
April 2008

ADVENTURE
GAME STUDIO

AN AWESOME TOOL FOR AWESOME DEVELOPERS!

SOUTH AFRICA’S PREMIER GAME DEVELOPMENT MAGAZINE

TUTORIALS

REGULARS

FEATURE

REVIEWS

TAILPIECE

Ed’s note 03

From the net ... 04

Being Adventurous 06
We chat with Chris Jones, creator of Adventure Game Studio

Trilby’s Notes 09
Part 3 of the Chzo Mythos. Made in AGS.

6 Days a Sacrifice 10
The concluding game of the Chzo Mythos.

Game Writing Handbook 11
A book to teach you about compelling game stories

Battleships Forever 12
A tactical space command game and IGF 2008 finalist

Frozzd 13
Delightful winter-themed game. Winner of the first Yoyo Games competition.

Synaesthete 14
Another IGF finalist that uses trance music to get its groove on.

Blender — intermediate series 15
Learn about image file formats and their significance

Irrlicht 18
Part 2 of our Irrlicht starter series, covering the engine outline

Game graphics with Photoshop 19
Learn about the quick and easy construction of tilesets

Poisson disk sampling 21
A neat programming trick described from top to bottom

Blue Pill: AGS 26
It’s time start playing with Adventure Game Studio!

GDC 2008 28
What goes on at the game development world’s biggest annual conference?

02DEV.MAG ISSUE 21

EDITOR

Rodain “Nandrew” Joubert

DEPUTY EDITOR

Claudio “Chippit” de Sa

SUB EDITOR

Tarryn “Azimuth” van der Byl

DESIGNER

Brandon “Cyberninja” Rajkumar

WRITERS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “Cairnswm” Cairns

Bernard “Mushi Mushi” Boshoff

Danny “Dislekcia” Day

Andre “Fengol” Odendaal

Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans

James “NightTimeHornets”

Etherington-Smith

Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom

Kyle “SkinkLizzard” van Duffelen

WEBSITE ADMIN

Robbie “Squid” Fraser

WEBSITE

www.devmag.org.za

EMAIL

devmag@gmail.com

This magazine is a project of

the South African Game.Dev

community. Visit us at:

www.gamedotdev.co.za

All images used in the mag are

copyright and belong to their

respective owners.

Your current score is 142 of 245.

You have unlocked 21 editions of

Dev.Mag. Your current rating:

Journeyman.

REGULARS

03DEV.MAG ISSUE 21

DEAR READER ...

First off, apologies for the missing mag last month. Things were going a little bit crazy (it in-

volved aliens and a bottle of bleach at one point) and we just couldn’t get our material, people

and inspiration all in one place. Don’t worry, we all still love our work – it just gets rather dif-

ficult to keep the pace at times.

With the grovelling now out of the way, it’s time for a brief discussion about what we’ve got

lined up for you this month. The keyword: AGS. If you’ve played an awesome indie point-and-

click adventure game recently, chances are it was made with AGS. The brainchild of one Chris

Jones, AGS is an adventure game creator which has already charmed several members of the

Dev.Mag staff with its powerful interface and pretty results. In this issue, we sport several

AGS-related articles, including an interview with the creator himself as well as a few AGS game

reviews and a Blue Pill primer article. Chris Jones has recently released version 3.0, so this is

the perfect time to clamber onto the bandwagon and try making a few games yourself. If you’re

into adventure titles, you should try this one out – you may just be pleasantly surprised.

The 2008 Game Developers Conference was also held at the end of February, bringing with it

the IGF and the indie games award ceremony which gets us all worked up every year. If you

don’t know about the GDC, then have a look at our tailpiece for a report on GDC 08 and several

links that can help you get acquainted with what the conference is all about.

On a final note, I’ve been receiving a lot of e-mails recently from enthusiasts who are looking

for information about the game development industry. Thanks for the interest, people! Not only

is it flattering to receive a bunch of e-mails, but it gives us a lot of ideas about what articles to

write in coming editions to help you on your way. So keep ‘em coming – you’ll help us help you.

That’s all for now. Happy devving!

RODAIN “NANDREW” JOUBERT
EDITOR

We made mention of Trilby: The Art of

Theft in a news brief last month, and we

feel it’s worth another mention now. This

is a fine example of just how diverse you

can get with AGS – and it’s really, really

fun to play. Several of us are still trying

to get through it with the “Trilby” rating.

See what we mean by hunting it down at

http://www.escapistmagazine.com/

REGULARS

04DEV.MAG ISSUE 21

AUDIOSURF RIDES ON IN ...

http://www.audio-surf.com/

The much-anticipated Audio Surf was finally released on the 15th

of February. The game is available via www.steamgames.com for

the extremely reasonable price of $9.95. The problems experi-

enced during the beta tests have all been stamped out and many

improvements introduced, such as customisable track colours and

rendering effects, modifications to the track generation engine,

an improved menu interface and Ironmode for the tough guys…

The game is an approximate 380 megabyte download and comes

packed with bonus bang for your bucks. The Orange Box sound-

track is bundled with the purchase and includes all the tracks

from Half-Life; Half Life 2 and Episodes 1 & 2; Team Fortress 2 and

Portal. It just makes one want to sing “This was a triumph…”

GAMASUTRA: PORTAL FEATURE

http://www.gamasutra.com/view/feature/3585/still_alive_kim_swift_and_erik_.php

Cheekily introduced as a feature about “a game you may have heard of”, Gamasutra

sports a few good pages on one of 2007’s success stories. Interviewed are Kim Swift and

Erik Wolpaw, who are the project’s lead designer and lead writer respectively. The

interview goes over the decisions made with Portal’s more subtle design elements and

how the narrative helped in shaping the player’s emotions. Considerable discussion

also surrounds their work with Narbacular Drop and the experience gained from

their time at DigiPen.

STORMWINDS 1.5

http://www.herointeractive.com/stormwinds_1-5/

StormWinds is a cute little web-based game by

Hero Interactive which has you defending a castle

against an onslaught of enemies by making use of

turrets, upgraded turrets and even more power-

ful turrets. The game is reasonably fast-paced

and filled with cool bits of action that should keep

most avid gamers occupied for a healthy amount

of time. Coupled with some great artwork and a

considerable amount of content, StormWinds is

definitely one of the more appealing games that

you can find on the Internet right now.

REGULARS

05DEV.MAG ISSUE 21

ANCIENT CIVILISATIONS WITH YOYO GAMES

http://www.yoyogames.com/gamemaker/competition02

Yoyo Games are now holding their second competition, this time focusing

around ancient civilisations. The high standards, flexible conditions and

hefty rewards of the previous competition are set to be matched

by this second incarnation. Not only is the topic delightfully broad,

but the duration of the competition itself has been extended and

the snowball started by the Winter competition also seems to have

grown. If you’re interested in producing some work with Game

Maker and want to have a shot at the US$1000 first prize, try it

out. At the very least, you’ll get a bit of experience and exposure.

LOST GARDEN: HOW TO BOOTSTRAP YOUR INDIE ART NEEDS

http://lostgarden.com/2007/12/how-to-bootstrap-your-indie-art-needs.html

So, have you got the perfect game cooking in your head but just don’t know how

to make it look good? Afraid that your masterpiece is going to flop because players

won’t be able to make it past the hideous title screen? Worry no more. It’s better

to read this little article from Lost Garden and become enlightened. Contained

within this link are a few valuable points of wisdom that any game developer can

learn from if they’re stuck for good game graphics. Even free tilesets aren’t as bad

as you may think.

BRAID ARTIST BLOGGING

http://www.davidhellman.net/blog/

David Hellman, the artistic genius responsible

for the graphics of indie game Braid, has his

own blog lurking around on the Internet. As it

so happens, he also has some really interesting

things to mention about the

evolution of Braid’s artwork

and visual style. Have a look at

his fledgling Art of Braid series,

or follow the links to the Braid

blog itself if you don’t yet know

what the game is all about.

FEATURE

06DEV.MAG ISSUE 21

BEING ADVENTUROUS
WE POINT AND CLICK ON CHRIS JONES, CREATOR OF AGS

by Sven “FuzzYspoON” Bergstrom

Chris Jones is probably a name familiar

to anyone who has made use of the

popular game development tool AGS,

also known as the Adventure Game Studio.

With the recent release of version 3.0, there

is a swell of excitement amongst fans and

the software is commanding a fair amount of

attention from the devving community. We

caught up with Chris and harassed him for a

few quick words on his work with AGS.

Tell us a little bit about yourself.

Well, I’m not the Chris Jones from Tex Mur-

phy, I’m not Chris Jones the singer-songwrit-

er, and I’m not Chris Jones the weightlifter.

Nor am I Chris Jones the Corporate Vice

President of Microsoft Windows.

How did game development draw you
into its deep spiral?

Very much by accident. I wrote the first

version of AGS (or Adventure Creator as it

was called back then) just as an experiment,

as something I was going to use to make a

few games myself. This all came about after

playing Space Quest IV, and realising that I

wanted to make something like that myself.

What inspired you to create AGS and
other tools for the masses?

It was never intended that way. As I say, I

created the first version just for myself, and

then as the internet started to take off I got

a website and stuck Adventure Creator up

there just for fun. I never really expected

anyone to download it, much less use it for

anything serious.

How do you feel knowing some incred-
ible games are being spawned from
your platform?

Well, seeing the games that people are mak-

ing with AGS is my inspiration for continuing

development of it. After all, there’s no point

making a tool that nobody uses. There’s a lot

of talent out there, and if AGS helps people

to nurture and improve theirs then that’s a

big bonus.

If you could recreate any retro game
you wanted to, given the time, which
game would you re-make?

That’s a tricky one. If I had the time, I think

I’d probably remake all the Lucasarts games

to use the Sierra-style interface!

FEATURE

07DEV.MAG ISSUE 21

AGS has been going for years, how do
you feel having recently released the
latest version?

It’s always a relief to finally get a new ver-

sion released -- especially one that’s been

under development for as long as AGS 3.0

was. And then it’s always interesting to read

people’s feedback, and decide whether it

was worth the hassle or not.

What plans do you have for AGS in the
future?

Hard to say. The two major things I wanted

to do – rewrite the editor, and add hardware

acceleration support to the engine – have

now been done, but there’s always room for

improvement! People on the AGS Forums are

never short of ideas for ways that it could be

improved, so I’m sure I’ll be kept busy for a

good while yet!

Would you ever release the AGS source
code?

Yes, one day. I would probably release most

of the editor source code if someone had a

good reason for wanting it. As for the engine,

I prefer to keep that closed source while I’m

still developing it – but if one day I decide

to give up on AGS, at that point I’m sure I’d

release the source code, or at least give it to

someone trustworthy! ;)

It’s interesting to note that SLUDGE was

recently open-sourced, so we’ll have to see

if anything useful comes of that to decide

whether there’s actually any benefit to doing

something like this.

In terms of projects, what do you like
to get involved in?

Sadly I don’t really have the time to get in-

volved in any game projects these days. I’ve

done some scripting work for a few games,

but nothing significant.

DB SAYS ...

We’ve thrust a fair amount of AGS coverage into this issue for

interested parties. Check out the tool’s potential, then visit

http://www.adventuregamestudio.co.uk/ to try it out yourself!

ack with the third installment in the

Chzo Mythos series by Ben “Yahtzee”

Croshaw we have Trilby's Notes which

takes place 4 years after the events in the

DeFoe manor from 5 Days a Stranger. The

Notes part of the title refers to handwritten

notes from Trilby which serve as a narrative

to the story. A lot as happened to Trilby in

the past few years as he has left his

“gentlemen” burglar ways behind and is now

an agent for the STP(Special Talents Project)

which is basically some kind of secret

government agency. A new career is not the

only changes Trilby has gone through as he is

still haunted by what happened in the DeFoe

manor and not a day goes by without him

thinking about it.

The game starts off with Trilby reflecting on

the past few years and it seems his

nightmares from the past might be coming

back. Without spoiling anything his

investigation leads him to a hotel to try and

solve this mystery once and for all. This is

were things really start to go crazy as one

minute a room in the hotel can look perfectly

normal and then all of a sudden, as if Trilby

has just moved to an alternate realm, the

very same room is covered in corpses and the

walls are splattered with messages written in

blood. It's now up to you to get your grey

matter working and solve this mystery.

Gameplay has also gone through

some major changes, you can

throw your mouse out of the

window for this adventure game

as it makes use of text parser. For

those of you too young to have

played a game with a text parser,

you type in various instructions

such as “open door” to control

the gameplay. It may seem quite

different and cumbersome at

first, especially if you have never

REVIEW

By Ricky “Insomniac” Abell

B
played a game with a text parser before, but

it is polished and works fairly well once you

have wrapped your way of thinking around

the concept in a fashion the parser will

understand. Conversations are much more

interesting as you get to type out carefully

thought questions rather than just clicking an

option. Nevertheless it does have some

flaws, for example when you forget

someone's name or you can see an object

which looks like a book but the parser won't

understand “book” as it's actually an

envelope. However this can be solved by

tweaking your approach for example typing

“look at table” to help identify what's on it.

Like the previous games there are still points

where you can die and get taken back to your

last save so you make sure you save

regularly!

Yahtzee has once again raised the bar in

terms of style and creepy atmosphere that

will have you on the edge of your seat until

the very end. From the mysterious characters

you meet to sudden changes in your

surroundings, this game will draw you in and

have you wondering what twist lies around

the corner. There are also a lot of little

touches that really add to the creepy

experience such as when you're in the

alternate realm you can her eerie whispering

in the background. There was

also a time when I went through

a door and got taken to a room from the last

game in the series, 7 Days a Skeptic, which

was a really unexpected shock.

The storyline is well paced and has you

guessing what will happen next without

leaving you feeling confused. Along the way

Trilby has what you could call visions to

events in the past which not only flesh out

the story but are also playable which is a

great immersive touch. Many gaps are filled

in with regards to events in the past games

which makes the story even better, and what

an exciting ending the game wraps up with!

As the game can only run at a maximum

resolution of 640x400 you can't really expect

much but the drawings and animations are

fairly impressive and get the job done, plus

what it doesn't have in pixels it makes up for

in style. Sound is also fairly simple but a lot

of effort has been put into it making it quite

effective at setting a scene's mood.

Overall Yahtzee has produced another great

game in this series and manages to keep

things new and interesting partly thanks to

the text parser but also by filling in lots of

gaps in the story. While not perfect, it's a

great game and definitely worth your time.

ne hundred and ninety six years ago,

cat burglar Trilby escaped the

horrors of DeFoe Manor, only to

discover an even greater danger. One

hundred and ninety six years from now, an

unwitting starship crew will stumble upon a

remnant of his attempts to avert that

danger. And now, at the exact midpoint

between those two events, a hero will rise.

Yea, for Theodore DeCabe, Municipal

Inspector extraordinaire, is going to tell the

leaders of that fad religion exactly what his

employers think of their constructing building

extensions without a permit!

Yes, it's just a regular building inspection, at

least until one of those crazy Optimologists

decides to shove him down an elevator

shaft...

So begins 6 Days a Sacrifice, the fourth and

final game of the Chzo Mythos series. Don't

let the fact that it takes place before 7 Days

a Skeptic fool you, it really is the grand

finale, and be forewarned: don't even try

playing it before having completed the rest

of the series. This isn't so much an issue of

spoilers as it is of comprehension, because 6

Days takes all the loose plot threads of the

entire series and marries them into a single

epic

REVIEW

www.fullyramblomatic.com/

By Gareth "Gazza_N" Wilcock

O
climax, with the

full assumption

that you already

know what's going

on. That

established, 6

Days is doubtless

the most

cinematic of the

series, handling multiple plot threads

through excellent exposition and pacing. As

with its predecessors, events start out

relatively normally, but quickly spiral into

something much more sinister. One really has

to play the game to appreciate how well the

story has been constructed and told this time

around, and it serves as a fitting and

satisfying conclusion to the saga.

Of course, the quality of the plot means

nothing if the game is frustrating to play.

Rather than reusing the text parser from

Trilby's notes, 6 Days a Sacrifice returns to a

fully mouse-driven interface. 7 Days' right-

click verb coin/inventory menu makes a

welcome return in this instalment, which is

no disaster given its effectiveness. But it isn't

alone. To bolster his Arsenal of Interaction,

Theodore has at his disposal a journal and a

cell phone, both of which can be accessed at

any time. The journal has no real

practical

application in the

game, but is

excellent in that

it allows you to

reread at your

leisure all those

little bits of

exposition that you need to

understand the story. The real stroke of

genius, however, is the phone. Asides from

its use in one or two puzzles, the cell phone

allows you to communicate with the primary

NPCs from any location, which saves you a lot

of tedious walking around if all you need is a

single clue or a reminder of what to do.

The puzzles in the game are a definite

improvement over the sometimes nebulous

ones in the previous Chzo games. Not to say

that they are easy though - the later puzzles

in particular require slightly more abstract

thinking to solve. However, they remain

logical throughout, with the solutions easily

arrived at after a little skull sweat and

observation. It also wouldn't be a Chzo game

without some perilous life-and-death

situations, but fortunately Yahtzee seems to

have overcome the compulsion to kill the

player out of the blue, which weeds out a lot

of the frustration factor of previous games (7

Days, I'm looking at you).

All in all, 6 Days a Sacrifice is a fine plot-

driven adventure game, with very little to

fault it for. If you've played through and

enjoyed the rest of the Chzo Mythos, and are

itching find out how it all ends, you

shouldn't hesitate to play it. In fact, why

aren't you downloading it already?

aking a look at game development

opens up a whole array of aspects

to consider. There is programming,

art and even time-consuming testing. One

aspect largely overlooked might be the

writing part of game development. What

compels you to buy a game? Is it the

graphics or the sounds? Or is it the

concept of the game? The story that leads

you to desire the sequel, to complete the

tale in which you played a part, is most

likely a large factor in buying a game. This

book deals with the game writing process -

creating game narrative.

Packed with technical examples, example

data, spreadsheets, information and even

practical approaches to the in-game

integration of story and cut-scenes, this book

poses some great views on the processes

involved. An author with such great

references is another bonus; having worked

as a writer for EA, Southpeak games, 1C and

even Ubisoft, Rafael Chandler has a track

record worth listening for. His portfolio,

including titles such as Ghost Recon:

Advanced Warfighter and Rainbow Six:

Lockdown, gives him a lot to show for.

Covering a lot of topics in the book, there

are a lot of aspects presented that are easy

to learn about and offered in large detail

REVIEW

GAME WRITING HANDBOOK
By Sven “FuzzYspoON” Bergstrom

T

throughout the book, including chapters

covering:

 • Writing a game,

 • creating the concept,

 • documenting the story,

 • developing the context,

 • creating the characters,

 • structuring the narrative,

 • organizing dialogue,

 • creating cinematics,

 • directing voice actors,

 • knowing technical parameter,

 • integrating dialogue,

Title: Game writing handbook

Author: Rafael Chandler

(www.rafaelchandler.com)

Publisher: Thomson Delmar Learning

Level: Beginner to Intermediate

Genre: Game design

Cost: ~ $40

ISBN: 1-58450-503-6

http://www.amazon.com/Writing-Handbook-

Charles-River-Development/dp/1584505036

 • testing story content,

 • understanding postproduction and

 • working in the industry.

This book really covers some deep sections,

but in a non-complex and simple-to-

understand way. Enjoying this book was easy,

and the learning curve is fantastic. Check out

the author’s site as well for more on him.

Battleships Forever
http://www.wyrdysm.com/

REVIEW

12DEV.MAG ISSUE 21

by Claudio “Chippit” de Sa

Battleships Forever plays out like most

other tactical games. You select a

fixed starting force, and must use it to

the greatest effect to achieve your objective

for the missions. What makes this indie of-

fering unique is just how smoothly everything

looks and works. Ships break apart, debris flies

across the void and giant laser beams shred

ships section by section.

Battleships Forever features all the little

tricks and conveniences that you expect from

a strategic game of its type, including way-

point systems, formations and unit grouping.

Little is present that belies the game’s simple

indie origins, and it oozes polish and quality.

Most players will likely start off playing the

short campaign, which will serve to introduce

the player to the game and its mechanics. The

game also features special skirmish missions

which have their own unique goals, as well as

a just-for-fun sandbox mode where you can

define your battles exactly as you wish and

import custom ships made with the included

Shipmaker tool.

Default ships are outfitted with a unique and

widely varied array of death-dealing devices

that will, both spectacularly and realistically,

rend entire sections from enemy ships based

on exactly where each blow lands.

Individual sections of the craft can be de-

stroyed, disabling any weapons or defensive

systems mounted onto that portion. While de-

stroying the core portion of the ship will cause

the entire ship to explode, it is often heavily

armoured or defended by other sections, and

it may often be beneficial to target auxiliary

sections of enemies before striking the heart

of the ship.

For most missions you can select your fleet

out of prebuilt vessels with various weapon

layouts and physical designs, each serving its

own unique purpose in furthering your goal for

the mission.

The Helios destroyer, for example sports

defensive weaponry that can destroy enemy

projectiles before they can harm your ships.

The Peitho battleship will utilize its large

physical profile together with its shield gen-

erators to protect your fleet in a more passive

manner. Others, such as the Hecate battleship

or the smaller Enyo destroyer, bristle with

intimidating weapons and will heartily take

a more forward approach in your enemy’s

destruction.

The player will be challenged to use his

limited and personalized fleet in every mission

to the utmost effect in order to achieve what-

ever goal has been set out for him, but the

simple pleasure of the game lies in command-

ing your fleet to blast enemy ships to pieces

bit-by-bit and relish in the resulting fireworks.

Commanding a fleet of vector warships has

never looked quite so stylish.

FROZZD
http://www.yoyogames.com/games/show/20523

REVIEW

13DEV.MAG ISSUE 21

by Claudio “Chippit” de Sa

The very first YoYo Games competition

was held at the end of last year, with

over 200 hundred winter-themed en-

tries submitted and vying for the $1000 grand

prize. The tantalizing 2 week long wait for

the results eventually yielded a clear winner:

Frozzd, a spacey platformer where the goal

is to save the universe from its current icy

predicament.

Players spend the majority of game time hop-

ping between small planetoids trying to rescue

as many Mubblies (a race of space-dwelling al-

iens) that are frozen in that area as possible.

Each area is comprised of small frozen bodies

of various shapes and sizes that the player can

jump between, each exerting their gravity on

the player. Hence, you’ll spend quite a fair

amount of time upside down.

Regions branch out as you continue play-

ing, which presents the player with some

choice in how to proceed. It is encouraged

to visit all the available regions, however,

since the accumulated score and power will

only be beneficial in the impending conflict.

This necessity renders the apparent sense of

choice obsolete and transparent, but does

not detract from the charming experience.

In a gameplay sense, the Mubblies serve as

your only attack and defence. They sport

the ability to launch fireballs at the Frozzd

(The frosty enemies in the game), as well

as thaw out other Mubblies that have been

frozen. The player is able to command

Mubblies either to concentrate their fire

and thaw out frozen Mubblies, or to attack

hostile enemies. Mubblies will swarm around

you and it is up to you to keep them out of

harm’s way by either avoiding enemy contact

and weapon fire, or shielding them from it

yourself. Doing so will drain your suit’s tem-

perature more quickly than normal exposure

to the cold environment, however, and will

force you to find special pickups scattered

around the levels in order to prevent yourself

from joining in the unfortunate icy fate of

the universe.

Utilizing your Mubblies to defeat enemies

earns you score points. Score points are used

to unlock new regions to explore and reveal

progressively more Mubblies and new types

of Frozzd enemies. Eventually, the player

will encounter the source of the icy scourge

and will have to use the accumulated Mubbly

forces to defeat it once and for all.

Ultimately, Frozzd is an engaging platform

experience and, despite its somewhat

disappointing length, certainly deserves is

competition victory.

SYNAESTHETE
www.synaesthetegame.com

REVIEW

14DEV.MAG ISSUE 21

By James “NightTimeHornets” Etherington-Smith

Synaesthete was a contender for the

Excellence in Visual Art award at the

10th annual Independent Games Festi-

val (IGF) and winner of the Student Showcase

portion of the event. The word ‘synaesthesia’

refers to a neurological phenomenon in which

one sensory perception involuntarily trig-

gers another perception, such as letters and

numbers being perceived as having their own

associated colour. Obviously the game name

suggests that this is the kind of experience the

developers, Rolling Without Slipping, want you

to have, blending visual and musical elements

into one seamless experience.

Synaesthete puts you in control of the Zaik-

man, who has to navigate the game world –

the collective unconscious – and zap monsters

using his affinity with the musical soundtrack

and a number of power-ups with are unlocked

as progress is made. The game features origi-

nal compositions of music ranging from ambi-

ent trance to, well, regular trance. The entire

game world is a visualisation which pulses

and animates to the beat of the music with

some very cool looking textures, intricate and

pretty effects, and bright psychedelic colours.

The nomination for excellence in visual art is

well deserved.

The game play mechanics are simple in

concept but nearly as difficult to master as

the spelling of ‘Synaesthete.’ The player is

presented with three scrolling beat tracks,

each a different colour and each represent-

ing an element of the music, be it beat or

synthesiser. Each colour corresponds with a

key which must be pressed in time to the beat

if Zaikman is to stand any chance of destroy-

ing the array of monsters which populate the

levels. The game is quite forgiving toward

novice players, allowing them to concentrate

on a single colour, while it rewards more expe-

rienced and coordinated players with a higher

score. All this concentration on the scrolling

beat tracks is a bit of a downside since the

player has no time to really observe and ap-

preciate the details of the monsters that assail

them. After the completion of each area the

player is given a thought provoking message,

be it a quote from a famous poet, a line of

lyric from a song or something you are likely

to hear burbling from the mouth of an illicit

drug addled trance party goer.

Synaesthete offers two difficulty settings, a

‘trivial’ 33 bpm and a ‘tricky’ 45 bpm. There

are 3 distinct game world areas, each with 3

levels of their own. The final area is a mega

boss fight in which the Zaikman will meet his

greatest challenge and the player is likely to

suffer from some form of repetitive strain

injury. The game can be completed rather

quickly the first time round but for anyone

sufficiently entertained by the concept,

graphics and trance music there is probably a

bit of replay value, mainly in trying to master

the key stroke combinations and achieving a

new high score.

onsider that you manage to build

something in Blender. It looks great,

you are happy, and now you want to

get an image that you can actually use

outside of Blender. Confusion sets in. Panic is

the next step and then a lot of time wasted

because no-one ever showed you what that

next step should be?

Here's an idea of image formats relevant to

the gaming industry and what you need to

know about them:

BMP

 • The standard image format.

 • Huge file size.

 • No compression.

 • Best quality.

 • No transparency or alpha channel.

 • Anti-aliased (explained further down

below).

TIFF

 • Big file size.

 • No compression.

 • Popular for printing graphics (both RGB

and CMYK color mode).

 • Supports alpha channel.

 • Anti-aliased.

TGA

 • Big file size.

 • No compression (although you can choose

to use compression if you do want it).

 • Best quality.

 • Full support for alpha channel.

 • Does not display in Windows explorer

thumbnail view, which makes it somewhat

awkward to work with.

 • Anti-aliased.

JPG

 • Good image quality.

 • Smaller file sizes.

 • Variable image compression that leads to

reduced quality the more you compress the

image.

 • No support for transparency of alpha

channel.

 • Anti-aliased.

GIF

 • Very low file size.

 • Indexed color palette (the picture is

analyzed and colors reduced to a palette of

256 colors). One can also reduce the color

palette even further, down to two colors if

need be. File size reduces accordingly.

 • Supports transparency (not alpha channel

– explanation follows further down)

 • No anti-aliasing.

PNG

 • Big file size.

 • Compression as a choice, but not

necessary.

 • Supports full alpha channel.

 • Anti-aliased.

What is transparency, and what is alpha

channel?

Transparency is a “simpler” form of alpha

channel. Alpha channel gives more advanced

transparent information.

The following image is a cube that was

rendered with a shadow. The shadow should

be transparent, so that the background can

be seen through it. The image has alpha

channel information, allowing the white of

the page to show through.

TUTORIAL

BLENDER TUTORIAL
Image File Formats

By Stefan “?rman” van der Vyver

C

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

This list is by no intention comprehensive. Since I am the

one writing this tutorial, I am relying on my own knowledge gained in a production

environment to give you the best explanation that I can offer, with relevance to game

PERSONAL DISCLAIMER:

Above is the image in PNG format, overlaid

on some text. Below is the same cube, but in

GIF format.

This has transparency so that the image has

transparent areas. Now you can't see the text

below the image, although the image has

transparency inside the image borders.

If you don't get it immediately, read through

it again to spot the difference. Once it makes

sense, you probably won't forget it again.

Another big difference is the smoothness of

the edges (anti-aliasing). In most formats,

color differences between areas are

“smoothed over” by color blending the pixels

between the different color areas. The GIF

format does not support anti-aliasing,

resulting in jagged, pixellated edges,

especially where transparency is used.

Now it's up to you to decide what format is

best to use in your projects. Some software

will only allow you to use specific formats,

based on a variety of factors. Certainly, for

gaming, one would want to keep image sizes

as low as possibly to increase game speed.

Now it's over to Blender. I included a file

called cube_image_format.blend for use with

this tutorial. This has a cube already set up,

with a plane acting as the ground. Open up

Blender, and let's get rendering. Upon

opening Blender, you should see the screen

as above.

The answer to our rendering needs lie mainly

in the orange circle. That is where we

indicate to Blender which format to save the

rendered image as. We also specify whether

the image should include an alpha channel or

not. Blender cannot render and convert and

image to GIF format. That has to be done in

an external image editing application.

First, though, I need to explain the setup I

have for the scene. The cube is a standard

Blender primitive. It has no material assigned

to it in this file. Below the cube is a plane

(another Blender primitive). There are two

settings on the plane object's material that

we need to look at. RMB (Right mouse

button) click and select the plane object in

the right hand viewport. When selected, it

turns pink.

Click the Shading button to view the material

assigned to the plane. What we want from

the plane, is that it is in itself transparent,

but that we can see the shadow of the cube

that is cast onto it by the spotlight.

The most important

setting here is the

OnlySha button. This

indicates that the

material renders only

the shadows that it

receives. The second

important button that

needs to be activated, is the Ztransp button.

The explanation for this is beyond the scope

of this tutorial. Not activating that button

may leave you with the shadow being the

color of the background of your render

window.

The color of the plane is not important for

now, since the plane itself is not rendered.

Click to the Scene button to get back to our

render settings.

Buttons to note at this point is the

Oversampling option to turn anti-aliasing on

or off during the render. This speeds up

render time (in the off position), but should

really be enabled

for the final render.

The next important

setting is the rendered image size. All

computer images are treated as rectangular

images, therefore only an x and y dimension

is specified. Ignore the AspX and AspY

buttons for now.

TUTORIAL

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

some text some text

Material Settings

Enable the Shado button to render shadows.

The Ray button also plays a role, but I set up

the scene not to use it. Further explanation

of this is beyond the scope of this tutorial.

The percentage buttons specify a render size

as a percentage of the indicated size above.

This is used to do quick test render, a smaller

image taking less time to render than a large

image.

Finally, we get to the

image format options. Simply choose the

image format that you want to render to,

and press F3. Not so simple? I have

highlighted the most relevant image formats.

At the bottom of this format dialog there are

two buttons that are important to this format

selection. They are RGB and RGBA. RGBA

indicates one's decision to render Red,

Green, Blue as well as the Alpha channel.

Consulting the information at the beginning

of this tutorial, it might make sense to you

that, TIFF, PNG and TGA can use the alpha

channel. Therefore “RGBA” needs to be

enabled. BMP and Jpeg (same thing as JPG)

on the other hand cannot use the alpha

channel information. For these formats RGB

needs to be enabled instead.

Go ahead and choose the PNG format. Enable

RGBA.

Now press F12 for the image to render. I set

the render to 25%. You may, of course,

change that. The rendered image looked like

this:

Where is the transparency?

Don't fuss. It's there. The Blender render

screen does not show transparency. Hit F3

and save the image to a location on your

computer. From there you can open the

image in a graphics editing application to see

the transparency.

TUTORIAL

Above is a Windows XP screenshot of the

thumbnail of this render.

Should you want to change the background

colour of your render, consult the online

Blender manual that can be found at www.

Blender.org.

It is my sincerest wish that this tutorial may

have clarified some issues regarding image

formats for you, and that you will find it

easier in future to render image from Blender

in the correct format.

Happy Blendin'

ell, having downloaded the Irrlicht SDK would

have gotten you a number of great things. Tools

of all sorts, a bunch of cool example programs

and of course, the source code of the engine. Lets start

outlining the engine and its concepts in this second part of

our series.

Running through the examples is a good start for anyone

looking to see what Irrlicht is about. They are a good start

to understanding what could be the engine of your future game, and

to see what the developers chose to showcase their free engine. This

part 2 of the series is going to outline the engine, not what it can do,

not what it cant do, but the layout and “concept” behind the design.

That means there is no code sample specifically this week, but we are

definitely going to be starting to use the engine today.

Lets start somewhere logical, the beginning of most Irrlicht based

applications are going to require some sort of “handle” to the engine

itself. The entire functionality of the engine is exposed through one

simple object, the IrrlichtDevice. This device represents, for the

simplest of descriptions, your hardware. It accesses all sorts of things,

the operating system, the graphics hardware and even file access can

be done with the engine itself. The device creation parameters are

setup using a simple structure, and you populate a structure, and pass

it to the function that will return a device for you to use. There are

two create device methods, but the second, createDeviceEx is by far

the best option. The options we hand the device tell it what we want

from the graphics engine, and which mode we want the engine to

start in. With 10 or so options, they are mostly self explanatory. Anti-

aliasing, vertical synchronisation, full screen, high precision FPU and

even stencil buffering are all Boolean options to setup in the creation

process. Bits per pixel, resolution, and most other relevant options

are all set with values according to the requirements you might have.

This brings about a good time to discuss variables and Irrlicht types.

The Irrlicht engine has a namespace called irr::core which contains a

huge amount of useful math, graphics, types and informative

functions. These are all available to use so that type conversion can

be simplified within your code and the code can be easily created, as

well as easily understood. For example, when you create an

IrrlichtDevice you are required to hand it some types you might not

know about. core::dimension2d< s32 > looks daunting at first, but is

easy to understand once you are familiar with the engine itself, in the

language you choose. For this article, we are going to stay away from

code conventions and focus on principles, so for now we need to

understand the simplicity. Irrlicht has created a type that represents

a 2 dimensioned area, for example a resolution.

1024x768 is a good example of this, and is easily handed to Irrlicht

using the core namespace.

Once we have a device, there are a few namespaces that the engine

exposes for us to use. The core, GUI, scene and video namespaces are

all available directly through the device. The device has functions

like:

getVideoDriver() return a handle to the video namespace. There is

way too much to list what each namespace exposes, so briefly let’s

look at what is available.

Core :: useful conversion, type definitions and

enumerations for irrlicht.

Scene :: All scene management is handled here, meshes, 3d

objects, cameras and even animation is handled within this scene

manager class.

Video :: This exposes your video drivers directly. Texture

loading, management and rendering is done here. All 2D and 3D

rendering happens within here.

GUI :: Graphical user interface, this should speak for

itself. Fonts and windows are all managed in this namespace as well.

As you can see understanding the engine layout is really simple. If you

need anything from the system the device can do it for you, or

alternatively you may create references of each of the core elements

of the engine and use those. The simplicity the Irrlicht engine brings

out of 3D games and the creation of robust 3D applications is truly

something to watch out for. With methods to handle most of the

needed elements of 3-dimensional rendering the Irrlicht engine

certainly puts up a great show for the cost.

This concludes our fairly short edition in this series, but understanding

this is a great benefit rather then diving straight into code. Pick up

the API reference and have a look at the functions and types that

each namespace can offer you in the mean time, and don’t forget

there is a lot to learn if you are learning a new engine. Understanding

the simplicity of Irrlicht will greatly improve the learning time of the

engines deep functionality. Until next time.

TUTORIAL

IRRLICHT
Part 2 - Engine outline

by Sven “FuzzYspoON” Bergstrom

W

his month is a particularly interesting

and useful tutorial on creating

graphic tilesets. A tileset is a

collection of images that will be used to

create the graphics for a game. The size of

the images in a tileset is usually a number

which is a power of two, such as 32x32 or

64x64. This is to ensure that the image will

be compatible with all libraries and tools,

such as OpenGL among others.

The purpose of a tileset is to have a

complete image reference for your games

that is easy to manage and use. This tutorial

will not only to teach you how to create

tilesets but to introduce them to you and

give you a better understanding about them

and how they can be used effectively.

In a typical tileset, grass, water, bushes and

various other surfaces are useful to have for

the surroundings and environment. This is

dependant on the type of game you are

creating and what graphics you need. We will

create several tiles of different surfaces.

The first thing we will do as usual is create

an empty image project in Photoshop. Use a

size of 32 pixels wide by 32 pixels high. We

will start with a typical grass tile. Two

different variants of the tile will be shown as

there is definitely more than one type of

grass that could be used. This is to

demonstrate that there are so many

possibilities with regards to creativity for

graphics.

For the first type of

grass, change the colour

of the Background layer

to a dark lush green. The

paint brush with the

grass pattern was used in the previous

tutorial, use it once again together with a

lighter lime green and brush size of 8, now

brush some random grass on the canvas. It

would be best to keep the edges of the

image clean of too much texture as it would

make the final result look odd when tiled

next to grass tiles of the same variant or of

different variants when the images are used

in a game. After

applying a few

different colours of

grass brushes your

image should look

similar to the image

alongside.

For the second type of grass, create a new

Photoshop image project of size 32x32.

Once again colour the background in a lush

green colour. This time another brush tool

will be used, choose brush number 95, it

should be titled “Scattered leaves”. Make the

brush size 10 and select a lighter green, now

brush the background with this texture. Once

you are complete with brushing the texture,

select Filter>Distort>Ocean Ripple. This is an

excellent example of how the various tools in

Photoshop can be wielded to create the

exact effect you desire. The possibilities are

endless with regards to the number of

different types of grass tiles you can make so

experiment with the

different brush types,

filters and blending.

Your result should

appear similar to the

image to the left.

Another tile usually required is a “transition

tile”. Sometimes the player might cross from

a grassy area to an area of different texture -

such as hay, for example. In this case a tile

needs to be created for every possible side of

the transition. We're going to create a

transition tile from grass to a type of dry

grass/hay.

Open one of the grass tiles previously

created and select the Rectangle tool. I used

the second grass tile. Now select a yellow

colour and create a rectangle as shown in the

image below.

Select the rectangle layer you just created,

right-click and choose Rasterize Layer. Now

select a brush type of your choice and a

different shade of yellow as the foreground

colour. Apply the brush to the inside of the

yellow rectangle while trying to keep away

from the edges of the shape.

Now for the edges, select a colour in

between green and yellow, the light lime

seems to work well, select a good grass or

leaf brush type. Now brush the edges of the

rectangle so that it blends the two different

textures together. It should look similar to

the image below.

TUTORIAL

GAME GRAPHICS DESIGN
Part 5: Simple Textures and Tilesets

By Rishal “TheUntouchableOne” Hurbans

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

HINT
Remember to give your images

short and meaningful names as you will

be referring to them excessively when

creating your game. It is good

development habit to keep your images

well organized and documented.

This transition texture looks pretty decent

but it's only for the left bottom corner of the

transition patch. We could go through the

entire process again but that is too time-

consuming and runs a big risk of

inconsistency. So we will simply flip the

entire canvas vertically and horizontally to

get tiles we need.

Firstly, for the top-left transition tile, select

Image>Rotate Canvas>Flip Canvas Vertically.

Save the tile as file name of your choice. For

the top-right transition tile, select

Image>Rotate Canvas>Flip Canvas

Horizontally. Save the file once again as

something different. The remaining corner

tile is the bottom right tile, so, as you have

probably assumed, you will need to flip the

canvas vertically again. Save the file once

you’re done.

You now have the corners for the transition

but another set of transitions are missing,

the straight boundary tiles for top, bottom,

left and right. This might sound like more

work in brushing tiles from scratch but that’s

not necessary at all. Assuming the current

tile is in the bottom-

right, select the

yellow grass area with

the Rectangular

Marquee Tool as shown

alongside.

Now while that area of the image is selected,

choose the Magic Wand tool, right-click on

the image and select,

Layer via Copy. A new

layer should be created,

select that layer and

drag into position as

shown to the left.

In the image I produced, there was a thin

line of separation between the two yellow

grass layers. If the image you created has the

same problem, perform the following: Select

the two yellow grass layers in the Layer

Window using Ctrl and select the layers by

clicking on them. Right-click on the selected

layers and choose, Merge Layers. Now, select

the Blur tool in the tools palette. Carefully

apply the blur tool to

across the images

where there is a

discrepancy. The fixed

image should look as

follows.

The bottom transition tile has been created.

For the top transition tile, simply, flip the

canvas vertically and save the file. For the

right transition tile, rotate the canvas by 90°

by select Image>Rotate Canvas>90° CW. Save

the file. Finally, for the left tile, rotate the

image by 180°.

Other popular tiles in games are walls and

stone floors. A very simple stone floor can be

created with almost no work at all. Create a

new 32x32 image project. Select the

Rectangle Tool and draw a rectangle over the

entire canvas. Now select the rectangle layer

in the Layer Window and adjust the blending

options of the layer. Change the pattern

overlay to a texture that resembles a stone

surface, make sure the scale of the texture is

appropriate. You can also adjust the colour

overlay to a light blue with a low opacity to

add a further effect. Once you are complete

with the blending

options, you can save

the file and there you

have a stone floor tile.

A tileset is made up of a

variety of different types of tiles, which can

depict different surroundings and areas in a

game. In a RPG of ten

levels, there could

easily be more than a

hundred different tiles

for the many different

elements of the game's

graphics. There are

also usually many

transition tiles, making

the game's graphics

look pretty

professional; they

would be rather poor if

the tiles just changed

without any transition

whatsoever. Other common tiles used in

games are tiles depicting water, static

objects and various other inorganic surfaces

such as brick walls and shiny tiled floors. Go

wild with creativity when creating graphics

for your games. Your tile set may just make

all the difference.

Some other possible tiles for the tileset

we’ve created can be seen below together

with a very basic scene using these tiles in a

game.

You now know the basics about creating

transition tiles and how to manipulate them

without the extra effort of creating new tiles

from scratch. If you believe your tilesets are

up to scratch I'm sure the guys over at

Game.Dev would be more than welcome to

view and possibly even use you tilesets in

their games. That's it for this tutorial. Good

luck.

TUTORIAL

A rocky grass tile. Stone path-grass
transition tile.

Wall-grass transition
tile.

ne way to populate large worlds with objects is to simply

place objects on a grid, or randomly. While fast and easy to

implement, both these methods result in unsatisfying worlds:

either too regular or too messy. In this article we look at an

alternative algorithm that returns a random set of points with nice

properties:

 • the points are tightly packed together; but

 • no closer to each other than a specified minimum distance.

Figure 1 shows an example of such a set, which is called Poisson-disk

sample set. For comparison, two other sample sets are also shown: a

uniform random sample, and a jittered grid sample.

Poisson disk sampling has many applications in games:

 • random object placement;

 • sampling for graphics applications;

 • procedural texture algorithms; and

 • mesh algorithms.

In this article we will look mostly at object placement and briefly at

texture generation.

1.Implementation

There are several algorithms for producing a Poisson disk sample set.

The one presented here is easy to implement, and runs reasonably

fast. It is also easy adapted for specific applications (described in the

next section).

The basic idea is to generate points around existing points, and to

check whether they can be added so that they don't disturb the

minimum distance requirement. A grid is used to perform fast lookups

of points. Two lists keep track of points that are being generated, and

those that needs processing.

Here are the details:

1. A grid is created such that every cell will contain at most one

sampling point. If points are at least distance r from each other,

then the cell size must be r / 2.

2. The first point is randomly chosen, and put in the output list,

processing list and grid.

3. Until the processing list is empty, do the following:

1. Choose a random point from the processing list.

2. For this point, generate up to k points, randomly selected

from the annulus surrounding the point. You can choose k – a

value of 30 gives good results. In general, larger values give

tighter packings, but make the algorithm run slower. For

every generated point:

1. Use the grid to check for points that are too close to this

point. See below for more detail.

2. If there is none, add the point to the output list,

processing list, and grid.

3. Remove the point from the processing list.

4. Return the output list as the sample points.

TUTORIAL

POISSON DISK SAMPLING
Randomized object placement

By Herman Tulleken

O

FIGURE 1

Poisson Disk sample points. Uniform Random Points. The x and y

coordinates of these points have been

chosen randomly within the width of the

image.

Jittered Grid. The image is divided into a

grid, and one point is randomly selected

from every cell in the grid.

Here is how all this look in pseudo code:

generate_poisson(width, height, min_dist, new_points_count)

{

 //Create the grid

 cellSize = min_dist/sqrt(2);

 grid = Grid2D(Point(

 (ceil(width/cell_size), //grid width

 ceil(height/cell_size)))); //grid height

 //RandomQueue works like a queue, except that it

 //pops a random element from the queue instead of

 //the element at the head of the queue

 processList = RandomQueue();

 samplePoints = List();

 //generate the first point randomly

 //and updates

 firstPoint = Point(rand(width), rand(height));

 //update containers

 processList.push(firstPoint);

 samplePoints.push(firstPoint);

 grid[imageToGrid(firstPoint, cellSize)] = firstPoint;

 //generate other points from points in queue.

 while (not processList.empty())

 {

 point = processList.pop();

 for (i = 0; i < new_points_count; i++)

 {

 newPoint = generateRandomPointAround(point,

 min_dist);

 //check that the point is in the image region

 //and no points exists in the point's neighbourhood

 if (inRectangle(newPoint) and

 not inNeighbourhood(grid, newPoint, min_dist,

 cellSize))

 {

 //update containers

 processList.push(newPoint);

 samplePoints.push(newPoint);

 grid[imageToGrid(newPoint, cellSize)] = newPoint;

 }

 }

 }

 return samplePoints;

}

The grid coordinates of a point can be easily calculated:

imageToGrid(point, cellSize)

{

 gridX = (int)(point.x / cellSize);

 gridY = (int)(point.y / cellSize);

 return Point(gridX, gridY);

}

Figure 2 shows how a random point (red) is selected in the annulus

around an existing point (blue). Two parameters determine the new

point's position: the angle (randomly chosen between 0 and 360

degrees), and the distance from the original point (randomly chosen

between the minimum distance and twice the minimum distance). In

pseudo code:

generateRandomPointAround(point, mindist)

{

 r1 = Random.nex tDouble(); //random point between 0 and 1

 r2 = Random.nextDouble();

 //random radius between mindist and 2 * mindist

 radius = mindist * (r1 + 1);

 //random angle

 angle = 2 * PI * r2;

 //the new point is generated around the point (x, y)

 newX = point.x + radius * cos(angle);

 newY = point.y + radius * sin(angle);

 return Point(newX, newY);

}

Before a newly generated point is admitted as a sample point, we

have to check that no previously generated points are too close.

Figure 3 shows a piece of the grid. The red dot is a potential new

sample point. We have to check for existing points in the region

contained by the red circles (they are the circles at the corners of the

cell of the new point). The blue squares are cells that are partially or

completely covered by a circle. We need only check these cells.

However, to simplify the algorithm, we check all 25 cells.

Here is the pseudo code:

inNeighbourhood(grid, point, mindist, cellSize)

{

 gridPoint = imageToGrid(point, cellSize)

 //get the neighbourhood if the point in the grid

 cellsAroundPoint = squareAroundPoint(grid, gridPoint, 5)

 for every cell in cellsAroundPoint

 if (cell != null)

 if distance(cell, point) < mindist

 return true

 return false

}

TUTORIAL

FIGURE 2

Generating a new

sample point

FIGURE 3
Checking the neighbourhood of a potential sample point

a. Implementation for 3D

The algorithm can easily be modified for 3D:

 • Change all points to 3D points.

 • Change the grid to a 3D grid. The neighbourhood of a point is now

a cube of 125 cells around the cell of the point.

 • Change the code to generate a new point to the following:

generateRandomPointAround(point, minDist)

{

 r1 = Random.nextDouble(); //random point between 0 and 1

 r2 = Random.nextDouble();

 r3 = Random.nextDouble();

 //random radius between mindist and 2* mindist

 radius = mindist * (r1 + 1);

 //random angle

 angle1 = 2 * PI * r2;

 angle2 = 2 * PI * r2;

 //the new point is generated around the point (x, y, z)

 newX = point.x + radius * cos(angle1) * sin(angle2);

 newY = point.y + radius * sin(angle1) * sin(angle2);

 newZ = point.z + radius * cos(angle2);

 return Point(newX, newY, newZ);

}

2. Applications

a. Object Placement

Placing objects at the positions of a Poisson disk sample set is the

simplest way to use this algorithm in games (Figure 5). Ideally, the

algorithm can be built into your level editing tool with features that

allows the artist to select the region to fill, and the models to fill

them with.

One important variation of a Poisson sample set is one where the

minimum distance between points is not constant, but varies across

the image. In this variation, we feed the algorithm a greyscale image,

which is used to modulate the minimum distance between points.

To make this work, you need to modify the algorithm as follows:

 • The grid must take a list of points.

 • The cell size must be computed from the maximum the radius can

be.

 • The neighbourhood function should iterate through all points in

every cell of a point's neighbourhood.

 • Where a new point is generated, check the grey scale value of the

image at that point, and calculate a minimum distance from the grey

scale value:

 min_dist = min_radius + grey * (max_radius - min_radius)

As an example, you can use Perlin noise to drive the minimum

distance, giving you interesting clusters of objects (Figure 6). This

method is especially useful for generating a field of plants.

When using different radii as explained above, you might run into

some problems. Take the following precautions:

 • Ensure that your minimum radius is not too small. A very small

radius might produce millions of points; a zero radius might prevent

the algorithm from ever completing.

 • Build in a bail-out feature in the algorithm, forcing it to end after

a certain number of points have been reduced. Make it a function

parameter, so that it can be modified according to the purpose. If you

make a tool on top of this algorithm, also expose it to the user in the

tool.

 • Ensure that your maximum radius is not too big: if it is, no or very

few points will be produced. This might seem obvious, but it can go

wrong in a subtle way. Say, for example, you want to create a fall-off

effect around a certain point. It would be natural to define your

minimum distance array as follows:

 min_dist[i, j] = dist((i, j), (x0, y0))

But because new points are generated at exactly this distance, many

more points are excluded than expected, leading to a rather poor

result. A better sample can be obtained by using the square root of

the distance. (See Figure 7)

TUTORIAL

FIGURE 4

Spheres placed at points in a Poisson disk sample of 3D space.

FIGURE 5

An example with

shrubs placed at

Poisson disk sample

points.

FIGURE 6

Poisson disk sample, where the minimum distance is driven by Perlin

noise.

In another situation, a section of large radii might be too close to

other sections of large radii, so that no points are produced in

sections of small radii (see Figure 8).

 • For best results, your radius should vary smoothly across the

rectangle. The algorithm respects sharp edges only ruggedly – see the

checker board examples in Figure 9.

 • Beware of the bleeding effect, as seen in Figure 9. You might want

to run a dilation filter (use Photoshop or Gimp) on the radius grid

before you do the sampling to compensate for this. Ideally the

dilation should be a function of the minimum radius in a region, but in

many cases you can used a fixed dilation.

b. Texture Generation

Poisson samples can also be used to generate certain textures. In

Figure 10, the droplets on the bottle and glass have been created by

combining three layers of Poisson disk sample points.

The modified algorithm creates three layers of points, each layer with

with a smaller minimum distance between points than the next. In

every layer, the algorithm checks that there are no circles in the

previous layers. To do this, the look-up grids for all generated layers

are used in a final step to eliminate unwanted points.

TUTORIAL

FIGURE 7

Using the distance from centre as minimum distance gives a poor

result.

Using the square root of the distance from the centre as the

minimum distance between points gives a much better looking

sample.

FIGURE 8

The high radius is too big, so that some low radius regions are

skipped.

FIGURE 9

Checker board. Low radius regions bleed into

high radius regions.

Artefact corrected. Dilated checker board

FIGURE 10

Raw texture (each layer is

coloured differently).

The result. (Art: Luma

Animation).

The local minimum distance of every sample point is stored, so that it

can be used as a radius to draw a circle once all points have been

found.

The raw texture is then further processed by clever artists through

filters and shaders to produced the final result.

Poisson disk samples also form the basis of the procedural textures

shown in Figure 11.

The first texture was produced by painting filled translucent circles

for every Poisson sample point, for three separate samples. A

different colour was used for every sample set, with small random

variations.

The second texture was produced by painting circles for two sample

sets; one with filled circles, the other with outlines only.

The third texture was created by painting daisies (randomly scaled

and rotated) onto an existing grass texture.

3. Download

You can download implementations for these algorithms from

http://www.luma.co.za/labs/2008/02/27/poisson-disk-sampling/

There are implementations in Java, Python and Ruby.

You can also download the “droplet generator tool”.

TUTORIAL

FIGURE 11

Procedural textures generated from Poisson disk samples.

DB SAYS ...

If you need more help with Disk Sampling, check out these sources for more information on the topic:

Bridson R. Fast Poisson Disk Sampling in Arbitrary Dimensions.

http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf

The algorithm described in this article was taken from the paper above.

Dunbar, D.; Humphreys G. A Spatial Data Structure for Poisson-Disk Sample Generation.

http://www.cs.virginia.edu/papers/p503-dunbar.pdf

Describes a fast algorithm for generating Poisson-Disk Sample sets in 2D.

Lagae, A.; Dutré P. A Comparison of Methods for Generating Poisson Disk

Distributions. An in-depth comparison between different techniques for generating

Poisson disk samples.

Talmor, D. Well-Spaced Points for Numerical Methods.

http://www.cs.cmu.edu/~glmiller/Publications/TalmorPHD.ps.gz

A comprehensive exploration of well-spaced points (including Poisson disk samples).

Very mathematical!

ack in the old days, when DOS ruled

the operating system roost and

memory management was king, lived

the point-and-click adventure game. Among

the earliest of genres, it was also among the

most popular. Sadly, it soon fell out of favour

with the growing PC game market and

collapsed into obscurity, with only the odd

commercial attempt to resurrect the glory

days of using random items on other random

items to see what worked.

In the Indie scene, however, the point-and-

click adventure is far from dead. It could be

argued that this is in large part thanks to

Chris Jones and his superb Adventure Game

Studio package, which makes creating quality

adventure games a whole lot easier. With

version 3 just having been released, AGS is a

powerful and flexible tool that allows you to

construct your own adventures with ease.

AGS makes use of a user-friendly GUI to

manage game resources such as graphics and

sound, and setting up rooms, characters,

inventory items and objects is a relatively

painless procedure. Unfortunately for some,

most game interaction is controlled via

scripts, so if you're one to shy away from a

bit of programming this may not be the tool

for you. Don't be too nervous though – the

help file is robust and newbie-friendly,

containing plenty of tutorials to get you up to

speed even if you've never coded before in

your life. In addition, the scripting may put

newbies off, but it offers incredible

flexibility for more experienced

programmers, even to the point that non-

adventure games have been built using AGS!

AGS has a highly active community built

around it, and the official forums are

simmering with activity. Everything from

scripting help to community-made code

modules (for the less technically minded) is

available, not to mention being a great place

to showcase your finished masterpieces.

If you love adventure games, and are itching

to make your own without the hassle of

coding your own engine from scratch, AGS is

a fine choice. Unofficial Day of the Tentacle

sequel, anyone?

TUTORIAL

Taking the blue pill for...

ADVENTURE GAME STUDIO
By Gareth “Gazza_N” Wilcock

B

TAILPIECE

28DEV.MAG ISSUE 21

GDC 2008
AN AFTER-ACTION REPORT

by Sven “FuzzYspoON” Bergstrom

What is the GDC, you ask? Well,

what is the GDC not? There’s

so much going on at the annual

Game Developers Conference that it’s diffi-

cult to find the right place to start. Perhaps a

quick history lesson: the year is 1987 and you

are invited to a gathering of developers, 27

attendees and a living room. That’s all it is.

Yet, unlikely as it seems, this is the start of

a burgeoning of interest and a great deal of

planning to become unquestionably the most

incredible gathering of game developers from

across the world. Twenty-one years later sees

the 2008 conference being held over a five-

day period (18-22 February) in San Francisco.

Name any awesome game developer from

years back and they’ll probably be speaking

at the GDC. Who wouldn’t speaking at this

grand construct of an event? Anybody who is

anybody delivers content through an unparal-

leled medium with one focus in mind: to

make games better.

The importance of team

Do you know how big this event REALLY is?

Look more closely at the past. Where are all

these great ideas coming from? Where can

information be found on this technique? If

you have read a game development arti-

cle, it’s likely that somewhere, somehow it

originated from a branch of the information

hub that GDC has become. The size and scale

on which things are done doesn’t happen by

hoping to finish your epic FPS in a bedroom,

but it does start with information. Hundreds

and hundreds of people get together to build

a well-oiled machine that delivers the goods.

Among the deliveries, a few great announce-

ments for the indie game scene have sur-

faced in the shape of a taste of freedom. The

freedom to release, market and even publish

TAILPIECE

29DEV.MAG ISSUE 21

your games on an already-networked hub of

activity is a good thing for smaller bedroom-

based developers. Of course, this is referring

to the Microsoft keynote speech which in-

formed developers about the freedom of the

XBox live community releases. When their

DreamBuildPlay competition was held, over

200 entries surfaced with a great outcome as

stated by Microsoft.

This was all part of an attempt to stir up

some creativity and get people looking to-

wards the XNA platform for smaller games as

well, and the announcement followed a quick

chat with James Silva who Microsoft chose

to represent the competition, was quite a

shockwave through the minds of indie profes-

sionals and beginners world wide. Microsoft

said that XBox would allow community-built

games to be released through XBox live. The

word used was “democratised”, games being

made available through the Live network

would allow the community to control the

content via a system which moves along the

following lines: Create, Submit, Peer Review,

Play. This means games that are worthwhile

and which everybody is playing will be read-

ily available as long as developers submit

them. This takes the ten thousand players

looking for something to do into your imagi-

nation – you do the math.

Another interesting announcement was that

the XNA framework has been ported to the

Zune – that’s an MP3 player that can now play

XNA-based games as well as use the music

on the player as a resource for personalised

audio and other cool features using sounds.

The announcements were quite interest-

ing among a host of other information, and

previews, such as the Unreal engine from

Epic Games running on the XBox 360, and a

number of great sequels, including Fable 2

and, of course, Gears of War 2.

The IGF was also a big event, as always.

Having been held and judged, the finalists

and winners were announced at the GDC this

year. A short wrap-up of the categories shows

that there’s great room for learning and

getting recognized in the indie development

scene, with prizes for efforts such as the

IGF 2008 AWARD WINNERS

SEUMAS MCNALLY GRAND PRIZE:

Crayon Physics Deluxe, by Kloonigames

BEST WEB BROWSER GAME:

Iron Dukes, by One Ton Ghost

DESIGN INNOVATION AWARD:

World Of Goo, by 2D Boy

EXCELLENCE IN VISUAL ART:

Fez, by Kokoromi

EXCELLENCE IN AUDIO:

Audiosurf, by Invisible Handlebar

TECHNICAL EXCELLENCE:

World Of Goo, by 2D Boy

BEST STUDENT GAME:

Synaesthete, by Rolling Without Slipping

AUDIENCE AWARD:

Audiosurf, by Invisible Handlebar

GLEEMIE AWARDS:

FIRST PLACE:

Desktop Tower Defense, by Handdrawngames

SECOND PLACE:

Skyrates, by Team Skyrates

THIRD PLACE:

Quadradius, by Quadradius

TAILPIECE

30DEV.MAG ISSUE 21

DB SAYS ...

For a closer look at what GDC has been like this

year, have a peek at these websites. They’re full of

awesome resources and cool information about the

conference and the people who go there!

http://www.igf.com

http://www.gdconf.com

best web browser game, a design innova-

tion award, excellence in audio, technical

excellence and more. Check the boxout for a

review of who won what.

The prizes included some huge cash prizes

including the 20 000 US dollar award for the

grand prize, as well as smaller prizes all

round for the other categories. This defi-

nitely gives a lot of motivation to the indie

communities worldwide and has inspired a lot

of really well-polished, smaller games that

can make it into the industry as a game of

choice.

GDC is a showcase of well-placed advertis-

ing, great game marketing and all-round

product promotion. Some interesting tech

gadgets spotted included a PS3 Eye appli-

cation, which tracks head movement and

accurately updates a 3D scene, allowing a

player to move as if looking around the world

themselves. The other Eye application was

a sketch pad of sorts. As the user sketched a

drawing of a world, and a tank, the applica-

tion created the sketch into a fully animated,

collision-enabled game world that can be

interacted with using the control pad.

All in all, another hugely successful confer-

ence was well-attended and well-managed.

With content readily available on every con-

ceivable page of the website, and even the

notes available for download for a number

of seminars, it’s impossible not to learn

something and get the most out of this year’s

conference.

