADMIN
Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the South African
Game.Dev community. Visit us at:

www.devmag.org.za

All images used in the mag are copyright and
belong to their respective owners.

Laying all those damn gears, and I all I get is
this small space to say something witty or clev-
er. I sure as hell better not waste it on anything

stup- OH SHI-!

5

GameBryo 2.5 released
http://www.emergent.net/en/

Products/Gamebryo/

GameBryo, the popular cross platform

engine for PC, Xbox360, Wii and PS3–

known best for use in games such as

Civilization 4 and Elder Scrolls IV: Obliv-

ion–has just been updated. This engine

features large numbers of great assets

and internal gems but also harnesses

each platform’s power and ability with-

out sacrificing on other platforms. This

makes it fast on each platform and easy

to manage, ensuring that development

is about the game, not about the engine.

Worth a look, for certain.

SCEA releases PlayStation-EDU
h t t p : / / b l o g . u s . p l a y s t a t i o n .

com/2008/06/06/playstation-edu/

The PlayStation has always been a great con-

sole at its peak moments, but development

for it has always been a little out of reach for

students and interested parties. PlayStation

announced recently that the PlayStation-EDU

incentive, a new study program, is now on

the prowl and is taking its fighting spirit into

universities and colleges worldwide. Taking

PS2 and PSP development kits into the learn-

ing place and giving students the exposure to

draw them into the development is clearly a

good move that is going to benefit SCEA in the

long run.

Dream-Build-Play 2008 begins
https://www.dreambuildplay.com/

Microsoft’s Dream-Build-Play competition

has kicked off again this year, boasting a

considerable $75,000 in prizes and a pos-

sible LIVE publishing contract. This year

the competition is limited to development

on Xbox 360 only, using XNA again, of

course; but this caveat is not as dire as it

appears. Registering for the competition

will grant teams a free 12-month trial

membership to the XNA Creator’s Club,

which is everything you need to deploy

your games to 360. We’re entering. Are

you?

6

I feel compelled to talk about Microsoft Popfly
Game Creator; not only because it’s a practical (read: some-

thing you would use on a daily basis) and feature-rich imple-

mentation of a web application using Silverlight that doesn’t

just involve viewing videos; but because when using the app

and fiddling with the game dev API, it also looks like the de-

velopers have taken heed of what’s out there in the hobbyist/

indie game dev community. Launched on the 2nd May 2008,

the Popfly team introduced Popfly Game Creator to their por-

tal. Popfly is a web portal, providing visual tools for creating

web pages, mixing content and sharing it online. Currently it’s

in a Public Beta phase with a 25mb storage limit and visitors

are required to install the Microsoft Silverlight extension (about

1.4mb; think of it like the Flash extension you need to install to

visit certain sites).

 I’m not much of a content sharer but I was quite keen to

check out the Game Creator and after a day of playing and

making a simple game, I’m impressed. Anyone who’s used

Game Maker should quickly find themselves at home but the

first notable feature was that when starting a new game, the

site already offers a host of different game templates to start

with which means you can have a working game type straight

off the bat (and first impressions for the masses count). The

second notable feature is the site’s use of free resources like

Danc’s graphics from Lost Garden. These well drawn sprites

give a sense of fulfillment when making your game as your

creation looks already polished. Visitors to the portal also seem

able to add new content to the free resources pile which means

content creators like Danc can continually add new stuff for you

to play with. Of course you can always upload your own graph-

ics for use in your game.

 Manipulating actors (the objects in your game) using the vi-

sual tools is a little awkward initially but you get used to it; the

third notable feature is the ability to use predefined behaviors

like “run and jump by pressing keys” or “fly like a spaceship by

pressing keys (top view)” which is available from a drop-down

and makes for quick implementation of your game idea. Like a

good dev tool, you can also bypass the designer and dive into

the code which is written in Javascript. Coding was a little frus-

trating as most of the properties for an actor seem to be stored

in a hash table and you have to use GetValue() and SetValue()

a lot, but the Help and API links on the side of the screen are

very clear and helpful.

On the Fly - Games with Popfly

7

Looking at the environment, it’s easy to dismiss it say

ing no one can build a decent game with it and I’d agree

with you for 90% of the people who try it out; but as Game

Maker and Flash games have proven before, a dedicated

developer can make something that’ll knock your socks off.

From a business developer perspective, Game Creator is a

mind-blowing example of how to build a web application

that isn’t just viewing reports or shopping carts. It’s fast,

with near instant access to different parts of the application

as well as server side resources like pictures, sounds and

code. I’d say it’s a humbling experience for anyone seri-

ous about delivering applications via web and worth playing

with even if you’re not a game developer. If this is the fu-

ture of online applications; it’s bright and sunny and full of

more good cheer than sugar-induced laughter at a 4 year

old’s birthday party.

André “Fengol” Odendaal

“A dedicated de-

veloper can make

something that’ll

knock your socks

off.”

8

One day I decided to go running; the idea was to run a marathon.

I didn’t just wake up one Saturday morning, put on my shoes and arrive

to run a marathon. No. It took a year of hard work; everyday I’d wake

up, put on my shoes, kiss my wife goodbye and run out the door. At first

I ran out the door, around the corner and came back again. Slowly I

built it up from around a single corner, to around lots of corners. I learnt

about pronation, energy supplements, power and hill training and even

injury recovery processes.

 The other day I bought a business; the idea was to make a fortune.

I didn’t just deliver quality projects and make money in the first month.

No. It takes a lot of hard work; everyday I wake up go to work and

learn. Every day I learn a bit more, and every bit I learn makes my

company more successful. I learn a bit about Tax calculations, employee

remuneration structures, the products I sell, the development process to

produce the products I sell and even how to sell the products I sell.

 Yesterday I woke up and decided to write a new Multiplayer, online

powered Real Time Space Simulation with Role Playing Game Elements

(a real MMORTS/RPG in space). So I sat down and wrote Pong. To-

day I might write Pac-Man and tomorrow it might be Tetris; hopefully

next week I can write Diablo. Before then I need to learn a bit about

reflective multi dimensional modular shading techniques, maybe a little

about instantaneous multi-pointed network flow diagrams, and even a

bit about space warps.

 Everything in life is a journey. Enjoy your game making journey; there

is little in my life that exceeds the pleasure I have had writing games.

William “cairnswm” Cairns

“Today I might write Pac-

Man and tomorrow it might

be Tetris; hopefully next

week I can write Diablo.”

The Race, The Business, The Game

9

His name in

Lights

Does anyone remember Seth from the original Command and Conquer? Does anyone remember

the awesome graphics in games such as the Ratchet & Clank series or Emperor: Battle for Dune? Eric Gooch

might not be a well known name at the local LAN but in the game development world he is a master who can

claim respect at a moments notice. With a portfolio of games dating back as far as 1995, Eric has left a pro-

nounced mark wherever he has worked. Dev.Mag managed to grab a hold of him and ask him some questions

after his recent trip to Insomniac studios, his current employer.

Sven “FuzzYspo0N” Bergstrom

10

Tell us who you are.

My name is Eric Gooch; I’m an artist living in

North-Eastern Nevada. I work for Insomniac

Games, a game company based in Burbank, Cali-

fornia that makes games for the PS3. I am for-

tunate in that I am able to live out in the country,

and work remotely from my home over the internet

doing lighting for games that I find fun to work on.

I also do artwork of my own, mainly Science Fiction

and Fantasy, which can be seen at my website www.

cybergooch.com.

Where have you come from and where
are you now?

I was born and raised in Ohio. After high school

I moved with my family to Philadelphia, where I

went to Photography school and got an Associates

degree. Since then, I’ve lived in Tucson, San Fran-

cisco, Detroit, San Diego, Hollywood, Las Vegas,

Los Angeles, and now I’ve settled in the tiny town

of Spring Creek, Nevada. It took a lot of moving

around to figure out what I wanted to do!

You are a game artist; tell us what you do.

I am a lighting artist. There are currently 3 of us at

Insomniac Games. My job is to light the levels after

the environment artists are done building them.

Usually there is a certain look that the art director

is after, so we work together with the art director

and the concept artists to achieve believable light-

ing; whether the levels are huge outdoor areas or

claustrophobic tunnels and indoor environments.

The technologies we use are always evolving, so it’s

a real challenge to bring everything together. It’s

great to see it all take shape, as the lighting makes

a huge difference to the final look of the levels.

Every 8 weeks I fly to Burbank for a few days,

for meetings and to get caught up on

everything.

“My job is to light

the levels after

the environment

artists are done

building them.”

It’s great to see

it all take shape,

as the lighting

makes a huge dif-

ference to the

final look of the

levels

11

During your career in game development,
what have you learned that is most valuable to you?

I’d like to address that in two ways: First, regardless of game

development or anything else you may end up doing, my

number one rule has always been; “Don’t get good at some-

thing you don’t like.” I have known too many people that

chased after something they thought they should be do-

ing, only to realize it wasn’t what they really wanted after

all. I really believe you should go after what you truly love

doing, even if you’re afraid you might not make as much

money doing so.

 Second–specifically concerning game development–

learn to be flexible. You can’t see into the future and

know for sure what tools and techniques are going to

be used and/or needed. It’s a good idea to experi-

ment with different software and with different tools

in general to know how things work throughout the

areas you’ll be involved with. You will still probably

want to specialize in one area, but keep your op-

tions open.

What do you think the future of game art holds?

More and more realism. There are still limitations in what we’re able to achieve, but

those limitations are being chipped away with every new generation of hardware. I

think we’re going to be seeing more amazing things continue to evolve as time goes

by, and for those games where realism is not necessarily the goal, we’ll still be seeing

advances in what we’re able to convey visually. I think it’s a pretty exciting time to be

involved in computer graphics, as things are advancing so rapidly.

“I think we’re going

to be seeing more

amazing things con-

tinue to evolve as

time goes by.”

12

If you could spread your knowledge to
indie game developers, what pearl of
wisdom can you offer the aspiring?

I haven’t really been involved with the indie scene,

but from what I’ve seen in general, I’d say the

most important thing is organization. Having a

master document that describes every detail about

your project so that everyone is on the same

page is key. Too much gets lost in assumptions

and miscommunication. Along the way, there are

invariably going to be times when things seem

overwhelming or confusing, and a solid foundation

document can make all the difference in the

world.

Quickies

One liners:

“Give a man a job he loves
and he will never work a

day in his life.”
- Confucius

Day or night?

Night

Music or silence?

Silence

Windows / Linux
/ Mac / Other?

Windows

“Don’t get good at something you

don’t like.”

13

Gish is a strange game in all regards;

the theme, the storyline, even the general idea;

but innovation comes from strange places, and

Gish swims in innovation. Whilst the presenta-

tion may be a bit rough around some edges, the

game is otherwise very impressive; visually, with

its neat lighting, but mostly in the way the phys-

ics handles the player’s movements.

Getting to Grips
with Gish

14

The player avatar is represented by

an amorphous blob of tar named

Gish. The player controls Gish via

basic omnidirectional movements, as

well as allowing him to assume any

combination of four properties: Gish

can be made sticky, allowing him to

cling to walls and other objects; he

can increase his mass in order to

break things; he can be made slick in

order to slide into narrow gaps; and

he can expand his volume, allowing

him to jump. Different combinations

of these properties can also be used

to varying effect.

 The entire game revolves around

these properties and it constantly

challenges the player to make cre-

ative use of them in order to pass

the varied levels. The simplicity of

the design makes the game very

easy to pick up and understand, but

it requires a significant amount of

practice before one can perform the

most daring and impressive feats.

This is exacerbated by the very steep

learning curve, which often throws

extremely difficult challenges at the

player without warning or previous

experience of similar techniques.

“Chaos is fun!”

15

However, your goal is rarely unclear–barring a few oc-

casions with boss characters that require special ac-

tions beyond the basic ‘Gish smash!’ to kill–so, with

sufficient persistence every level is definitely passable;

even if you’re tempted to throw your controller at the

wall during the process.

 I do recommend playing the game with an analog

controller of some sort if possible. It simply feels

better that way. There’s something to be said about

picking up a controller, handing a second to a friend,

and hitting up one of the multiplayer modes. Foot-

ball (my personal favourite) involves two players at-

tempting to wrestle a ball from each other and off

the edges of the screen or launching it over the

goalposts. All the multiplayer modes become truly

chaotic at times; the flexibility of Gish’s movements

makes them far more interesting than the descrip-

tions imply; and chaos is fun!

Claudio “Chippit” de Sa

“The player avatar is

represented by an

amorphous blob of tar

named Gish.”

16

The gGood

The gGrief

Gareth “Gazza_N” Wilcock

postmortem

“gGuardian taught me a

lot about pacing a game

properly.”

17

Your game can be anything–any genre, any

theme, any mechanic you like–as long as it

ends conclusively within ten minutes. Sounds

challenging? Not? Well, then obviously you didn’t

take part in Game.Dev Competition 10, where the

object was to produce a game that fit that criterion

within a month.

 I haven’t really ever played a formal tower-defence

game, but I know that I love sieges in games. I’ve

always enjoyed the sequences in FPS or RTS games

where you have a time limit to prep for an impend-

ing invasion with limited resources; slap together a

patchwork defence; and then scramble to hold off

enemies when the attack hits. Best of all, this me-

chanic lends itself perfectly to a time limit scenario.

It was this thinking that gave birth to gGuardian.

 The concept is simple: you control a robot drone

from a top-down perspective, with your job being

to defend a cryogenic storage bay full of star ship

passengers from an overwhelming force of attack-

ers, eliminating said attackers within the ten-minute

round (this was justified by stating that the robot

only had a ten-minute power supply.) The idea is to

have the player spend the first five minutes setting

up their defences, then the next five fending off the

invaders. If the invaders reach the cryo-bay, you

have a minute or so to kill them before they break

in, or you lose the game. In addition, if there are

still aliens left after the ten minutes has expired,

you lose the game.

Simple enough.

18

The gGood

Above all, I wanted to inject a little tension into the game: force the

player to think quickly under pressure. I realized early on that having

five whole minutes just to place turrets would result in a pretty dull first

half of the game. One solution was to decrease the preparation phase

time and have the combat phase last longer, but that made the combat

feel stretched out. My first solution was to procedurally generate the lev-

els. This had multiple benefits: it kept the player on edge by forcing them

to explore a different map during the prep phase of every single round;

it ensured replay value; and it meant that I wouldn’t have to spend exces-

sive time designing a whole bunch of maps myself. I also decided to scatter

randomly across the map weapons needed by the player, to create even more

tension and to add extra incentive for exploration. This turned out to be a good

decision, as it did end up adding the desired tension to the game, and very few

who played the game complained about its pacing.

 I was also very lucky to receive a deluge of constructive criticism while building

the game, which resulted in many elements of the game being changed or tweaked

for the better. One forum member (Anihilist) offered me so much criticism that he

ended up messaging me to ask whether he had offended me or not! Fortunately, all

the critique I received from him and the other Game.Dev regulars was solid and valu-

able, and was essential to shaping gGuardian into its final form.

The gGrief

Ironically, the month-long competition time limit was my undoing when creating

gGuardian. Given its importance to the design, I was forced to spend a lot of that

time getting the level generator running properly. As a result, I had very little

time left to polish the rest of the game. Graphics consisted almost entirely of ru-

dimentary MS Paint lameness rather than the pre-rendered 3D sprites I had en-

visioned. Levels were graphically bland, with nothing but one or two random

MS Paint doodads sprinkled here and there to give visual diversity. Weapon

balance was good enough for the game to feel fair, but some weapons were

underpowered and ended up being ignored in favour of their more effective

counterparts. The path finding for the alien hordes tended to bug out at

times, leaving lost aliens wandering the corridors aimlessly, forcing the

player to actively hunt them down (a task made easier by the fortunate

decision to include a mini-map). Worst of all, the environmental traps

I had intended to include (i.e. pipes that could be breached to create

walls of fire; toxic waste vats that could be spilled onto aliens;) had

to be eliminated altogether in the interests of getting the primary

game play elements working in time.

Conclusion

gGuardian ended up coming second in competition 10 based on its pacing

and the sense of panic it evoked. However, many improvements were sug-

gested that I hope to implement at a later stage. There’s still plenty of room

to grow gGuardian now that I know that the core game play works properly.

The graphics certainly need improvement, and I’d like to finally put in the

environmental traps to give the player more to do in the game than simply

shuffling turrets around. An option for co-op play isn’t out of the question.

 Overall, gGuardian taught me a lot about pacing a game properly, and

about pacing a game’s development properly. It isn’t perfect at the moment,

but with a bit of work it could turn into something I can really be proud of.

19

20

“Now comes the interesting part,” I hear you say. I dare not cover ‘setting up the engine’ again; there are

tons of these all over and many can be found on http://irrlicht.sourceforge.net as well. Let’s get straight into

the programming and waste no further time without an example. This part in the series is going to showcase more

then just a black screen or a hello world; it is going to encompass creating a black screen, adding some text, add-

ing some GUI elements, and creating some images. This gives you enough of a handle to see and feel how Irrlicht

likes information and how easy the engine is to use.

Irrlicht

Part 3: Bring on the code
Sven “FuzzYspo0N” Bergstrom

Unless otherwise stated

we will be using the 1.4
release version of the

engine

21

Step 1

I’m going to follow an Irrlicht favourite here and use the main.cpp file as an

example. The main file consists of a couple of routine commands, and a nice

introduction screen that will help you understand the goings on of the engine.

Let’s go:

We need a couple of things for this example: we need the Irrlicht engine core;

we need a scene manager; a device driver; and a GUI. We have already men-

tioned these but we are making some pointers to the following:

IrrlichtDevice*

video::IVideoDriver*

gui::IGUIEnvironment*

scene::ISceneManager*

The star is cpp for pointer, and the stuff before the :: just means we are keep-

ing things together for now. If I had said using namespace gui; in the code

at the top, I would not have needed to put the gui:: there in the first place.

For now, I’m leaving it there to show you where things fit in. Let’s take a look

at the code, so far.

#include <irrlicht.h>

#pragma comment(lib, “Irrlicht.lib”)

using namespace irr;

IrrlichtDevice* irr_engine;
video::IVideoDriver* irr_driver;
gui::IGUIEnvironment* irr_gui;
scene::ISceneManager* irr_scene;

void main()
{
}

This code will do nothing, but will become the basis of our application. The

downloadable source does contain comments, as well as descriptions of ev-

erything.

22

Step 2: The engine and its joys

Yes, we have reached the part (already) where we are going to be

making a blank screen. For those of you still getting into c++ do

not fear, it is one loop, and some function calls. We need the en-

gine. There is one function that has two ways of being called: one

is called createDevice and the other is called createDeviceEx.

The first of these will be just fine for what we want to do and we

hand it a couple of things it wants. The documentation tells us it

wants the following:

video::E_DRIVER_TYPE – deviceType

This is the driver. Choose between directX or openGL or one of the

software renderers. The E_DRIVER_TYPE is a hint as to what to

type to ‘find’ it in intellisense. For example EDT_OPENGL is the

openGL driver. The rest are listed when you type EDT_.

const core::dimension2d< s32 > & - windowSize

Sounds complex? It’s not really complex when you see the answer

to what it wants. It is a template which is handed directly to you by

Irrlicht core:: namespace. This means core::something can usually

give you what you need. For now, we need a dimension2d that is

of the type s32; this is basically 2 points, width and height, and it’s

an integer value.

U32 – bits (bpp)

This is standard graphics talk and there are a few options; the

major two would be 16 or 32. 32 is obviously the current standard

for 3D applications on PC and most consoles.

bool – fullScreen, stencilBuffer, VSync

Logical answer, true or false. Would you like full screen? How about

a stencil buffer or vertical sync? Each of these are your choice.

IEventReceiever – receiver

This is what would receive events, keypresses, mouse movement

and that kind of thing but we don’t need it at the moment, so lets

leave it at 0.

That covers all the information irrlicht wants. We are going to call

createdevice and we are going to return a device pointer; you

store this device pointer in the irr_engine variable for using while

we work with the engine. After we have this engine variable we

are now going to use it! The other elements we need were listed

above: the driver; the GUI; etc. The next step is to create these

elements directly from the engine. The code is shown below.

void main()
{
 irr_engine = createDevice(video::EDT_OPENGL,
core::dimension2d<s32>(1024, 768), 32, false, false, false, 0);

 irr_driver = irr_engine->getVideoDriver();
 irr_gui = irr_engine->getGUIEnvironment();
 irr_scene = irr_engine->getSceneManager();

 irr_engine->setWindowCaption(L”Hello Dev.Mag!”);

}

As you can see we are

using the standard

1024x768x32 resolu-

tion and we are not

going to be using sten-

cilBuffers or vertical

sync. This is enough

information to setup

our scene.

23

Step 3: The loop and the dark-
ness

We are going to do a loop, based on some information irrlicht

hands us so nicely. Seeing as graphics rendering might be in-

tensive, we don’t need to be drawing or updating the screen

while it is not the active window. This pauses irrlicht in essence

because nothing is being done while the window is, for example,

minimised. The other condition we will look at is whether the

window is still there, as in, the engine window is still alive and

running. If someone had hit the close button or alt-f4 the ap-

plication will close leaving our loop. This is pretty basic to grasp,

let’s move on.

 Currently the application will run and then quit, with memory

leak issues. Our next step involves telling the engine to draw

everything, until the program is closed. With most graphics

rendering loops there is a beginScene and an endScene. All

the relevant drawing and passing of information is done within

these calls. This means we are looking for irrlicht to draw our

scene (from the scene manager) and our GUI (from the gui

manager) and also, to begin and end a scene. Irrlicht takes

some information for the beginScene call. It says “what colour

should I make the scene?” It asks whether we want a depth buf-

fer and a back buffer. These are generally a good thing so lets

enable them and lets set the color to black.

while(irr_engine->run())
 {
 if (irr_engine->isWindowActive())
 {

 irr_driver->beginScene(true,true,video::SColor(0,0,0,0));

 irr_scene->drawAll();
 irr_gui->drawAll();

 irr_driver->endScene();
 }
 }

This is now a running irrlicht application. Though it doesn’t do much of anything, the massive

engine behind irrlicht is now powering your application from within. Make sure that you have

copied your irrlicht.dll into the necessary places for it to run nicely, and you can test it out so

long.

24

Step 4 : The text and the conversion

This path has lead us to the point where we need some information on screen, so we are going to use some default settings to write some

text to the screen. I will cover how to make your own fonts using the font tools included with irrlicht. Inside the SDK folder we find the bin

directory which holds all the program executables related to irrlicht. The font tool is relatively simple to operate, and generates some important

files. The first are the bitmap files which are in the format you specified (i.e. png) and then an XML file that holds the font information. We

load the font up into irrlicht by using the IGUIEnvironment, and we can use it from then onward. When we have our font at hand we can

use the font to draw directly onto the screen (remembering that it can be covered by things, and cleared off screen at times) or we can create

a GUI element to hold the text. We will do both so you understand which way you prefer. Now that we have a handle on the GUI interface,

we can just create things as we wish. We will create a variable for our IGUIStaticText, which is going to hold the text, and we declare a font

that we want to use, an IGUIFont. Both of these are straightforward pointers to an object, using the pointer operator (->) we can see what

each offers. We will add it right after our irrlicht engine pieces. We are well on our way; in fact we are going to add an image as well, while

we are here. The image will be a picture in the background of the text.

Lets see what I looks like in code :

scene::ISceneManager* irr_scene;

gui::IGUIFont* ourveryownfont;
gui::IGUIStaticText* ourstatictext;
gui::IGUIImage* ourdbpicture;

ourdbpicture = irr_gui->addImage(irr_driver->getTexture(“./data/image/db.png”),core::position2di(300,80));

 ourveryownfont = irr_gui->getFont(“./data/font/devmag.xml”);
 ourstatictext = irr_gui->addStaticText(L”dev.mag”,core::rect<s32>(250,300,1000,600));

 ourstatictext->setOverrideFont(ourveryownfont);

 ourstatictext->setOverrideColor(video::SColor(255,242,135,40));

and then we can see step-by-step what is going on.

25

As with most pointers, the intellisense will give you all the

options, and for irrlicht we need to understand what gives

us what. You can only grasp certain aspects from the ex-

perience of using the engine (such as where textures come

from). We use the graphics driver to get textures into the

engine, that way we add it through irr_driver variable

using the engine. Because we want the picture behind

the text, we load it first, this will place it in the buffer first,

everything coming above it, is above it. The next step is

using the GUI engine to load up the fonts we want to use,

by calling getFont. As you can see, we load it using the

XML file from the font tool. That’s all it takes! Simply put,

this is all self explanatory; we create a static text box using

the GUI engine again. As you may see there is a core:: ref-

erence. This reference has a ton of core functions that will

help irrlcht understand c++ variables, and will create use-

ful types that are completely optimised for irrlicht. Using

the core templates takes a little understanding. Anything

irrlicht wants, for example rect<s32>, takes s32 types in

a rect structure. S32 is an integer value, so it is a “single”

32 bit value. These are all from the documentation; the

templates allow one declaration for many types. Watch out

for these types in the < > templates. They are just looking

for what it asks for. For example, position2df takes float

values, position2di takes integer values, but position2d<

> takes any type that it allows. Position2d<s32> is the

same as position2di, if that makes sense.

 Now we use the variable that holds the information of

our static text box, to override the default font, and the

default color of the text. This is using some things that will

be important, the SColor type from the video side is used

often in irrlicht, so remember to keep it in mind later on.

Now we have all the code we need for a complete “scene”

with images, and text, and we have a framework that can

work in most situations in irrlicht. I added something in

the main loop that uses the default font, by getting the in-

formation from the engine, and drawing text in the built-in

irrlicht font. This is the final thing we add; we add it at the

end of the main loop, just before the endScene call.

irr_gui->getBuiltInFont()->draw(L”GAME.DEV - ITS WHAT YOU WISH YOU WERE DOING”,core::rect<s32>(45
0,390,800,400),video::SColor(255,255,255,255),true,true);

irr_driver->endScene();

In this window you can see all aspects are found by engine! That’s great news. The final output of our application

26

This is all it takes to have some stuff on screen! Check the final code snippet and download the files for this project from the site. The files

contain project files and for VS2005, as well as the main.cpp file that can be compiled in most irrlicht-ready IDE’s.

This series will continue with using the GUI elements, loading 3D scenes from the free tool irrEdit as well as some other great features.

Final code snippet :

#include <irrlicht.h>

#pragma comment(lib, “Irrlicht.lib”)

using namespace irr;

IrrlichtDevice* irr_engine;
 video::IVideoDriver* irr_driver;
gui::IGUIEnvironment* irr_gui;
scene::ISceneManager* irr_scene;

gui::IGUIFont* ourveryownfont;
//To load the font, we use this
gui::IGUIStaticText* ourstatictext;
//To draw the font in a text box
gui::IGUIImage* ourdbpicture;
//To draw the picture of DB

void main()
{
 irr_engine = createDevice(video::EDT_OPENGL,
core::dimension2d<s32>(1024, 768), 32, false, false,
false, 0);

 irr_driver = irr_engine->getVideoDriver();
 irr_gui = irr_engine->getGUIEnvironment();
 irr_scene = irr_engine->getSceneManager();

 irr_engine->setWindowCaption(L”Hello Dev.Mag!”);

 ourdbpicture = irr_gui->addImage(irr_driver-
>getTexture(“./data/image/db.png”),core::position2di(300,
80));

//continued

ourveryownfont = irr_gui->getFont(“./data/font/devmag.
xml”);
 ourstatictext = irr_gui->addStaticText(L”dev.mag”,cor
e::rect<s32>(250,300,1000,600));

 ourstatictext->setOverrideFont(ourveryownfont);
 ourstatictext->setOverrideColor(video::SColor(255,242
,135,40));

 while(irr_engine->run())
 {
 if (irr_engine->isWindowActive())
 {

 irr_driver->beginScene(true,true,video::SCo
lor(0,0,0,0));

 irr_scene->drawAll();
 irr_gui->drawAll();

 irr_gui->getBuiltInFont()->draw(L”GAME.DEV
- ITS WHAT YOU WISH YOU WERE DOING”,core::rect<s32>(450,3
90,800,400),video::SColor(255,255,255,255),true,true);

 irr_driver->endScene();
 }
 }
}

27

Part 7: GUI Devlopment

and Menu Components

This tutorial is building on the previous tutorial (Issue 22) that was based on creating a menu background. We will

be creating buttons and other components common to the menu screen and the user interface. It is quite

satisfying having a game with polished and professional looking graphics and a clean-cut, easy to use menu.

Other components that you require for a game’s GUI can easily be created using the techniques of vector images and

other methods used in this and previous tutorials.

Pictured is a very basic menu screen for a game that contains the components we will create in this tutorial

Rishal “TheUntouchableOne” Hurbans

28

The first thing we need, as usual, is a clear canvas to

work on. Create a new Photoshop project. The first

component we will create is a button; we will create a

small button that would usually be the “bullet” for the

text that it represents. Make a new canvas of 64x64

pixels in size. We are going to start the button off as

a vector image. Draw a circle that will fill most of the

space as seen below. You may make the fill the circle

with any colour you desire. I used gray.

When you are happy with the circle you have just

created, select the Convert point tool and add an-

other three points to the top right part of the circle.

Press the CTRL key and drag the points or use

the point’s “handles” to adjust them to look simi-

lar to the image below. Note: you do not need to

explicitly follow the shape used here; you are free

to experiment and create some other shape that

appeals to you.

Now draw another circle shape slightly smaller than the

previous one using the Ellipse tool. Make sure it fits

within the previously created shape. It should look simi-

lar to the following.

Now we can use the blending options available to give

the button all the effects and glamour that it needs.

Make use of the Bevel, Gradient and Stroke blend-

ing options to give the button an awesome 3D look.

Play around with the options to see what each of them

is capable of; also change the lighting direction and

shadows to give the button depth. After applying all

the blending options, the button should look of similar

quality to the following.

Now we need to indicate what the button does. We will

make this specific button the “play” button for the game.

Create another shape but this time it is going to be a cus-

tom shape that you draw. Select the Pen tool and create

a triangular “play” symbol. Adjust the shape’s size using

the transform options available in the Edit menu. You

may apply blending options to this symbol to suit the rest

of the button; the opacity of the symbol can also be ad-

justed to blend in better. After all the changes the button

should resemble something similar to the following.

That’s all we need for a basic clean looking button. Now it

would be nice for the button to react when the user moves the mouse

over it. There are many different effects available for this. We will use

a change of colour or an indent in the button. For the change of colour,

simply make a copy of the project file, open it and change the colour

or gradient option within the blending options. To make the buttons

indentation change, make a copy of the project, open the file and adjust

the bevel options to an appropriate level that will be effective when the

user moves the mouse over the button.

1
2

3 4

5

6

29

The next component we will create is a check-box

image. This will also consist of two images; one to

indicate that the option/box is not selected and an-

other to indicate that the option/box is selected. To

start, create a blank canvas of 40x40 pixels in size.

We don’t want the box to be too large or too small

so this size is suitable. Usually check-boxes are rect-

angular in shape, hence the name “check-BOX” but

since our button theme is round and elliptical, let’s

make the check box a round one. Select the Ellipse

tool and draw a ellipse similar to the following.

Okay, that shape looks a little boring; we going to make it funky

and unusual. Select the shape and then select the Skew option in

the Edit>Transform menu. Make the ellipse look similar to the

image.

Duplicate the shape and scale down to a smaller

size, then Rotate it slightly so it fits in the bigger

ellipse.

Now we need to create an indicator to show that the box is

either selected or not. Select the Ellipse tool once again and

create a circle in the center of the image. This will be a “light”,

if you could call it that, it will be green (on) when the box is

selected and gray (off) when the box is not selected.

The image looks very dull and boring at the mo-

ment. Apply the usual brush options to the shapes

to give them some depth, colour and interest. I

used a crimson colour scheme to correspond with

the button created earlier

Make a copy of the project. Select the inner circle shape

and change the colour and glow options in the blending

options menu to something bright, this will indicate that the

option is selected. Some users might not feel comfortable with

this and would prefer a “tick” to indicate that the option is se-

lected. If this appeals to you, create a shape that resembles

a tick using the pen tool, adjust the shape using the convert

point tool and apply the appropriate blending options to it to

make it look attractive. The complete image in both cases can

look similar to the following.

7
8

9
10

11

12

30

The last component that we will create is a

progress bar. Create a new canvas of size 32x128

pixels in size. To stay with the same theme we

have been using thus far, we will also make the

progress bar an elliptical shape. Create an ellipti-

cal shape resembling the following.

We are creating a frame for the progress increments,

so duplicate the shape we just drew and scale it to a

smaller size as seen below.

The red space you see will be the frame of the

progress bar. Rasterize the two shapes. Se-

lect the Magic Wand tool and select the inside

portion of the smaller ellipses shape. Now select

the larger ellipses shape in the layer window.

Choose the erase tool and erase the fill of the

larger ellipses. With the smaller ellipses hidden

the image should look as follows.

Apply blending options to the shape, including the

bevel option and gradient colour option for an at-

tractive look.

Make the smaller ellipses visible again and adjust

its blending options such as its gradient colour

option and stroke option. The image should look

similar to the image depicted. This is our com-

pleted basic progress bar. Draw a shape that will

represent the increments of the bar.

The increment image cannot be drawn in the

same image as the progress bar itself. This

will not be viable when creating a game unless the

progress bar is a fixed animated image that runs the

progress bar without considering the processing in

the game that would usually cause the bar to incre-

ment. Create a new canvas of size 16x16 pixels.

Draw a small circle and apply some basic blending

options to it. This will be the increment image for

our progress bar and would look similar to the fol-

lowing.

13
14

15
16

17
18

The image (right) depicts what the progress

bar could look like in a working situation.

31

32

Blender, in the right hands, can be more than simply a modeling tool. It has the ability to simulate

many things that enhance your renders and, particularly, your animations. Among these are the soft- and rigid-

body physics simulations and the liquid dynamics simulator. We’ll take a look at each of these in turn, starting

with what is possibly the most visually appealing and potentially useful one: The recently implemented offshoot

of the soft-body simulator, cloth physics.

Blender
Cloth Simulation

Claudio “Chippit” de Sa

33

First off, you’ll need to head over to Blender.org and download the very latest re-

lease of Blender (at the time of writing), version 2.46. As always, it includes numer-

ous changes and improvements, most of which were implemented to facilitate the

development of Blender’s second open movie, Big Buck Bunny.

Once you’ve got version 2.46 up and running, start off by adding a plane in front

view and stretching it slightly along the X axis. This will be the plane that represents

the cloth we’re going to be simulating. Blender simulations make use of the vertices

of our meshes to perform calculations, so subdivide the mesh a few times to get

a decent amount of vertices for the simulator to work with. More will increase the

quality of the simulation, but will also substantially increase simulating times.

All of blender’s physical simulation options are located under the ‘Physics Buttons’.

For now, all we’re going to be dealing with are the options under the Cloth tab.

Make sure that your new subdivided plane is still selected, and then click the Cloth

button to enable Cloth simulation on that plane. That’s all you need to do to get the

simulator to run, and you can use Alt-A to preview what it would look like. At the

moment, all it will do is fall under the force of gravity, but we’ll work on that now.

Our flag mesh

Where the simulation options are located

34

Firstly, we’re going to ‘pin’ some of the vertices of this plane so that it

hangs like a flag. This prevents these vertices from moving under the

simulation and gives you a way to attach the cloth to something. To do

this, we need to define a new vertex group. In edit mode, select the

top-left and bottom-left vertices of the plane and, under the Links and

Materials tab of the Editing menu, click ‘New’ to create a vertex group,

and then ‘Assign’ to add the selected vertices to the group. You can name

the group too, if you like, to make it easier to find it later.

Back in the cloth tab, click the ‘Pinning of Cloth’ button. You’ll see all the

vertex groups appear in a drop-down box to the right of the button. If

your mesh only has one, it should be selected by default. If not, select it

by the name you defined earlier. If you run the simulation now, you’ll see

that the flag still falls under gravity but it is now held in place by the two

vertices we chose, as if it were attached to a flagpole.

For effect, you can create an actual flagpole mesh just next to the plane

so that it no longer appears as if the cloth is floating in mid-air. I sim-

ply used a tall, narrow cylinder capped with half a sphere for my post.

When you do this you’ll notice that, upon simulation, the cloth may pass

through the flagpole. This is obviously an undesirable effect, so we’ll

have to enable collision on our flagpole. We do this from the same Phys-

ics Button menu as we used before, with the Collision tab grouped with

the Fields tab. Simply click the Collision button there with the flagpole

object selected and the flag will now collide with that object.

Creating the vertex group

Enabling the pin

35

Now we’ll twist things a little bit, and let this flag flap in the wind.

In side view, create another plane, and the move it so that it is situ-

ated behind the flagpole and facing towards it. I turned it slightly

at an angle so that the wind glances off the flag. In the ‘Fields’ tab,

select ‘Wind’ from the drop-down list, and adjust the strength of

the wind. A value of around 12-15 should work well. You’ll notice

that, when you enable the wind and adjust its strength, circles will

be projected outwards from the plane in the direction the wind will

blow. This is the same as the direction of the plane’s normal. Assert

that is facing the right way.

To illustrate that the wind effect works with realtime changes to the

plane, I added some animation keyframes so that the plane would

move in relation to the flagpole, effectively changing the direction

from which the wind blows. I also enabled self-collision on the flag

so that it would not pass through itself. This isn’t always necessary

in cloth simulations but it may happen in this situation, so it’s best

to enable this to prevent it from occurring. You’ll find this option

under the other Collision tab, next to the main Cloth tab. You may

also want to enable smoothing on the flag so that the individual

faces are not so blatantly visible in your render.

Enabling collision on the flag post

The wind object

36

Additionally, I texture mapped an image onto the flag. Note

that, in this version of blender, face-select mode has been

deprecated and all UV mapping is done from edit mode. Other

than this change the process to map an image onto the flag

remains the same as was handled in previous issues. When

you’re certain that your simulation works correctly, you can

use the ‘Bake’ option under the collision tab where the self-

collision option was located to pre-calculate all the animation

frames. This means that Blender will not have to recalculate

on every render or animation preview. You may want to set

the material properties on the wind object so that it is not

visible in renders, or move it to a different layer when ren-

dering. Note that all particle based effects –such as cloth and

soft bodies – are only affected by fields in the same layer in

which they reside; if you move the wind object to a different

layer you need to have baked the animation for it to render

correctly. And to make changes to the animation, you’ll need

to move it back into the same layer.

That’s all for this tutorial. Play around with the simulation

settings to see how they affect the simulation output. As al-

ways, the .blend file as well as my animation render will be

available from the website’s content section. Good luck, and

have fun.

Wind settings

Self-collision option

37

Ed by day...

Nandrew, known to readers as Rodain Joubert, our former editor and the most

prolific asset to Dev.Mag; but this is not all he was. In addition to the time he has invested

to make this publication what it is, he also contributed heartily to Game.Dev itself, our com-

munity of game developers and designers. He created numerous quality games, above par

in all instances and, more often than not, superior to other community offerings at the time.

Some of his greatest creations, brought to fruition during the time he was working for Dev.

Mag, are listed below:

Claudio “Chippit” de Sa

Rodain Joubert. He

isn’t dead.

38

A stylized platform shooter, Line Wars was a side-scroller worth mention because, in

an effort to ease the art requirements of the game, Rodain had created a limitation

for himself: to only use lines in the game artwork. And, in doing so likely, he created

his most visually appealing title.

Double jumping around while simultaneously firing 1-dimensional doom at enemies

was incredibly satisfying, as was watching the enemies tumble away at the force of

the blast. The time-dilation ability was also incredibly smoothly implemented and

served to make the otherwise potentially difficult encounters challenging but still

fun.

Line Wars

http://www.devmag.org.za/uploads/LineWars.zip

39

Zticky Zlime took everything that was fun about the Ninja Rope ‘weapon’ from the 2D

Worms series and made a game about it. Using a very simple but intuitive mouse-based

control scheme, the player guides a rather flexible green slime through the game, using

nothing but his ability to roll and his ability to project a sticky mass at a wall or ceiling which

he can then use to swing.

Later, the player will earn alternate forms that allow him to evade or even directly combat

enemies. These grant the player extra abilities such as being immune to projectiles, or be-

coming heavy enough to smash through obstacles. The player also earns other upgrades

that increase your effectiveness, but, frankly, the game is all about how fun it is to swing

from walls.

Zticky Zlime

http://www.gamedev.za.net/filecloset/download.php?id=304

40

A study in immersion and pacing, Whodunnit is an unforgiving film noir-styled detective

romp that offers up little assistance to the player in even less time. The player, nursing an

unhealthy addiction to the calming effects of nicotine, is thrust into a generic detective set-

ting: A hotel guest has been poisoned, the protagonist himself begins to feel the effects of

the toxin corrupting his bloodstream and has but 10 minutes to interrogate the remaining

surviving patrons to discover, by means of elimination, who is guilty and force that person

to offer up the antidote to save the lives of the innocents – as well as his own.

Whodunnit succeeds remarkably because it uses both limited time as well as suspenseful

music and sudden twists to create a sense of tension previously unheard of in Game.Dev

creations, and it more than certainly deserved its competition victory.

Whodunnit …Think Quickly

http://www.gamedev.za.net/filecloset/data/files/357/whodunnit.exe

41

Who is nandrew?

We all know Nandrew. He’s that awesome guy with many talents; he was a dedicated editor, a creative

and innovative programmer, and sexy as hell. But do we really know him? Do we know the true Nandrew?

This Author went undercover, and stalk- er, closely followed Nandrew in his every day life* and found out

that Nandrew isn’t who we all think he is. A Man of many mysteries, and many talents, indeed...

* This is not true. All photos were shamelessly taken from his very personal and private Facebook page :D

The Dominatrix!
The Viking!

The Gangster!

The Rock Star!

The Power Ranger!

A tribute and invasion of privacy by Quinton “Q-Man” Bronkhorst

42

www.devmag.org.za

Gear Count:

206

	Edpage
	Netbriefs
	Thoughts
	Feature
	gGuardian
	Gish
	Irrlicht
	Photoshop
	Blender
	Contents
	Tailpiece

	gish:
	gguardian:
	irrlicht:
	photoshop:
	feature:
	edpage:
	netbrief:
	thoughts:
	blender:
	tailpiece:
	Home:
	home:
	home 2:
	home 3:
	home 4:
	home 5:
	home 6:
	home 7:
	home 8:
	home 9:

