
SOUTH AFRICA’S PREMIER GAME DEVELOPMENT MAGAZINE • ISSUE 22 • JUNE 2008

A DAY TO

REMEMBER

We interview one of South Africa’s most

prolific game development evangelists

INSIDE: DEV.MAG TIME MACHINE • TRILBY: ART OF THEFT REVIEWED •
PROCEDURAL GENERATION MADE EASY • DESIGN DOCUMENTS:
TECHNIQUES AND VALUES • LATEST NEWS • MUCH MORE ...

FEATURES

06 A DAY TO REMEMBER
We chat with one of SA’s top game development activists

REGULARS

04 EDITORIAL

05 NETBRIEFS

REVIEWS

12 TRILBY: THE ART OF THEFT
One of the top-rated indie games of the year

14 THE FAMILY TREASURE
ARR, matey! Epic pirate adventure!

15 SUMOTORI DREAMS
Sumo wrestling with a hilarious twist

TUTORIALS

16 GAME GRAPHICS WITH PHOTOSHOP
This month’s tut deals with backgrounds for the GUI

20 PROCEDURAL LEVEL GENERATION
Get the most out of base resources and clever coding

DESIGN

24 DESIGN DOCUMENTS
What you really need to know about game planning

28 TAKING THE HIT
How to deal with criticism for your games

30 A MATTER OF TIME
How to use time limits effectively in your creation

TAILPIECE

34 A TRIP DOWN MEMORY LANE
A brief history of Dev.Mag

JUNE 2008DEV.MAG ISSUE 224 5

EDITOR

Rodain “Nandrew” Joubert

DEPUTY EDITOR

Claudio “Chippit” de Sa

SUB EDITOR

Tarryn “Azimuth” van der Byl

DESIGNER

Brandon “Cyberninja” Rajkumar

WRITERS

Simon “Tr00jg” de la Rouviere
Ricky “Insomniac” Abell

William “Cairnswm” Cairns
Bernard “Mushi Mushi” Boshoff

Danny “Dislekcia” Day
Andre “Fengol” Odendaal
Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans
James “NightTimeHornets”

Etherington-Smith
Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom
Kyle “SkinkLizzard” van Duffelen

WEBSITE ADMIN

Robbie “Squid” Fraser

WEBSITE

www.devmag.org.za

EMAIL

devmag@gmail.com

This magazine is a project of the South Afri-

can Game.Dev community. Visit us at:

www.gamedotdev.co.za

All images used in the mag are copyright and

belong to their respective owners.

You admire the layout. You are in awe of

the layout. You are amazed by the layout.

Reward us with hugs and candy.

Hello again, dear readers!

Time flies by quickly, it seems. I hope you haven’t grown too impatient
waiting for this edition of the magazine to come out – as you can see,
we’ve been rather busy with some things and it has slowed our progress
considerably.

This edition has been especially pre�ified for three reasons: one, we’ve
been hankering for a makeover for a while, and it’s always fun pu�ing on
a new skin. Two, this mag needed to be presented as a journalistic project
to some sinister authority, meaning that some polishing up was required
on the looks front. Three, this shall be my final Dev.Mag issue as your
loyal and ever-humble editor, and I have personally put in the hours to
make sure that the last edition under my control leaves a good impres-
sion on you, the reader.

I’d like to start by allaying any fears: while I may have fallen casualty to
real-world commitments, the magazine itself will most certainly endure
in my absence. Our dear Dep-Ed, Claudio “Chippit” de Sa, has accepted
the mantle and is already making preparations to re-organise the maga-
zine and get the next issue ready. From what I hear, he’s being assisted
by a crack squad of journalists who have been called in especially to help
him make his mark, so there’s bound to be some exciting things happen-
ing in the near future.

Given that this is possibly my final soapbox opportunity for the maga-
zine, I’m going to hit a li�le bit of self-indulgence and wish you all a
proper goodbye. I’ve never really been all that good with farewells (who
can honestly say that they practice for such things?) but I want to say that
it’s been a great privilege to serve as editor over the years. Dev.Mag has
grown from a simple concept to a fully-fledged reality, and new oppor-
tunities make themselves known with each passing month, helped along
by a drastically swelling reader base and one of the most dedicated crews
I have ever had the fortune of working with. As I walk away from the
proverbial seat of power, I hope that I can allow myself some small credit
for helping all of this come to pass.

Beloved reader, thank you for taking the road with us this far. I hope that
you continue to enjoy the magazine in my absence and may you fully
reap the benefits of the fresh hands that are now taking the helm. Your
support has been invaluable – the audience is what we end up writing
for, after all, and without the readers ... well, there wouldn’t be much of
a magazine to talk about!

I salute you, and I salute the hard-working staff of Dev.Mag. Goodbye all,
and happy game devving. ;)

RODAIN “NANDREW” JOUBERT

EDITOR

Comp 19: Playing with Death!

h�p://forums.tidemedia.co.za/nag/showthread.php?t=5633

Most games stop when your character’s life meter hits zero. Game.Dev’s nine-
teenth competition encourages participants to challenge this standardised view
of gaming and create a project which blurs the boundaries of life and death, play-
ing about with the la�er to create a new and unique gaming experience. If you’re
a South African citizen and want to have a go at this comp, high-tail your way to
the forums and get something going for the July 1st deadline!

TIG database

h�p://db.tigsource.com/

Recently, Derek Yu over at TIGsource decided to
update the affiliated Independent Games Data-
base, throwing in filters, doohickeys, whatchama-
callits and a load of extra games, bringing the da-
tabase count to a li�le over 200 hand-crafted indie
games. It’s a humble collection, but still really neat
to browse through if you’re looking for some high-
quality indie gems to try out.

MochiAds

h�p://www.mochiads.com/

An interesting website which offers devel-
opers a chance to earn money with their
online Flash games, using an in-game
ad system that allows the game’s creator
to get buckazoids on a per-play basis. If
you’re an experienced Flash developer and
are craving a bit of cash, have a look here
and see if the system appeals to you.

MMOG business models

h�p://www.gamasutra.com/view/feature/3688/mmog_business_models_cancel_that_.php

For the business-oriented readers out there, Gamasutra offers a feature comparing the vari-
ous types of online gaming business models. It looks in particular at the subscription vs
microtransaction debate, examining the la�er’s benefits in light of the former’s slackening
hold on marketing minds. Interviews with SOE, Three Rings and EA representatives claim
to shed light on the ma�er.

JUNE 2008DEV.MAG ISSUE 226 7

DM: Mind telling us a li�le about yourself?

DANNY: My name is Danny Day. I’m 27 years old.
I own QCF Design, an independent game develop-
ment studio. I run Game.Dev, a non-profit commu-
nity of South African game developers. I’ve lectured
on games at UNISA, given talks all over the country
and consulted on local and international initiatives
on growth and innovation in Information and Com-
munications Technology in South Africa. Generally I
just answer a ton of questions and try to get people’s
enthusiasm channelled in ways that will show them
results and keep them going.

DM: Tell us about the Game.Dev community and the
service it provides, for the benefit of newcomers.

DANNY: I’ve never really considered Game.Dev as
a service, but I guess we are… If you want to find out
about game development, have an idea that you’d like
feedback on, want help learning how to make your
own games, have a skill that you’d like to offer other
game developers or simply have a ton of experience
that you’d like to share, Game.Dev is the place to go.

DM: How does the Game.Dev community function?

DANNY: I spend a ton of time online, as do the rest
of the Game.Dev regulars, answering questions on
our forums, solving problems and giving feedback on
games. Every two months I come up with a competi-
tion concept that I feel will grow skills and direct in-
teresting discussions, run the competition for a month
and then spend an inordinate amount of time judging

Danny Day (known in the online realm
as dislekcia) will be a name familiar

to most who have dwelled amidst the
Game.Dev community of South Africa.
Everyone’s favourite mentor has now taken

a step towards realising the dream of a
booming South African game development

environment by starting his own company, QCF
design. Writer James “NightTimeHornets”

Etherington-Smith goes to learn a little more
about the man who was instrumental in the

creation of the Game.Dev community.

DEV.MAG PRESENTS ...

the entries that come out of it. There are also the phys-
ical events like workshops, development LANs and
the hugeness that is rAge every year. The main goal
is to raise awareness and visibility of game develop-
ment as both an art form and viable solution to some
of our problems across the country. It’s idealistic, but
it seems to be working so far.

DM: When did you first become interested in game
design and development?

DANNY: If I look back, I’ve always been ‘designing
games,’ from drawing mazes by hand for other kids
in primary school, to being the one that always comes
up with new things to play during break. If there was
any kind of interactivity to something, I wanted to get
in there and make my own.

DM: What piqued this interest?

DANNY: One day my dad brought home one of
those ancient folding-keyboard workstations and
started writing his own games on it. He had all these
theories about how people learn and what environ-
ments they learn best under, so my sister and I became
guinea pigs. We got very, very good at mastermind
and mathematics playing Mastery and MathComp re-
spectively. To my dad, the games were just a means to
an end, but I was hooked on them after that, always
looking for the next game that would challenge me
to learn or understand something new. I never really
cared for programming until someone showed me
LOGO. I got hooked on its instant results and never
really looked back.

Danny travels all over South Africa to
spread the word of game development.

One of the highlights in his calendar
is the annual rAge expo where he
maintains a Game.Dev stand offering
talks, workshops and get-togethers
for keen developers.

JUNE 2008DEV.MAG ISSUE 228 9

DM: Tell us about QCF.

DANNY: QCF officially started life as Squirrel Cube
Software in November 2007. The original name was
chosen out of desperation and ended up changing
pre�y quickly because it would confuse people…
QCF stands for Quarter Circle Forward, which is
usually a special move in most games, hence QCF +
Design being a “design special move.” Corny, but us
gamers like that sort of thing.

DM: What inspired you to start QCF?

DANNY: Mainly the fact that I’d been earning a
living without a ‘real job’ for over a year just doing
game design consulting projects. I realised that I was
turning down job offers and it was finally time to start
my own company to bring a couple of products I was
working on to market. I’ve always admired the indie
studios out there, but it was only once the whole cas-
ual games market exploded and digital distribution
really took off and Game.Dev literally grew out of
nothing that I thought I could manage to earn a living
doing what I love.

DM: What are your goals and aims with QCF?

DANNY: I want to build games that people enjoy,
make a bit of a mark in the world with them. Hence
my pushing for innovation and learning in games. Of
course, I need to eat along the way and have some-

where to stay… I guess the dream success stage of
QCF would be to have it be big and successful enough
to enable the people working in it to be auteur and
experiment with the games they make without fear of
financial ruin.

DM: Have you achieved any of these so far?

DANNY: Well, QCF is pu�ing food on my table!
Plus it’s only been around for about 6 months and I’m
already going to start working on a personal project
instead of a title for a client. That’s a big deal in the
industry, if it works out I’ll have another intellectual
property that hasn’t used any publisher money which
we can then take to market.

DM: Have you released any games?

DANNY: We’ve just completed QCF’s first game,
a cellphone game called MathsterMind. We’ve man-
aged to retain the intellectual property rights and so
will begin the process of looking for publishers and
regional distributors soon.

DM: Do you have any partners in QCF? Any employ-
ees?

DANNY: No partners, the company is mainly me at
the moment. I’m building a team up though. Maths-
terMind employed Robbie “Squid” Fraser as a design-
er and programmer as well as Brandon “Cyberninja”

“I WANT TO BUILD GAMES

THAT PEOPLE ENJOY, MAKE

A BIT OF A MARK IN THE

WORLD WITH THEM”

Mathstermind was the first project that Danny got into after
starting QCF. The game has gone through a long and involved
prototyping process, with many revisions needed to get to the
final, polished product.

JUNE 2008DEV.MAG ISSUE 2210 11

Rajkumar as a graphics artist. MathsterMind evolved
out of Robbie’s Math A�ack game, which made Mind-
set bring the project to us. In general, I don’t see any
problems growing QCF from here, there’s all the tal-
ent from Game.Dev available.

DM: Any information on current projects that you
can share?

DANNY: I have a couple of casual games I spend the
odd few days here and there working on, Drawka-
noid and Dream Catcher, both do something unique
that I need to stop blabbing about and get out there,
lest they stop being unique in a month or two…

Our next big project is likely to be a self-funded exper-
iment for Microsoft’s Dream Build Play competition
– which is an excellent way to get international press
and a�ention. You just have to make a great game.
No pressure, y’know? There’s also the marketing of
our current properties. We need to find Mathstermind
distribution partners as well as start selling a visuali-

sation tool I wrote a few years ago called Molecules.

DM: Tell us about Molecules.

DANNY: It’s a real-time molecular building tool. Re-
places those ball-and-stick kits they flog to school kids
and students.

DM: Any previous success stories?

DANNY: I think a lot of people would argue that
Game.Dev itself has been an unbridled success. We
went from having almost no visible local game devel-
opment community or information to running work-
shops and inspiring an entire generation of develop-
ers, in less than 3 years. QCF is just starting out, but
already our first project is doing very well and ge�ing
great feedback. I feel that’s just the tip of the iceberg.

DM: What are your opinions on the South African
game development environment?

DANNY: I think we’ve got a unique opportunity to
build capacity as an industry of innovative and crea-
tive game designers, known for excellent, quirky, ex-
citing games in a global games industry that’s crying
out for exactly that sort of authorship. Because we
don’t have the publisher-driven monolithic structures
here that govern game development pre�y much eve-
rywhere else, I feel that we have the chance to start
from scratch and avoid all the pitfalls that take crea-
tivity out of the equation. We’re also fortunate enough
to be a country with lower-than-average living costs,
so we’ve got the chance to sell games globally via the
internet and make much be�er livings than indie de-
velopers in Los Angeles or New York. Sure, we’ve got
infrastructure problems but those can be overcome.

The Eastern European developers are known for tech-
nical wizardry but often flawed gameplay, Japanese
developers are known for cultural flashes like bullet-
hell shooters and complex jRPGs. I would like to see
South African game developers famous for being a

breath of fresh air in the industry in the next 10 years.
Our future is digital distribution and the unique tal-
ents our country produces. When most of our popula-
tion is using computers, we’ll see some huge changes
to the role that games play in our society, both as tools
and as means to earn.

DM: Do you have any advice for indie developers
just ge�ing started?

DANNY: An idea is pre�y much worthless unless
you turn it into a playable game. Start small. You’re
not going to make Quake 17 on your own. Work your
way up from your core idea to the bigger ones. Always
test your games, the smiles of your players will keep
you going when things get tough. Work with others
whenever you get the chance, but don’t expect to have
people beating a path to your door. Don’t re-invent
the wheel and don’t accept “you can’t do that” as an
answer, there’s always another way. If you keep try-
ing, you’ll get there… I feel like I’ve hardly started.

One of Danny’s prototypes, Mol-
ecules, is a simulator and build-
ing tool which he hopes to pro-
mote as an educational tool for
children interested in chemistry.

JUNE 2008DEV.MAG ISSUE 2212 13

Trilby: Art of Theft is a stealth-platform game created
by Ben “Yah�ee” Croshaw using Adventure Game
Studio. Yes, you read correctly - a platformer made in
an engine designed for adventure games. As the title

not-so-subtly suggests, Art of Theft stars
Chzo Mythos protagonist Trilby. So

what’s he up to this time? Puzzling
his way through haunted houses? Un-

covering the secrets of reality-shift-
ing hotels? Well, no. In this game
he’s doing exactly what got him
his reputation to start with – cat

burgling.
Art of Theft is comprised of a linear set

of missions (or “heists”, as they’re called),
which are linked together via a simple

but entertaining storyline.
Each heist follows more or
less the same pa�ern. Trilby

will first brief you, giving you
some back story to the mission as
well as outlining the victory con-

ditions. Then it’s then up to you to
guide him through the level, snap-

ping up whatever swag you can
find while ensuring that you
don’t get spo�ed by guards,
security cameras, laser trip-
wires or civilians. Should you
be detected, the alarm will be
raised. This doesn’t cause im-
mediate failure, but set the

alarm off once too often and Trilby will decide to hot-
foot it out of there before the cops show up. Complete
the mission, and you’re presented with a score screen
that outlines your performance and assigns you a rat-
ing for the heist, ranging from a pathetic “C” to the
elusive “Trilby” rating.

As you’ve probably gathered from the above
description, the main component of Art of Theft is
stealth. This is achieved mainly by the best friend of
every burglar since burglary was invented - darkness.
By sticking to dark or dimly-lit areas, Trilby is able
to hide himself from view and avoid se�ing off the
dreaded alarm. Different light levels offer him dif-
ferent degrees of invisibility. Completely dark areas
allow him to move freely without being seen by any-
thing but laser sensors. In dimly lit areas he is visible
while in the open, but can hide by hugging himself
to the wall behind him, an action that costs him the
ability to move (this is also useful for dodging the
aforementioned lasers). Slipping in and out of vis-
ibility without being detected requires careful timing
of your movements and actions, but is made easier
by the predictable pa�erns that guards, lasers and
cameras follow. Bad timing can be fatal, though, since
cameras and lasers will trigger the alarm almost im-
mediately. With human guards, however, Trilby has
a last-resort tool – a limited-use tazer built into his
“grolly” (a grappling-hook/umbrella hybrid) that he
can use to render them unconscious before they hit
the panic bu�on.

While dodging Security is the core mechanic of
the game, Yah�ee has made an effort to spice the ac-

tual theft portion up a li�le by throwing some extra
challenges into the mix. While lootable items are gen-
erally placed within relatively easy reach, more valu-
able items and mission objectives are often secured in-
side safes or locked rooms, which you must break into
by means of simple reflex-based minigames. Wri�en
notes are often sca�ered across the levels, contain-
ing security codes or clues to unlocking hidden loot.
There are also electrical panels in some levels that,
when successfully tinkered with via a chance-based
“cut the wire” minigame, will do anything from shut-
ting down security systems to bathing the entire level
in darkness.

Not that any of this is superfluous either – for each
puzzle you solve and for each bit of loot you steal, you
earn Reputation Points. These can be spent between
missions on new abilities (such as “sidle”, which al-
lows you to move while wall-hugging), upgrades
to existing abilities (such as improved lockpicking
skills), or even such luxuries as “guard amnesia”,
which will gradually replenish your alarm count as
the level progresses.

At this point, it would be pertinent to mention
the influence of Reputation Points on Art of Theft’s
replay value. You are able to replay any of your com-
pleted heists at any point, but any abilities you have
purchased in later missions will remain available to
you during those replays. Even the earliest heists are
designed especially with this in mind, with some ar-
eas made inaccessible until you purchase the neces-
sary skills to reach them. In addition, the end-mission
rating boost that these new areas provide comes with

more tangible rewards than simple bragging rights. A
progressively higher average heist rating will unlock
special costumes that Trilby can change into, granting
him special abilities to aid him in his work. All of this
works together to make Art of Theft a fantastically re-
warding game to play through multiple times.

I’m going to say it bluntly - Art of Theft is not an
easy game. In itself this isn’t a bad thing, but the dif-
ficulty is augmented somewhat by a few unfortunate
quirks. Firstly, the controls tend to alternate between
“over-sensitive” and “dead”, which works against the
whole split-second-timing part of the game. Nothing
is more frustrating than whacking the wall-hug key
to dodge incoming lasers, only to have Trilby bliss-
fully ignore your command and set off three alarms in
a row, or wall-hug and then suddenly pop out again
because you held the key down for one nanosecond
too long. Secondly, the enemies may follow a predict-
able pa�ern, but they have a tendency to go “out of
phase”. In these cases, at least one enemy in a given
area is potentially able to see you, leaving you stand-
ing there stupidly for minutes on end waiting for a
“vision gap” to sneak through.

That said, Art of Theft is not a bad game either.
Despite occasional frustration due to the aforemen-
tioned niggles, the game has a lot to offer – it’s unique,
it’s challenging, it’s highly replayable, and above all,
it’s fun. It’s definitely worth checking out just to see
how far the AGS engine can be stretched with a li�le
skill. Overall, if you’re willing to work past the occa-
sionally finicky controls, there’s a lot to recommend
here. Give it a shot.

by Gareth “Gazza_N” Wilcock

JUNE 2008DEV.MAG ISSUE 2214 15

You can’t help but smell the whiff of nostalgia that
permeates the air as your eyes fall upon the gorgeous
retro adventure game graphics of The Family Treas-
ure.

This South-African created adventure does not
tread any new ground in terms of plot and story, but
it delivers in clean, fun gameplay.

You play an old bearded pirate named Bloodhook,
and you are tasked to find your family’s lost treas-
ure. The rest of the characters are your average pirate
crew.

The puzzles are quite easy, so the seasoned adven-
turer will probably whizz through this game. Even for
non-experts, it’s not too long. Some of the events are
quite random, though, and at times the game doesn’t
quite make sense. Why a pirate would decide to give
you a magnifying glass, no one knows.

The Family Treasure touches on the world of Mon-
key Island and references to Le Chuck, greatly en-
hancing the game with that special feel and humour.

As mentioned, the graphics are really well done
for an indie project. The place where the game excels
the most, though, is the music. The funky pirate tunes
create the perfect atmosphere as you scavenge the
small island.

If you have time (or a lunch break, even) and just
want to rewind with some standard adventure gam-
ing, then you won’t go wrong with The Family Treas-
ure.

by Simon “Tr00jg” de la Rouviere

S u m o t o r i D r e a m s

What exactly is Sumotori Dreams? Well, it is Sumo-ish
and not so much dreamy as it is a perfect example of
“Drunken fighters, lol!”

A be�er explanation would be that Sumotori
Dreams is fighting game, and a very unique one at
that. Your goal is to simply push the opposite player
so that he falls or steps out of the ring. Yes, that is all.

Well, okay, not really.
The average epic, grandiose fight takes a humon-

gous 5 seconds. What happens after the 5 seconds is
what makes Sumotori Dreams the gem it is.

After you’ve pushed your opponent over, both of
you are probably lying on the floor. The AI takes over
and its job is to simply stand up and take a bow. With
strategic placing of objects and semi-drunken AI, hi-
larity ensues as the AI tries to stand up. The competing
wrestlers stumble, break blocks (tsk, tsk) and gener-
ally just fall around like the pair of complete buffoons
that they are. Once they are both standing, they take a
gracious bow and the next match can start.

The controls aren’t very intuitive, but it is done
purposefully like that. The average person can’t throw
jaw-breaking uppercuts in real life, and it takes prac-
tice to throw a decent hit. Your keys are “push with
one hand”, “push with both hands”, “lean forward”
and “jump”. They could’ve added a “kick with both
feet”, but that’s just our opinion.

The graphics also aren’t absolutely awe-inducing,
but since when did we worry about that? The charac-
ters are fancifully pieced together by li�le blocks and
the entire game fits into just a few kilobytes.

Sumotori Dreams is also a really interesting game
from a design perspective, considering that the big-
gest part of the game takes place long after the player
input has stopped. It is quite a neat idea that could
perhaps gain some foothold in other potential titles.

As a game, Sumotori Dreams is a delight to watch.
As a rule of thumb, fetch your roommate, housemate,
grandmother or cat to play it with you. You’ll be gig-
gling like idiots for hours.

by Simon “Tr00jg” de la Rouviere

JUNE 2008DEV.MAG ISSUE 2216 17

This month, Rishal “TheUntouchableOne” Hurbans shows
us an example of creating a simple GUI graphics set with

the help of Photoshop.

In this tutorial, you will learn how to create some de-
cent backgrounds for your game’s GUI. This would
apply to things like the menu screens, loading screens
and any other area in the GUI where a background
would be required. The techniques used here can also
be used to create in-game backgrounds and add extra
effects to them.

The backgrounds created will be raster images so
we will need to know the exact size of the image to
prevent different stretching, which would cause the
image to look distorted and unprofessional.

As usual we will create a blank Photoshop project.
Choose a good usable size for the canvas. I used a
800x600 pixel canvas.

Remember, the colour scheme and theme of the
backgrounds in your game should be in sync with the
overall theme of your game. As this tutorial has de-
veloped, we’ve created the character, “Smurfy” and a
“Moon-light forest” backdrop, so it will only be fit if
Smurfy starred in a game that takes place in a forest.
A title,“Smurfy’s Forest Adventures” or something
along those lines.

We will start with the menu screen for the game.
The menu screen should be an a�raction of your game.
No-one wants to start the game looking at a boring

or horribly done menu screen but on the other hand
no-one wants to deal with an over done cumbersome
menu screen. In this particular type of game, I would
say the menu background should be somewhat hu-
merous or at least, interesting.

At the stage of creating menu screens, loading
screens etc, a good idea would be to use concept art
that you have drawn physically or make use of the
in-game art already created. The menu backgrounds
can also have an abstract look. This can easily make
the image look really amazing if done correctly and
doesn’t take too much effort. By giving the back-
ground an abstract look and giving your bu�ons a
more definite and solid look, the menu should be re-
ally appealing to the player.

When thinking about the menu screen for
“Smurfy’s Forest Adventures”, many ideas may come
to mind. Since Smury is part alien, I thought a warp
portal would be good. So a portal with Smurfy pop-
ping out in the deep dark forest would be ideal.

It’s pre�y obvious that we will make use of the
previous created images, we will use the front view of
the Smurfy vector sprite and the forest backdrop, so
if you don’t already have the resources, it would be a
good idea to download them.

Once you have the blank project opened, open the
Moon-light forest.psd photoshop project file. Select all
the layers of the Moon-light forest.psd project, right-
click, and duplicate layers to the blank project.

While all the layers of the Moon-light forest are se-
lected, right-click and select Merge Layers. We don’t
need all the separate layers, just the forest in full.

Firstly we can create the warp portal in the center
of the scene.

Now, while the forest layer is selected, choose the
Elliptical Marquee tool in the tool bar and select an
elliptical section of the image as shown in Figure 1.
Once the desired area is selected, right-click and select
Layer via Copy.

The new layer needs to be distorted to give it the
“portal” look.

So, select the filter option in the task bar, select
Distort>Twirl, set the angle to around 50 and apply
it, now set the opacity of the layer to 50%. The image
should look similar to Figure 2.

The image looks a bit blurry and distorted, which
is what we want.

Duplicate the portal layer just created. Repeat the
Filter>Distort>Twirl procedure but this time set the
angle to something greater than 50 but less than 120.

The opacity of this layer should also be 50%. The im-
age should now look similar to Figure 3.

Duplicate the previously created layer and apply
the Twirl Distort procedure once again, use an angle
of around 190 and set this layer’s opacity to 30%. We
are going to give the last distort we created a blue tint.
Select Image>Adjustments>Selective Colour. Choose
White and set the Cyan and Magenta values up until
you get a nice looking blue(the colour here can be any
colour of your choice).The image should look some-
thing like Figure 4.

Thats the “portal” done for now. We need to put
Smurfy into the scene now. Open the Photoshop
project with Smurfy’s front view and duplicate the
layers to the current project that we are working on.
I think the default size of the character sprite is just
fine, but if you disagree, resize the vector layer using
the Transform, Scale procedure.

I have decided to make the character’s one arm
look different to the other by simply, flipping it hori-
zontally rotating it slightly(these options are avail-
able in the Edit>Transform Menu). After this has been
done, right-click on the layer in the layers window
and select, merge layers. This will make the vector
sprite into a single raster layer (Figure 5) .

This article refers to resources available at the
“Contents” section of the Dev.Mag website
(www.devmag.org.za). It is recommended that
you visit the site and download these resources.

Fig. 1 Fig. 2

Fig. 4 Fig. 3

Fig. 5

JUNE 2008DEV.MAG ISSUE 2218 19

We are going to use the Transform, Warp proce-
dure, so we need the sprite to be in raster image form.
Select the Smurfy layer and select, Transform>Warp.
Now move the points and “handles” in the warp grid
to make it seem as if the character is being sucked into
or thrown out of the portal as seen in Figure 6.

Now since all this is happening very fast, we can
duplicate the warped character layer, set the opacity
to about 50% and move it slightly to the left or right
(Figure 7).

We can now use the smoke/fog technique as ex-
plained in tutorial four to give the image a few more
effects. The effect can be applied to the surroundings
around the character as well as around the portal. Af-
ter you play around with the effect, your image could
look similar to Figure 8.

Another effect that would be useful here is
the sprayed stroke effect. Select Filter>Brush
Strokes>Sprayed stroke. Choose suitable values for
the Stroke length and spray radius (Figure 9).

Any other touches can be added to the image as you
see fit. I have added a small black dot in the center of the
portal to make the portal more definate. Using the blur

and smudge tools will also add an extra effect of the por-
tal. Experiment with the tools with different strengths
and see what you can come up with (Figure 10).

Now remember, your menu background should
be interesting but also not too out there in terms of
dominance. You need the bu�ons and options to be
clear and bold in the menu screen, though in the load-
ing screens the background should be really interest-
ing and a�ractive as a player does not want to wait
for something to happen while looking at something
boring. There should also be a space for the bu�ons
where they won’t be obstructing anything interesting
on the background (Figure 11).

The backgrounds can be transformed into many
different amazing styles, using the Filter>Artistic op-
tion (Figure 12).

Loading bars, bu�ons, checkboxes and the other
GUI controls will be discussed in the next tutorial. By
combining the background and the controls correctly,
a striking GUI can be achieved. A challenge to you
would be to use the animation techniques discussed
in tutorial three to created an animated menu back-
ground as seen in commercial games.

Fig. 6 Fig. 7

Fig. 8 Fig. 9

Fig. 11 Fig. 10

Fig. 12

JUNE 2008DEV.MAG ISSUE 2220 21

Ever wanted to make entire worlds on the fly without
having to manually stick in every blade of grass? This

month, Gareth “Gazza_N” Wilcock offers readers a bit of
insight into the process of procedural level generation.

We’ve covered procedural generation before in Dev.
Mag (we had an excellent article on Perlin Noise two
issues ago), but before we start it might be pertinent
to refresh your memory. In game development terms,
procedural generation is the creation of game assets
on the fly by using code as opposed to standard edit-
ing tools. Rather than spending hours upon hours cre-
ating textures, levels, geometry, music, or whatever
else your game requires, you generate it as the game
is running according to rules that you specify.

It sounds very complicated and, depending on
what you want to generate, it can be. However, pro-
cedural generation can be a great asset to the aspiring
game developer, and it needn’t be that difficult. Since
it’s best to learn with a working example, I’m going to
cover a simple method for procedural level genera-
tion that I developed for one of my own games.

A simple level generator

gGuardian is a game that I whipped up for one of the
frequent competitions held by Game.Dev, the com-
munity that creates this magazine. The rules of the
competition specified that we had a month to cre-
ate any manner of game we chose – provided that
the gameplay only lasted for ten minutes from start
to finish. I decided to create a siege game where the
player must defend a single key location from a multi-
pronged assault by hostile aliens. Early on in develop-
ment, I realised that unless it had a large variety of
maps to play on, the game’s replay value would be
close to zero. I didn’t have the time to build and test a
whole lot of maps, so the answer was simple: I needed
to procedurally generate them.

Fortunately, the levels that I had in mind were
very simple. I needed a room that would contain the
Cryobay, the object which the player was required to
protect. I also wanted easily identifiable points from
which the a�acking hordes could spawn, which I de-
cided would also take the form of special rooms. These
two functional room types would be supplemented
by other arbitrary rooms filled with decorative doo-
dads, and the whole lot would be linked by a maze
of corridors. All very straightforward in principle, but
the question was how I could build something like
that on the fly.

Eventually, after much experimentation, I came up
with a rudimentary but very effective method. I split
the level into large (512 x 512 pixel) tiles, and built
room and corridor tiles that I could plug into this grid.
This saved me several hassles. For one, it meant that I
could always be sure that everything linked together
properly (since generating and linking corridors on
the fly can pose several problems). Secondly, it kept
the actual level generation process simple and fast.

1) Place Cryobay room. This room is
always staggered around the centre
of the map and, as the name implies,
contains the Cryobay, the object that
the player must protect.

2) Place room tiles. These are instanti-
ated randomly across the map. Ran-
dom objects that serve as decorations
are also instantiated within these
rooms in a way that the algorithm
sees fit.

3) Place “generic” path tiles. Each
room fires off eight of these - two in
each direction (up, down, left, right).
If path tiles overlap other paths or
rooms, they are destroyed. The idea
is to form a “mishmash” of path tiles
that fills the spaces between rooms
and interlinks everything.

JUNE 2008DEV.MAG ISSUE 2222 23

The actual level building takes place over several steps:

4) The “generic” path tiles scan the
surrounding area to determine the rel-
ative positions of adjacent room and
path tiles. They then use this informa-
tion to decide what specific type of
path they’ll become (“L” path, T-junc-
tion, straight corridor,etc.), and assign
the correct tile to themselves accord-
ingly. As you can see in the screenshot,
this forms a complex but logically laid
out network of corridors.

If a generic path tile only has one
neighbour, it becomes a “Dead End”
tile. Dead End tiles are where I place
the alien spawn points/portals. The
number of portals created depends on
the difficulty level. If a portal is close
enough to the cryobay and there are
sufficient others for the game to play
properly, that portal is destroyed.

4) Once the level layout is created,
I randomly sca�er the weapon pods
that the player must collect across the
map, ensuring that they don’t overlap
walls or decorations.

And voila! One complete gGuard-
ian level! Serve immediately.

JUNE 2008DEV.MAG ISSUE 2224 25

“Oh that’s right, I remember now, I actually wanted a
cheese gun for Potato Planet Avengers. The game was
meant to be a top down shooter where you ran around
collecting cheese and shooting spudlings. Now we
have 12 weapon choices, 6 different view ports and
no gameplay. Now we will never finish the project be-
cause the code is convoluted and doesn’t compile any
more. Let’s make a new game.”

Sound familiar? This is a horrible occurrence in
the everyday world of game development. From the
smallest of projects to the largest of code-monsters,
there is nothing worse than yet another failed project.
Most (not all) failed projects stem from one simple
fact: there was no real design “system”. This article
aims to outline some of the ideas behind a design doc-
ument, what it is, what it does, and how it can help
within a project. Hopefully it can help you churn out
a complete project at some stage in your pursuit of
writing games.

The idea behind the design
The design document serves to explain the proposed
ideas in a well-formed, neatly outlined manner. Above
all, it is aimed at keeping the project a sane and man-
ageable task, without losing sleep over adding ideas
to a project without remorse.

The design document is not aimed at the end user,
it’s not aimed at your friends when you tell them
what the game is about, it is a technical reference and
design outline of what your goals were and should
(within reasonable limits) remain.

The document (even if separated into pieces
across multiple documents) should be classed as a
whole and is considered by each part of the develop-
ment process. The design document itself is to be a
concise, relevant and complete reference in order to
accomplish the design.

Without sounding too serious or convoluted, it
tells everyone what is needed to be done to accom-
plish the game.

A design document is a very important part of any
project, but it is more a guide than a rulebook. There
must be someone sensible enough “in charge” of this
document and there must be contribution from all
teams and participants in a project.

The design document should be reviewed and ei-
ther updated or reverted to at all major milestones in
a project. Leaving no space for additions or subtrac-
tions of the design is foolish, but leaving no space for
complex additions that can break a project and remov-
ing the need for expensive setbacks is what a design
document can do for a project. The document helps to
remember the idea behind the design, exactly what it
is that was started and where it is going.

If you were ge�ing on a train, and you asked the
driver where it was going and his only response was,
“Uh, I don’t know,” or a long complicated explana-
tion about the difference between grilled pancakes
and co�on jeans, there would be no motivation or
even desire to get on that train. Without a destination
it is near impossible to know where you are going.
The thing with a train (and most games) is they have
a starting position (the game idea) and millions of
routes to choose from.

A design document is not meant to inhibit the de-
velopment, or to hinder the changing of any original
or additional ideas for a game. Evaluate each addition
or change on the following set of criteria:

by Sven “FuzzYspo0N” Bergstrom

1) Does th
e cha

nge re
quire

core c
hange

s and

influe
nce m

ajor g
ameplay

aspect
s?

2) Does th
e cha

nge re
quire

addit
ional

time to

implem
ent n

ew syste
ms to

power th
is add

ition?

3) Does th
e cha

nge re
quire

a lot
of tim

e to
recalib

rate

all th
e artw

ork to
 fit t

he ne
w sche

me?

4) D
oes th

e cha
nge re

quire
minimal cha

nges t
o the

system
 but

requir
e con

sidera
ble ti

me to
implem

ent?

5) C
an th

e cha
nge b

e add
ed aft

er pr
oject

completio
n,

such
as a m

od or
 addit

ional
pack

to th
e gam

e?

6) Can th
e cha

nge b
e slot

ted in
 without

 any
major

proble
ms and

 bene
fit th

e syst
em as a

whole,
benefi

t

the p
layer,

and b
enefit

 the
games’ pl

ayabil
ity?

JUNE 2008DEV.MAG ISSUE 2226 27

Chances are if the addition will make the game a
lot be�er it is worth considering, but if it is going to
hinder development in such a way that the project will
be set back hugely, rather leave it out. Certain features
in a game will make the game incredible: the develop-
ment option is feasible, it will take some time (within
reason) and will need the core to adapt to fit the new
model, but these ideas are not what kill a project. If all
participating members or affected members in a game
design agree that the addition can be done within a
time frame that suits the project manager, the addi-
tion is most likely to make the game be�er and it is
worth considering. The important part is that there
must be consistency when sticking to a document,
and there must be wisdom when it comes to changes.
Always check the document when developing parts
of the game to see whether you are following what the
game was designed for.

The document layout
There are millions of opinions, and always ones that
differ. I think design documents change per team, per
project, and per purpose, but I don’t believe a project
can exist without a guideline of what is to be accom-
plished. For example, a game like Monopoly won’t
need a huge design document for the programmers
as it is common and well-known, but the game could
be taking a Star Wars twist and include new instruc-
tions for the artists to abide by. Were it a 3D version
and artists had a budget of what technology the game
is able to use, it would be beneficial to state the key
elements of what is allowed or not allowed to be cre-
ated: for example, a poly budget that limits each scene
to a number of polygons in-game.

A few major things a design should contain are a
number of steps you may break down into any and all
aspects of the project. Things you might want to keep
regardless of the project is the following:

In closing
Opinions on formulated design documents are viable,
but there is room to improve. If you have ever used
a design document you will know there is consist-
ency, flow, and usually success in completing tasks
assigned to you. This is especially helpful if you are
not working under your own design, have a couple
of level-headed friends and pass your design along to
them, asking them if it is worth the effort to dive that
deep or whether you should leave out some options
for the sake of actually ge�ing a game complete.

Making complete games is a ma�er of wisdom,
logic and perseverance. Having unrealistic goals or
being too shallow in concept can easily be identified
when a design document is in play.

1)Purp
ose o

f the
docum

ent (
to des

cribe
projec

t X to

the a
rtist

team
)

2)The
key el

ements t
hat n

eed t
o be

presen
t in t

he

outco
me

3)Each
 key e

lement is
 a lar

ge po
int, w

here a
ll sub

points
 are b

roken
down in a

 detai
led an

d com
plete

way to
 ensu

re cla
rity b

etween b
oth s

ides o
f the

team

(managem
ent an

d dev
eloper

)

4)A conc
lusion

 that
 completes

 any
missing

 or ad
-

dition
al info

rmation
regard

ing th
e docu

ment an
d

completio
n of

the re
quirem

ents w
ithin

JUNE 2008DEV.MAG ISSUE 2228 29

So you have just created your masterpiece and now
you submit it to the Internet to be praised by your
loving fans. Instead you are met with a rabid herd of
people claiming how you wasted their time with your
retarded game.

Well, this article is here to help soften that blow.
Almost everyone’s first game is bad. So, instead of

going sulking, you should try to always see your first
game as a learning experience and pave forward.

So, now that you have your first game out of the
way, you will most likely start receiving more criti-
cism for your upcoming games. I like to divide criti-
cism into 4 categories.

The 2 extremes first:

1) “1337 crap”

This criticism is along the lines of “OMG! This
suxxor. 0/100!”. You can pre�y much treat it the same
as what it is like. Trash. Just ignore it.

2) “1337 awesome”

On the other extreme, you have people going,
“OMG! This is awesome! 10000/10!”. With these you
won’t know why it is awesome, so the best is just to
reply with a simple “Thanks for playing. I am glad
you enjoyed it.”

The next two types of criticism are a bit rarer:

3) “Bad, but here’s what’s bad”

This criticism is bad, followed by a reason why
your game is as bad as it is. This is probably the most
important criticism you can receive and most devel-
opers don’t want to even look at it.

When receiving criticism, it is important to try and
be as objective as possible. If someone did not enjoy
it, there must be a reason. This is why these criticisms
are the best. Most of the times you discover things you
never knew would be detrimental to your game.

4) “Good, but here’s why it is good”

This criticism is the same as the above. It is really
vital for expanding your game development. You will
know what you did right so that you can re-imple-
ment it the next time around.

Responding to criticism:

It is often the case that when people are met with
bad criticism, they feel insulted. It won’t help at all
to flame someone who went to the trouble of playing
your game. That player won’t come back to play your
next game, and you will have learned nothing from
potential helpful criticism.

However, taking heed to every criticism will most
likely lead you to never finish your game at all. With
criticisms like, “add a flamethrower”, “add more
maps”, etc it is best to take it with a pinch of salt. In
the end it is your game, after all. It is your creation
and we all know art is subjective. One can’t really pre-
scribe what you should do, but it’s generally a good
idea to try remain objective about criticisms while tak-
ing your own idea of the game into account.

Giving criticism:

As mentioned above, your criticism will most likely
fall into those categories. If you have the time and pa-
tience, it is best to try and give constructive criticism:
add suggestions and give the places where you found
bugs.

In the end, criticism isn’t there to a�ack you, so
take heed to it. Just don’t take it all into account either,
lest your game becomes something you never actually
wanted it to be.

Criticism is an important part of
the game development process.
Simon “Tr00jg” de la Rouviere
gives a crash-course guide on
how to take it, when to heed it

and what can be learned from it.

TAKING
THE HIT

00:17

00:15
00:14

00:13

00:12

00:11

00:10

timea matter of

00:18

00:19

JUNE 2008DEV.MAG ISSUE 2230 31

Think fast and get ready to roll. Rodain “Nandrew” Joubert has
an in-depth look at the mechanics of time-based gameplay.

00:20

00:16

The importance of time

The Game.Dev community (www.gamedotdev.co.za)
recently held a time-based competition that exploited
this particular concept in gameplay. The premise was
simple: build a game, any game, as long as it was over
in less than ten minutes. However, as with all such
competitions, the execution was a lot more involved
than the premise, and it became clear to participants
that constructing a game to capitalise on the potential
of a time limit was more complicated than it looked.

As mentioned already, a time limit provides the
developer with a valuable emotional hook with which
to lure potential players and keep them going until
the end. It’s this sense of urgency which lends a sense
of importance to what may be an otherwise passive
experience.

In terms of functionality, time limits also serve an
important role. Today’s gamers are si�ing in the lap
of luxury: they’re offered more high-quality titles than
they can possibly find the time to play, and even the
obsessed, 16-hour-a-day, twitch-reaction junkie has
to be very discerning with regards to the games they
choose to play. In an arena as saturated and competi-
tive as indie game development, it’s often unwise to
create an epic that requires any great deal of time or
effort on the player’s part. By establishing, say, a ten-
minute time limit, you’re immediately offering the
consumer two things:

(1) An assurance that they can complete this game
within a very specific time interval. Even if they’re

We’ve all experienced it: a warning klaxon goes off
and a frantic radio message buzzes in your ears. You
have to get your squad out of the secret weapons facil-
ity before the malfunctioning doomsday device goes
off and blows everybody inside to smithereens.

At this point, a set of glaring red numbers appears
on your heads-up display and inexorably begins
counting down, ticking its way towards your impend-
ing destruction. You turn around to take the elevator,
but an unexpected explosion wrecks the controls and
bathes the corridor in flames. Panicked enemy op-
eratives run about, firing wildly in all directions and
adding to the chaos. The sirens get louder, the evacu-
ation messages start booming. But the calamity out-
side barely presents a whisper in comparison to the
all-too-clear sound of your ragged breathing and the
pounding of your heart.

Nothing adds to the urgency and the immediacy
of a game quite like a good old-fashioned time limit.
One could be tearing through the Green Hill Zone as
Sonic, racing against the clock in Time Crisis or even
just dashing for that next checkpoint in that good old
arcade racer. Whatever the situation, players invari-
ably find themselves eyeing that steadily decreasing
meter. If you as a game designer can capitalise on
this concept properly, it’s one of the most powerful
ways to have the end user emotionally engage with
your creation. Think “frantic”. Think “intense”. Think
“awesome”. These words have all been used to pro-
mote games, and they could apply to yours too if you
work at it.

00:04
00:03

00:02

00:01

00:0000:05

00:07

00:08

00:09

00:06

JUNE 2008DEV.MAG ISSUE 2232 33

initially uncertain about picking up your creation, the
fact that they only need to make a small time invest-
ment can encourage them to give it a go.

(2) A clearly defined and well-established goal
from the start. Short-, medium- and long-term goals
are an important consideration for any game devel-
oper, as they lend your project structure and give
players a sense of purpose. With a timed game, the
task of goal-se�ing becomes much easier: your long-
term goal is to defuse the bomb in the next ten min-
utes. Your mid-term goal is to find a schematic of the
building as quickly as possible. Your short-term goal
is to clear the current room of enemies. Bam! You have
your game structure.

Timing it right

Simply tacking a countdown timer onto your game
isn’t going to win hearts. It needs to make sense and,
if possible, become an integral part of the gameplay
itself.

For example, one of the top entries in the Game.
Dev competition involved guiding a robot to collect
material, build turrets and stop waves of aliens from
reaching a spaceship’s cryobay where the human pas-
sengers were hibernating. The key element was that
this robot had limited fuel: after ten minutes, it would
power down and any remaining aliens would overrun

the cryobay. This was the basic time limit premise. It
made sense, too: it was acceptable to players and fit-
ted in well with the game world.

More importantly, however, the game touched on
one of the great strengths of time-based games: script-
ed gameplay. While many entries simply a�ached a
timer and allowed the player to engage in activities
until their proverbial ba�ery ran flat, the spaceship
defender dealt with a clear progression in the game.
The first few minutes were spent scrounging about for
weapon salvage and useful equipment. After that, the
player had to move on to establish turrets and prepare
defenses. Then, after a pre-ordained interval, the alien
portals opened and enemies began charging towards
the cryobay. This was obviously the beginning of the
combat phase. In the last few minutes (particularly on
higher difficulty levels) the player was again required
to pack up turrets and re-establish defenses in more
heavily-hit areas to eliminate the last of the enemies.

The point? This wasn’t simply ten minutes of the
same repetitive action. In each gaming session, the de-
veloper used time as a weapon to create a buildup, a
climax and a conclusion – in much the same way that
an author would pen a story. The game kept moving
forward and the timer forced the player to keep head-
ing towards the next meaningful objective. It worked.

Aside from scripted gameplay, another way to
make the timing more meaning is to provide regular

feedback to the player and thus work on oiling those
emotional hinges. Compare a simple ten-minute
deathmatch to one which, after every two minutes,
offers some sort of reminder that your hourglass is
running towards empty. This can be done visually
(your player is poisoned, and as he heads towards
death your screen steadily flashes more green), au-
rally (consider the “10! ... 9! ... 8! ...” counter of Un-
real Tournament) or through actual game events (the
building you’re in is collapsing, and the roof starts to
crumble away).

In conclusion

A timed game is more complex than one may initially
think, but the rewards for the player – and thus the
developer – are potentially great. As always, there are
other design aspects to consider when involving one-
self in a timed venture, but this insight comes from
the two most important developer weapons of all:
making mistakes and learning from experience.

Hopefully, this guide will set you off in the right
direction and help you with any initial time-based
gameplay projects. From there, it’s all about refining
your craft, seeing what works and striving to make
the sweat form on your audience’s brow. And you
have plenty of time to figure that out.

Q: “What did you learn from the time-
based competition held by Game.Dev?”

CYBERNINJA: “I learned that there comes a
point in development where one needs to focus
on just one good idea/theme and see it through
to the end.”

THAUMATURGE: “I think that I learned that
while one can come up with an interesting con-
cept in a few days, it’s rather li�le time in which
to flesh out interesting gameplay.”

FENGOL: “Simple ideas work. Your game
doesn’t need to be filled with different mechanics
to be enjoyable.”

GAZZA_N: “I learned a lot about pacing a game.
Balancing the game so that the player had a fair
chance, but was still required to plan and act
quickly, was an enlightening exercise.”

from the community ...

JUNE 2008DEV.MAG ISSUE 2234 35

MEMORY

LANE

A trip down

A look at the history of Dev.Mag

In early 2006, Dev.Mag tentatively spread
its wings and went forth into the world,
delivering with it a message from a few
game development hopefuls with fresh
pens and starry eyes. Because nostalgia
is always fun (and because it’s also cool

to give readers some perspective) Rodain
“Nandrew” Joubert decides to grant some

enlightenment and offer ...

By now, you’ve already looked at some of these 40-
plus pages of neatly packaged game development
wisdom from one of South Africa’s most dedicated
and enthusiastic communities. Hopefully, you ap-
preciate the Features section, the lovingly-crafted re-
views, the generous helping of tutorials, the copious
design advice and this edition’s special makeover.

It may be difficult to believe that a li�le over two
years ago, the concept of Dev.Mag didn’t even exist. It
may be a further stretch of the imagination, however,
to visualise the first edition of the magazine: barely
ten small pages of hacked-together content provided
by a few intrepid developers who were both excited
and uncertain about the project they were embarking
upon.

From there, the Dev.Mag pages – and fan base –
have grown significantly. Thousands of readers, both
locally and internationally, now enjoy a wide selec-
tion of game development articles every month and
we hope to continue growing from here.

To put things into perspective, here’s a few pages
dedicated to having a look at where Dev.Mag has
been so far.

JUNE 2008DEV.MAG ISSUE 2236 37

FOOT IN THE DOOR

During our earlier ventures with magazine promo-
tion, we did the rounds on various forums including
that of the Game Maker community. A memorable
point in that endeavour was a comment from one of
the members, quite possibly the most encouraging
thing that I have ever heard in relation to the mag.
Our publication had just hit the fifth issue and this
individual mentioned that it was noteworthy because
most online magazines petered out before they got
this far. We’d survived the initial whi�ling phase, it
seemed, and had moved on to establishing ourselves
as a young and promising online release.

One of the most impressive things about Dev.Mag
has been its ability to stand firm over time despite nu-
merous upsets and the inevitable staff turnover. After
the fifth issue, we moved from simply pushing out a
monthly release to refining the work we sent out, do-
ing our best to expand with new ideas, innovations
and content. The magazine changed a great deal dur-
ing this time, undergoing a metamorphosis which
would ultimately prove to be beneficial. Our eyes
were opened to the complexities of running a maga-
zine, more focus was placed on recruiting writers for
extended content and we started securing interviews
from parties such as Introversion, Jacob Habgood and
prominent local studio Luma.

Within this time frame fell rAge 2006, a South
African gaming and technology expo. Interestingly
enough, this wasn’t just our first major marketing
event: it was also the first time that the Dev.Mag team
actually had an opportunity to meet face-to-face. One
of the interesting things about an online publication
is the fact that team members often correspond across
the country – or even the globe – in the course of their
work without ever confronting one another. It was
a novel experience to shake hands with individuals
who had hitherto been mere nicknames on a forum
board.

The rAge edition was also a source of pride for us
because it was the first issue that we could technically
say weighed in at 40 pages – an achievement at the
time, although our spreads back then were only about
half the size of later designs. Content was the one of
the aspects of our mag which swelled the most around
this point, due in part to the incredible amount of peo-
ple volunteering as new writers.

EARLY DAYS

The first edition of Dev.Mag was rather creepy. It
looked hideous, the content was much cruder than
later offerings and it was, overall, a culmination of
everybody’s first a�empt at the deal.

The initial Dev.Mag team consisted of about a
dozen eager developers si�ing about and scheming
on a local forum, headed by one Stuart “GoNzO”
Botma. The concept of the magazine was introduced
in December 2005, and the first issue was released a
li�le over a month later. It enjoyed a modest amount
of success, spread by word-of-mouth and a raw bun-
dle of enthusiasm. This was an exciting time for the
community – the idea of a magazine was fresh and
interesting. People were keen for more. Work on the
second issue started soon after that.

One of the saving graces of the magazine early
on was the entrance of our first designer, Brandon
“Cyberninja” Rajkumar. Cyberninja was, as far as we
could remember, a complete novice to the art of game
development, and some of us were concerned that his
rather sudden appearance combined with his lack of
experience in the development field would result in
an enthusiastic layout monkey who would design an
edition or two before burning out and abandoning the
project due to boredom.

We couldn’t have been more wrong. Cyberninja
soon bullied his way onto the staff through sheer force
of talent – even though his work was patched together
in his spare time between numerous other projects,
his capabilities awed the team. The stuff he produced
was, quite frankly, miles ahead of the work that we’d
generated for Issue 1. He continued to serve on the
magazine afterwards, got into game development it-
self and became a solid part of the community.

Dev.Mag’s initial online presence was helped
along by Google Pages, which provided a convenient
springboard for our publishing ventures. Although it
wasn’t the most powerful hosting mechanism, it was
free and convenient for our purposes. The site was
humble and no-nonsense – it provided us with a plat-
form from which we could distribute the mag and ad-
vertise our presence to those outside the community.

MAKING THE MOVES

By the time we’d been active for a year, Dev.Mag had
undergone numerous redesigns and sections were
either added or re-organised according to the maga-
zine’s needs. The most notable aspect of our develop-
ment was the establishment of several highly popular
article series, including those by William “Cairnswm”
Cairns and Luke “Coolhand” Lamothe, two active
game developers in the South African community.
Though neither of these individuals are currently
regular contributors to the magazine, they made an
enormous difference in raw content and article style,
raising the bar for Dev.Mag submissions in issues to
come.

Over the next few issues, Dev.Mag began estab-
lishing relations with several game development
groups and organisations, swapping advertising
space and expanding the fan base considerably. It
was during this period that monthly downloads from
the site alone began to climb quite high – practically
skyrocketing by the time rAge 2007 arrived. It was
around this time that Dev.Mag had the privilege of
reporting on the considerable advancement of local
developers such as Luma and Retrotoast, the la�er
having just secured a game publishing deal after their
success in a local competition.

During this time, the magazine was still constant-
ly undergoing tweaks and reorganisation, something
which we were able to do with li�le hassle due to our
publishing medium. Experimentation with new ideas
– such as the open Opinions section, the popular His-
tory pieces and the Blue Pill article series – was com-
mon during this time. Some concepts were retained,
others were discarded and still others were changed
about to become something else.

This era also introduced our resident Dev.Bot
mascot, DB (pronounced “deebee”). Crafted lovingly
by one Geoff “GeometriX” Burrows, DB has since es-
tablished a strong presence on Dev.Mag’s pages and
serves as a valuable beacon for the magazine’s iden-
tity. Further innovations are planned involving the
Dev.Bot, so watch this space ...

JUNE 2008DEV.MAG ISSUE 2238 39

HERE AND NOW

Despite the fact that the release of individual Dev.Mag
issues has since slowed down (due in part to addi-
tional quality control measures and the sheer weight
of content in each issue), the magazine has become
more popular than ever and contributors regularly
approach internationally-acclaimed indie and cor-
porate game developers for interviews, reviews and
general chit-chat.

Coverage of major projects such as Aquaria, Au-
diosurf and H-Craft Championships have become
Dev.Mag’s bread and bu�er. In addition to the core
team of hobbyist developers, the magazine contribu-
tor line-up now sports several trained journalists, a
helping of professional game developers, a handful of
industry evangelists and one or two experts in related
fields. All of these individuals have approached the
magazine with unrivalled passion and enthusiasm,
and to this day the magazine is still built on the en-
tirely voluntary efforts of a dedicated and tightly-knit
game development community.

With a new executive team taking the helm of
the mag, it now only remains to be seen where Dev.
Mag is taken next. Whatever decisions end up being
made, one thing is certain: the magazine will continue
growing and you, dear reader, shall reap the benefits.
Thanks for coming along on this nostalgia trip with
us, and we hope to see you again next month!

