

TUTORIALS

REGULARS

FEATURE

OPINIONS

REVIEWS

DESIGN

TAILPIECE

Ed’s note 03

From the net ... 04

Chatting with Travis Bulford 05
An interview with the creator of South Africa’s first game development studio

Why doesn’t life come with background music? 08
Q-man takes a look at how games put the grooves in our moves

For the love of games! 09
TheUntouchableOne touches on the number one reason to develop games

Knytt 10
A game which charms with simple graphics and a simple premise

Great Games Experiment 11
A networking portal with the avid developer in mind

Gamedotdev.co.za 12
If you don’t know about our alma mater yet, then it’s time to listen up!

Blender — intermediate series 13
Extracting 2D animations from rotating 3D objects

Beginner’s guide to making games 19
The fourth tutorial in the series, dealing with particle effects in Game Maker

Game graphics with photoshop 22
A new series, the first part dealing with an overview of the basic Photoshop tools

Going slow-mo 25
A quick look at implementing in-game speed adjustment

Project — Line Wars 29
The highs, lows and middle ground of creating a game with ... lines

Game.Dev’s edutainment competition 32
The story of what happened when Mindset decided to give away R10 000

The history of I-Imagine 34
The eighth part of our long-running series on these local game developers

We are legion 37
If you’re in South Africa and do game development ... know that you’re not alone

02DEV.MAG ISSUE 17

EDITOR

Rodain “Nandrew” Joubert

DEPUTY EDITOR

Claudio “Chippit” de Sa

SUB EDITOR

Tarryn “Azimuth” van der Byl

DESIGNER

Brandon “Cyberninja” Rajkumar

MARKETING

Bernard “Mushi Mushi” Boshoff

Andre “Fengol” Odendaal

WRITERS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “Cairnswm” Cairns

Bernard “Mushi Mushi” Boshoff

Danny “Dislekcia” Day

Andre “Fengol” Odendaal

Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans

WEBSITE ADMIN

Robbie “Squid” Fraser

WEBSITE

www.devmag.org.za

EMAIL

devmag@gmail.com

THIS MONTH’S OPINION
COLUMNISTS:

Quinton “Q-man” Bronkhorst
Rishal “UntouchableOne” Hurbans

This magazine is a project of

the South African Game.Dev

community. Visit us at:

www.gamedotdev.co.za

All images used in the mag are

copyright and belong to their

respective owners.

RAAAAAAAAAAAGE!

REGULARS

03DEV.MAG ISSUE 17

DEAR READER ...

Yee-haw! Oh man! Sweetness! Dev.Mag Issue 17 is here and it absolutely rocks!

Yeah, sure, I know: that’s rich coming from me. The more cynical readers will probably be roll-

ing their eyes about in their sockets right now (mind they don’t fall out) and the more outspo-

ken ones shall be calling verbal justice down upon my arrogant and assuming manner.

But in all honesty, I’m really happy right now, and you should be too. Not only is this a super-

special-uber rAge expo edition (an event which most South African readers will be familiar

with), but we’re sporting a full redesign. And more than 40 pages of game development writ-

ing. Does it get any better than this? One of our biggest jumps to date, Issue 17 is the result of

an entire month of very hard work done by a lot of committed people.

So, gushing aside, what’s new? Well, this editorial is being typed up on the eve of this month’s

big expo, and from what I can see already there’s a whole lotta stuff that’s going to be happen-

ing in the game development arena this year. It’s really inspiring to see so many organisations

banding together for a few days and working towards a common goal. Luma’s racing title, Mini

#37, has been rigged up in and around the Game.Dev stand, and a few of my colleagues have al-

ready had a chance to try it out with some super-rad driving seats thrown in for good measure. I

missed out because I was naturally assigned some grunt work that kept me occupied for most of

the time — but I’m already plotting my revenge, so all is good.

If you’ve missed out on rAge this year, don’t despair. We’re doing a full report-back in the next

Dev.Mag (which is likely to be tweaked even further), and I suggest that if you haven’t had the

rAge experience at all yet, you really should try make it sometime in the near future. It’s a

truly fantastic expo where some truly fantastic dreams are realised. Ciao for now!

RODAIN “NANDREW” JOUBERT
EDITOR

This was the first ever proposed cover

for Dev.Mag. It was crude. It was ugly. It

didn’t even have the same name. For-

tunately, some heroic designers stepped

in to salvage everything, meaning that

this little Frankenstein project never

ended up seeing the light of day.

REGULARS

04DEV.MAG ISSUE 17

CASUAL GAMING: AN OPINION

http://www.gamasutra.com/php-bin/news_index.php?story=15570

There’s been something of a fixation on casual gam-

ing news and articles lately. No surprises there, what

with all the statistics and big companies and other

fancy things involved. Gamasutra has a brilliant

opinion column on the issue, and money-making

matters for both casual and general indie develop-

ers are taken into consideration. The piece covers

aspects such as in-game advertising, online portals

and price adjustment, all reflecting on how market-

ing has been affected by new Internet technologies

and progressions. A worthwhile read.

IGF OPEN TO STUDENTS

http://www.igf.com/rules_student.html

Arguably the indie world’s most prolific event, gaining mass approval at the annual

Independent Games Festival (IGF) is something which developers in the arena aspire to.

Success is rewarded with fame, fortune and the guarantee of even more success. Now,

students are also allowed to try their hand at getting onto the red carpet themselves,

having been given their own section in the IGF awards. Of course, if you aren’t inter-

ested in trying out yourself, check out the showcase section for some of the previous IGF

winners – the likes of And Yet It Moves and Toblo are great examples of what even the

humble learner can achieve with a suitable amount of passion and creativity.

GUERRILLA MARKETING

http://www.gamasutra.com/php-bin/news_index.php?story=15402

If you want to figure out how to make your games known, but don’t know

where to start, then listen up! We have a smashing little gem from the big

WWW sitting in our laps, brought to us by the Austin GDC and reported by

Gamasutra. One of the GDC speakers, Jay Moore, starts off with the most

valuable advice of all: “the worst games are done strictly for the money...

If you don’t have the fire in your gut that says ‘if I don’t make this game

there’s nothing on the planet I want to do more,’ you’re not going to have

the quality of content to differentiate yourself as an indie.” From there, it

gets better. The article explores a talk dealing with being a market-savvy

and active gamer, outlining the importance of keeping up the work even

after the game has been finished.

FEATURE

05DEV.MAG ISSUE 17

PIONEERS OF GAME
DEVELOPMENT

A CHAT WITH TRAVIS BULFORD

by Simon “Tr00jg” de la Rouviere

It’s not easy being the first. Travis Bulford

was the managing director of Celestial,

one of the first game development studios

in South Africa. The company (later known

as Twilyt) stormed onto the scene with South

Africa’s first reputable AAA title, Toxic Bunny,

in 1996, and several other projects (including

a CRPG called The Tainted) were worked on

before closing Twilyt closed its doors in 2001.

Even though the company itself is no longer

around, it was a valuable spark in the fire of

South African game development, and proved

that a local industry was indeed possible to

establish. So, what’s Mr Bulford up to now?

One of our writers investigates.

Firstly, tell us more about yourself. Who

are you?

Well I’m 34 now. I am into games, of course.

Reading, kung-fu, diving. Various sciences

also interest me. Roleplaying and people,

of course. Also play board games. Have two

kids and am married now. But my wife likes

mostly the same stuff, so that’s very fortu-

nate. As for the “who I am”: well, hell, I’m

still working that out. I think I’m academic at

heart - I love knowledge and sharing of that.

I want to learn and teach in everything I do.

In terms of developing games, do you think

it’s better to have a varied background, in

the sense that you are then open to new

ideas? That is, a gamer will makes games,

while a non-gamer might make interactive

entertainment?

Hmmm … better and worse are so difficult to

judge. I expect that people do better at the

things they like in all walks of life. Games are

topical, so games are not just games for the

sake of it. They require creative input - well,

one would like to think so - and I believe that

for the creative person in a games team,

variety opens them to new ideas. But a team

is made from more than just the story teller.

A dev team needs to be more structured

and be able to apply logic to that creative

information. So better or worse, I don’t think

it applies if you love games, you can work on

them, just find the right role for yourself.

Now, you were in Celestial/Twilyt, South

Africa’s first real development studio. What

was it like? Who were the members?

Original members were Caleb Salisbury, Nick

McKenzie, Brian Johnson, and me too, of

course. It was fantastic to work on games. I

worked more hours then I have since or will

again. But it was so much fun I didn’t care!

We were actually second when it comes to

publishing any games here - a Cape Town

company beat us by a few months with a title

called Cyril the Cyberpunk.

But I think we can agree that you guys were

the first studio with decent success, that

came in the form of Toxic Bunny right? Tell

us briefly what games you made.

Toxic Bunny was a successful game financially

speaking. But I am not sure I would make

the statement you did. Other games? Well,

we published The Tainted three years later.

The Tainted failed financially, yet we learnt

so much more than we did with Toxic Bunny.

It’s ironic but kind of obvious that one learns

more from mistakes than any other way.

Anyway, we failed to make The Tainted what

FEATURE

06DEV.MAG ISSUE 17

it could have been. It had a lot of great

points but its failings meant most people

never saw those points. After that we started

working on Zulu War. We never got that

title completed as we ran out of steam and

money.

Have you ever considered getting back into

the SA game dev scene?

Every day, haha. If the right opportunity ar-

rives, I will come back into game dev.

We’ve heard that you were busy with a

Toxic Bunny port of Java. Tell us more.

I am porting TB to Java to sharpen my long-

dormant game dev skills. That’s one of the

reasons.

And the other reasons for porting Toxic

Bunny?

It’s a really good game and we want people

to play it again. I am also sick and tired of

seeing crappy java games. The language

can do more, and I will champion that. I’m

always tempted to do things that people tell

me can’t be done. A friend of mine has also

been nagging me since we did Toxic Bunny

— in fact, from before we finished it — to do

a Linux one and this kind of does that at the

same time.

What do you think of Game.Dev’s initiatives?

Game.Dev started just when we were putting

down our tools and closing up shop, so until

very recently I’ve not really looked too

much at it, but I must admit it, it’s damn

nice to see so many people working towards

game dev here in South Africa. I can’t help

but wonder if it was at this level when we

stopped if it might not have been just what

we needed to carry on. It’s terrible working

on an island, especially if you’re academic

by nature.

So what was the most important lesson you

took away from working on that island?

The most important game development les-

son was humility. It’s ridiculous to compete

with each other (I mean in a nasty fashion)

when the rest of the world is better than

you, more experienced, better financed and

working together! Personally, I learned not to

take myself so seriously.

Any final points you’d like to raise?

I would like to add that for us to succeed as

an industry it takes a lot of people succeed-

ing, and not just one or two. Music makes

less money a year than games software. We

have a great music industry. We as South

Africa should have a fantastic games one

too.

QUICK QUOTES

What’s your favourite game?

Well, right at this point it’s WoW. But

to say that of all time would not be ac-

curate. My favourite game of all time

is a toss-up between Star Control 2 and

Ultima 7.

Alliance or Horde?

Haha! My main is Alliance lvl 70 Pally.

On the Horde side there are no high

level characters. I like the lore aspect,

so I want to play both.

Pizza or Steak?

Pizza… and coffee, of course.

Colgate or Aquafresh?

Colgate I guess.

Xbox360, Wii or PS3?

I’d pick PS3, but I will admit the Wii

is quite tempting. Microsoft ruins my

PC enough thanks! I don’t want them

near my consoles either. Next thing you

know, they’ll want to run my fridge too.

“Why doesn’t life come
with background music?”

OPINION

08DEV.MAG ISSUE 17

by Quinton “Q-man” Bronkhorst

I was walking through varsity just the other

day, casually listening to my iPod (as most

frivolous students do these days), and as

I walked past a group of fellow students, a

very familiar tune started playing in my ears.

Why, it was the Balamb Garden theme tune

from Final Fantasy 8! How delightfully apt;

for here I was, walking around a very large

learning institution, and for a few minutes, I

found myself within the game itself, experi-

encing, in reality, a fantastical world.

You see, real life has many good things to

offer (feta, ham, naked people), but the one

thing it just doesn’t have is spontaneous and

booming music playing in the background

as we go about our everyday lives (and no,

listening to your iPod or having music play on

the radio doesn’t count). Just think back on

a few key moments of your life, and picture

those same moments with an appropriate

soundtrack playing as the events unfold – how

much easier would it have been to act in the

right way?

Take for instance that romantic moment with

that special someone - except you’re com-

pletely oblivious to the signals being given by

them. Add, say, Marvin Gay or Barry White to

the mix, or some harmonic orchestra playing

soothingly in the background, and all of a

sudden, there’s this romantic mood that only

a fool wouldn’t recognize.

Or how about that fat kid that wants to

meet you after school behind the prefabs at

3 o’clock? You’re sure to get your ass kicked

two ways to Sunday…unless you have some

up-beat, high tempo action music playing in

the background. Your heart starts racing, and

you feel the vibe sending you into a sporadic

bout of flying fists and kicks.

With background music, we’d know when

we’re in danger and we’d know when we’re

safe – everyone remembers how it felt to

hear that comforting music and seeing a

typewriter in Resident Evil. We’d even know

when freaky things are going to start happen-

ing around us (trust me, you hear sirens and

industrial-style music, you’re going to want

to find a torch and a radio pretty quickly,

because the fog is going to start rolling in

real soon).

It’s undeniable that life with background

music guiding us would have been pretty

awesome, and if you really think about it, it’s

just one of those things we take for granted

in the games we play. Knowing when to act,

what to expect, how to react, which people

are good, which people are evil – everything

a game can tell you through music, escapes

us here in the ‘real world’.

Quite a convoluted path to walk to make

a simple point, but the message should be

pretty clear. Music adds so much to the expe-

rience of something, and plays such a pivotal

role in setting up mood and atmosphere.

And even though, for us poor sods here in

the real world, such wonders of background

music can’t truly be appreciated; when we

get home and put that game into our system,

we get to experience and enjoy such benefits

reality keeps from us.

“For the love of games!”

OPINION

09DEV.MAG ISSUE 17

by Rishal “TheUntouchableOne” Hurbans

Many of you have started developing

games, whether it be with Game

Maker or another programming

language of your choice, while others have

just recently discovered the wonderful world

of creating games and are filled with excite-

ment and enthusiasm. And what inspired you

to pick up this fun – and productive - hobby?

The answer to that question should be “For

the love of games”. If you answered other-

wise, there’s something seriously wrong.

Yes, there is money to be made in the game

development industry, but the key to devel-

oping an amazing game is the passion and

love for gaming and game development as a

whole. When you first start building a game,

the first thoughts in your mind shouldn’t be

about how much money the game

could make you, but rather how

much fun the game would

be, and how much fun the

process of developing the

game would be for you

as the developer. Just

like a good cook would

prepare a meal with love

and passion (well that’s

what they tell me), so

should a game developer

create a game with love,

passion and fun set firmly as

a foundation. For hobbyists like ourselves,

the driving force behind our work should be:

having fun while molding a masterpiece that

people out there can enjoy.

Developing a game is a very rewarding

experience, and I don’t mean financially

rewarding! Rewarding in a sense that when

you sit back and see what you have done, you

are filled with joy, happiness and even pride,

thinking “Yes, I really created that game”.

The satisfaction of knowing that someone

- even if it may be just one person - likes

your game and enjoys playing it, should be

enough to make you very happy indeed. That

should be the most rewarding aspect of game

development. I’m not saying that trying to

make a profit is wrong, I’m

saying that a

game should be built on prospects of how

fantastic the game could turn out and not

how rich it can make you. The financial side

should always come second if you have your

mind set on creating an enjoyable game that

will truly stand out.

So, for the love of games, develop for the

sake of fun!

KNYTT
http://nifflas.ni2.se/

REVIEW

10DEV.MAG ISSUE 17

by Simon “Tr00jg” de la Rouviere

On a strange planet somewhere in the

existence of our imagination live

small acrobatic rat-like creatures

called Knytt. In this epic adventure, an alien

captures a Knytt. In an attempt to abduct

it, the alien’s UFO crash-lands on an even

stranger planet.

This is how Knytt starts.

This charming exploration platformer created

by Nicklas “Nifflas” Yurgen is a prime exam-

ple of “less-is-more”.

The goal of the game is to scavenge the

strange planet in search of the alien’s broken

UFO parts. In Knytt, all you do is run, jump

and scale the side of walls. This might seem

boring to some, but it is exactly that, that

makes Knytt such a fresh experience. There

is no “attack”, there are no “upgrades”,

there’s just you and your two little legs.

The biggest strength of Knytt is its simplistic,

beautiful landscapes - from desert waste-

lands and dark swamps to green shrubber-

ies. As you wonder in eerie loneliness in this

strange world, you can’t help but gawk at

this wonderfully crafted world. It is much like

Shadow of Colossus in the way that, as you

progress through the whole world, you can’t

help but wonder more about this world and

its inhabitants (or the lack thereof).

The “inhabitants” are scattered around

the world. They include humanoid crea-

tures staring into space, swimming, fishing

and just “being”. Then there are the more

animal/monster-like creatures that are the

most enthralling; most of the time when you

encounter them, you can’t help but stare

at whatever they are doing. These include a

stout giraffe-like creature munching leaves

and blue centaur-type guys shaking fists at

each other across a waterfall.

Knytt is an extremely relaxing experience

that is doubled by the soothing and engross-

ing music, but isn’t all just running around

an empty world - there are plenty of puzzles

and secrets too.

There are things in Knytt all developers can

learn from. In the end simplicity reigns king.

Sure, having +3 sword of uber strength in

World of Who-cares is awesome, but just

exploring a world can be just as fun!

GREAT GAMES
EXPERIMENT

www.greatgamesexperiment.com

REVIEW

11DEV.MAG ISSUE 17

by Claudio “Chippit” de Sa

Many of you have started developing

games, whether it be with Game

Maker or another programming

language of your choice, while others have

just recently discovered the wonderful world

of creating games and are filled with excite-

ment and enthusiasm. And what inspired you

to pick up this fun – and productive - hobby?

The answer to that question should be “For

the love of games”. If you answered other-

wise, there’s something seriously wrong.

As a developer, it’s always a good idea to

keep on the lookout for resources that can

help you. Whether these resources are knowl-

edgeable contacts or informative tutorial

sites, nobody can deny that a little help here

and there comes greatly appreciated. The

Great Games Experiment is a website that

may help on the marketing side of things.

GGE is something of a social gaming website,

where gamers can congregate and find others

with similar taste. Registered users build

profiles about themselves and their gaming

preferences. Users earn experience points by

being active on the site, as well as additional

popularity points based on numerous behind-

the-scenes factors. Deserving users can be

awarded kudos by fellows in recognition of

achievement or other feats. Gamers can also

form groups so that those of similar taste or

other affiliation may assemble and discuss

topics of interest.

Games are submitted to the site by users or

developers alike. Submissions are catego-

rised by tags that are assigned to them upon

submission, and these allow the site to find

games that are similar to each other, as well

as group games by defining features. Each

game has a highly customizable home page

that can feature a wide array of informa-

tion about it, including defining features,

screenshots and gameplay videos. A similar

rating system to that used on registered users

is also employed on game pages, as well as

an additional 5-point score calculated by

averaging user ratings. Users are also free

to leave comments about the game or even

submit entire reviews should they so desire.

All these features are geared towards gam-

ers, but the site has an equally large appeal

for developers. Developers can use the site

like normal users, in addition to using it to

build portfolios of their own games or others

that they assisted in creating. It serves as an

excellent tool to promote upcoming or exist-

ing games, especially since it already has a

large user base despite being a comparatively

new website. Users on the site are also en-

couraged to provide feedback on any submis-

sions that they play, and all developers know

that feedback from the community is one of

the most important resources that one can

have. This is another great factor that lends

to the appeal of GGE for developers.

Because anyone is free to upload games to

The Great Games Experiment, it is a truly

brilliant tool for promotion and will result

in greater exposure than can usually be

achieved this easily. For this, it comes highly

recommended.

GAME.DEV
www.gamedotdev.co.za

REVIEW

12DEV.MAG ISSUE 17

by Claudio “Chippit” de Sa

At Dev.Mag we constantly feel a strong

urge to publicise our roots. We simply

wouldn’t be around without our

parent association, Game.Dev, a local South

African initiative whose goal is to grow the

local game development scene, and, like any

good son, we feel that it is good to talk about

our parents every now and again.

While Game.Dev was conceived as a subsec-

tion of a larger gaming forum, it has grown

and now hosts its own website, acting as a

front for all Game.Dev’s activities. News of

major Game.Dev events is regularly posted

here, along with information on local devel-

opment related events. It also links to Game.

Dev’s showcase on Great Games Experiment,

where a large portion of members’ games are

available.

The greatest treasure of the Game.Dev

site lies in the knowledge archived in the

article section. Game development wisdom

is hoarded here, usually a scant few months

after the same content is published in the

local gaming magazine, New Age Gaming.

These articles are written by Game.Dev’s

very own virtuoso, Danny Day, better known

as dislekcia, and cover game development

topics most pertinent to indies. However,

the hints, methodologies and general wisdom

contained in these articles are invaluable to

any and all game developers.

Navigating to the links section of the site will

yield a variety of local development related

websites. The most important of which being

the Game.Dev forum, still graciously hosted

as part of New Age Gaming’s forum. This is

where Game.Dev was effectively conceived

and the most relevant activity still occurs.

Here, games are showcased and advice is

dispensed, but the most notable activity

comes from the regular competitions that are

hosted, some of which include cash prizes.

In fact, the first thing you’ll notice when you

visit the greater Game.Dev site is the list

of the winners of the previous competition,

with prizes totalling R10 000.

Game.Dev’s home site is a trove of knowl-

edge and a great place to stop for some

insightful development wisdom.

he adjacent images are of the

Pacman fruit variety. I created the

images both in 2D and 3D. Initially I

thought of doing a tutorial showing you how

to draw the fruit in 2D and convert them to

3D, but building them in 3D would take the

same amount of time, with infinitely better

results.

Seeing as this is a 3D tutorial, let us travel

the road of the 3D fruit.

The idea is to create a bonus object in 3D,

animate it to spin around once, and export it

as an animation. This concept is especially

well suited to bonuses and power-ups, in my

humble opinion. If we do the animation

correctly, the object will be able to spin

infinitely and seamlessly.

Work flow:

 • Decide on the object

 • Decide on a basic build structure

 • Which primitives should we use?

 • Model

 • Texture

 • Animate the object (What is the context,

how long should it take for a 360 degree

spin?)

Set the render parameters

II would like to build the 3D cherries with

some nice shadows and highlights on them.

To build the cherries, we will build a sphere

and duplicate it three times. Then we'll build

a stem that splits three ways. For the stem

we will start with a simple plane in top view,

and extrude it to the right dimensions.

For this tutorial, I'll accept that you have the

default Blender screen in front of you. If not,

create 2 viewports along the top of your

screen, and 1 viewport below them. Keep

your mouse cursor over the top right

viewport, and press NUMKEY7

We'll start in a top viewport by adding a

sphere. Why the top viewport? Well, in

Blender, the z-axis runs up and down. When

you create an object in Blender, it is built

with the z-axis pointing in the direction of

the view that you built it from initially. If you

start building an object from any other view

than top view your object will not have the

same axis orientation as the Blender world

axis. Later on, that could account for

extremely funny behavior when you animate.

TUTORIAL

BLENDER TUTORIAL
Lucky Fruit Bonus Tutorial

By Stefan “?rman” van der Vyver

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

SPACEBARKEY brings up the Add menu Add a

mesh UVsphere with attributes set as above.

When you add the sphere, the program takes

you into Edit Mode. On screen you will see

the sphere as a series of yellow dots that are

connected with black lines. It would be a bad

idea to move the sphere at this point. There

is data related to the object, such as the

center point, location and rotation that will

not move with the vertices. Pressing TABKEY

will take you out of Edit Mode and into

Object Mode. It is in this mode that we will

be duplicating the sphere to form two more

cherries.

Before we create the other cherries, we

might as well create the red material, and

set the sphere to be smooth. Go to the

materials button, and add a new material.

Click on the gray color swatch, and select a

nice deep red cherry color. Next step: Go to

the edit buttons and click Set Smooth. The

object appears to be more smooth, but we

need still more smoothness. To achieve this,

we add a Subsurf modifier. This subdivides

the surface of the object, giving us a far

smoother appearance, without actually

altering the mesh.

Make sure that you have the editing button

selected. Still looking at the object from in

the top view, make sure that you have the

object selected (RMB) (RightMouseButton),

and duplicate the object with

SHIFTKEY+DKEY. After adding the “Subsurf”

modifier, the object appears elongated. This

is due to the way that the mesh is

constructed, and is influenced by the way

that the “Subsurf” modifier subdivides the

mesh. My suggestion is to use the bounding

box properties to get the ball into shape

again. What is the bounding box? It is the

smallest rectangular shape into which the

whole of your object will fit. In this case,

because my sphere is taller than what it is

wide, the bounding box will have a higher Z

value. Press NKEY to see the object

properties. Look at the DimZ value. You can

clearly see that the Z-axis has a different

value than the X- and Y-axis. SHIFTKEY+LMB

(left mouse button) on the DimZ value. Type

in the same value as the DimX and DimY

values. Your sphere will now be round again.

You have made the sides of the bounding

equal, making it square, in turn forcing the

sphere to become round again.

TUTORIAL

We have now changed another value – the

ScaleZ-value! Many animators will simply

leave this as it is. However, once again, this

might cause problems later on. The best

option is to apply the scale values to the

object, allowing it to be addressed by

Blender as a uniform scale of 1.

CTRLKEY+AKEY brings up the dialogue to

apply scale and rotation. After you have done

this, you will see that the sphere is now

perfectly round, with a uniform scale value

of 1.000 for ScaleX, ScaleY and ScaleZ.

Time to duplicate the sphere. We have

applied a material, set the smoothing,

applied a subdivision modifier and made the

object round with a uniform scale value.

Make sure that you are in the top view, and

have the sphere selected. SHIFTKEY+DKEY

creates a duplicate of the object. Create two

duplicates in the top view, and position them

as you see fit. Go to front view (NUMKEY 1)

and move the spheres so that they are

slightly offset in the Z-axis.

Default screen layout Colour for cherries

Applying Subsurf modifier

Now for the stem

When modeling in 3D, we always try to keep

our polygons four-sided. They don't have to

be square, but we do want them to always

have four sides. This leaves us with a bit of a

dilemma, as we need a stem that splits three

ways. To do this, we will start with a plane

object (which is four-sided), then move the

3D cursor to one of the corners, and rotate

the plane around the 3D cursor. Using some

Blender shortcuts, we will join and delete

some vertices. Below you can see a quick

flow diagram. At the end, we have three

four-sided polygons joined together.

The 3D cursor causes havoc in Blender if you

don't understand how to use it. My suggestion

is that you think of it as a place holder.

When you add a new object in Blender, it

will be added at the 3D cursor's position. The

interesting thing is that a simple left-click of

the mouse puts the 3D cursor where you just

clicked. Many times, as a new Blender user,

this will happen by chance, and you may

encounter some unexpected behaviour

because you, unknowingly, repositioned the

3D cursor. Another feature of the 3D cursor,

is that you can use it to reposition objects, or

have objects rotate around the 3D cursor.

Position the 3D cursor at the point where you

want the stem of the cherry to split up into

the three smaller stems. Then go to top view

(NUMKEY7) and add a plane object

(SPACEBARKEY). Scale (SKEY) and rotate

(RKEY) the plane so that it fits the position of

your cherries.

You should be in edit mode now. Make sure

that you are in vertex mode

(CTRLKEY_TABKEY). Select the vertex (RMB)

as shown in the diagram, and then press

SHIFTKEY+SKEY. Choose Cursor to selection.

You have now positioned the 3D cursor on

that vertex.

The next step is crucial. Click the Pivot point

icon as indicated. Select 3D cursor. Any

rotation you do now will happen with the 3D

cursor as the center

point for the

rotation. Select all

the vertices of the

plane, and hit

SHIFTKEY+DKEY. This

will duplicate the

TUTORIAL

object. To rotate the selection hit RKEY.

Hold down CTRLKEY to restrain the rotation

to 5 degree increments. You can read the

rotation degrees at the bottom of the

viewport. Rotate the selection through 120

degrees. Duplicate and rotate the plane a

second time.

Now we need to merge or join certain

vertices so that we are left with only three

four-sided polygons. Change your shading

mode to wire frame, by pressing ZKEY. RMB

select the vertices as shown in the image,

and hit ALTKEY+MKEY. Select “At center”.

The vertices will merge and you will receive

a message indicating that 1 vertex has been

removed.

Keep merging the outside vertices until you

have the following result:

Now, what you cannot see is that the inside

vertices are still overlapping. To merge

those, deselect everything (AKEY). Box select

(BKEY and LMB drag) the center vertices and

press ALTKEY+MKEY to merge those vertices.

Snapping cursor to vertex

Changing pivot point

When you select all the remaining vertices,

you should see the following information

displayed in the title bar of Blender:

 • Ve: 7 (Vertices)

 • Ed: 9 (Edges)

 • Fa: 3 (Faces)

If your amounts are higher, i.e. if you have

more vertices, you have duplicated

something in the incorrect way. Your best

option will be to go into object mode

(TABKEY), delete the stem object and start

again with a plane.

I selected the three vertices on the outside

edges of the polygons and moved them up

slightly. Then I selected the middle vertex

and moved it down. That left me with four

diamond shaped objects, with the diamonds

sort of facing in the direction of the cherries.

Next step is to go into face mode

(CTRLKEY+TABKEY) and extrude each face

down to a cherry sphere. It might be a good

idea to change your pivot point before doing

anything else. Now you can extrude the

faces, one by one, using the EKEY. Extrude

and position the

extruded area so

that it ends inside

each of the cherries.

I scaled the ends

(SKEY) so that they

would be thinner on

the ends. Now go

into edge mode (CTRLKEY+TABKEY) and

select the open edges at the top of the stem.

Press EKEY, then ZKEY, to extrude the edges

in the Z-axis. To make the end look neat, you

can hit SKEY, then ZKEY, then hold in

CTRLKEY while you drag the mouse. This will

scale the edges in the Z-axis. Keep an eye on

the bottom of the view port until it reaches

zero. You can now extrude the edges until

you are happy with the shape of your stem,

scaling and moving vertices until you are

happy with the result.

I've added a basic green material to the

stem. I would suggest that you add a

Subdivision modifier to the stem, and

activate the “Set Smooth” button under the

editing options. This will make the stem look

nice. If you have black areas that look funny,

your normals are probably inverted. Select

all the vertices of the stem, and hit

CTRLKEY+NKEY to make the normals face in

the same direction.

Make sure that you have a camera in you

scene or add one (SPACEBARKEY--->Add---

>Camera). Change one of your view ports to

a camera view (NUMKEY0). Add one or two

lights and press render. I added a spotlight

with shadows as the key light, and a hemi

light as the fill light.

TUTORIAL

Diamond shaped faces

After extrudings stem towards
cherries and upwards

Setting up lights

Animating the object

A good principle in animation is to use

proxies, or helper objects, to animate

objects where possible. It is always best to

leave your object in as unaffected state as

possible, in order for you to make changes to

the object at a later stage, without affecting

the whole chain.

In this case we will add an Empty object. We

will parent the cherries to the stem, and the

stem to the Empty, and then animate the

Empty to spin around.

Parent the cherries to the stem. Do this by

selecting (SHIFTKEY+RMB) all the objects,

one at a time, and selecting the stem last.

The stem should be a lighter pink than the

cherries. Now hit CTRLKEY+PKEY. Now go to

top view, and still with the cherries and stem

selected, hit SHIFTKEY+SKEY. Choose Cursor

to Selection. This will position the cursor in

the middle of the imaginary bounding box

enclosing all the objects. Simply, put, it

centers the 3D cursor on the selection. Now

add an Empty (SPACEBARKEY ---> Add --->

Empty). Select the stem, and parent it to the

Empty. Now we can animate the Empty. Test

the Empty by hitting RKEY and moving the

mouse. The cherries and stem should rotate

along with the Empty. If not, retrace your

steps and make sure everything is parented

correctly. Select the Empty, and press the

NKEY. The properties of the Empty will come

up on screen. You should be able to see that

the Z-rotation is currently zero. A full

rotation will be 360 degrees, and we will use

this screen (NKEY) to change the degrees for

the animation. Change your lower viewport

to an IPO Curve editor window.

In the top viewport, ensure that your Z-

rotation (by checking the properties window

NKEY) is zero. Ensure that you are on frame

zero of your animation. Keeping your mouse

cursor in the top viewport, press IKEY. Select

Rot. This will insert a keyframe to fix the

rotation at this point. You will see that the

key is inserted when you look at the IPO

Curve editor. Let's say that we want the

cherries to rotate one full rotation in 2

seconds. That will mean that we need to do

the animation over 50 frames (25 frames per

second). (Press (ARROWUPKEY) to advance to

frame 50. ARROWKEYUP advances 10 frames,

and ARROWKEYRIGHT/LEFT advances or

rewinds 1 frame at a time.)

Go to the rotation properties, and type 360

next in the RotZ space. Hit IKEY and insert a

Rotation keyframe at this point. Your IPO

curve should look like the image below. If

your lines are running out of the screen,

either zoom in, or click on “View” and select

“View All”.

TUTORIAL

You can now play back your animation by

using the arrow keys to go to frame 1, and

pressing ALTKEY+AKEY (with your mouse

cursor over one of the top viewports).

Currently the default settings will probably

be set to 250 frames for rendering, so the

animation will play, pause for a while, then

play again. We'll sort that out in a moment.

What is important to note, is that the

animation starts slow, then speeds up, then

slows down again. This is not what we want

for the animation. We would like a constant

speed throughout.

Select the speed curve with RMB. Hitting

TABKEY will take you into edit mode. Hit

AKEY until both curve points are selected in

yellow. Press VKEY. This will change the

character of the curve handles so that the

interpolation is of the handles are vector

type. This will change the line so that it runs

straight between the two points. What this

line now shows is a constant movement over

time. This is what we want. If we want a

continuous rotating object, it stands to

reason that we can now use frames 1 to 49,

and simply loop the animation, or, described

in other terms, the animation can keep

repeating itself from from 1 to 49. We leave

out frame 50, since it is the same as frame 1.

Press TABKEY with your mouse cursor over

the IPO window. That will take you out of

edit mode. Change the IPO window back to a

Buttons window, and select the Render

Options.

In the Scene/ Render dialogue you need to

set the following options:

 • Output directory(where do you want to

store the images? Click on the icon next to

“/tmp\”)

 • Oversampling (smooth edges)

 • Render frames (the first and last frames)

 • Image size (consider how big the image

will be in your game)

 • Filetype (Targa and PNG supports

transparency)

 • Alpha channel (RGBA means “Red, Green,

Blue and Alpha”)

TUTORIAL

Make sure that you have a camera and lights

in your scene. Without these, the animation

will not render.

Click the “ANIM” button. Blender will now

render a sequence of images to the

directory/ location as specified. I use GIMP

to composite my images as an animated .gif.

There are various programs available on the

Internet to do so. Most probably your game

software will be able to use the sequence of

images to create an animation.

Should you need more animated spinning

objects in your game, you can now always

the replace the cherries with that object,

parent the object to the Empty, and render

the animation. You now have a type of

template for such an animation.

Happy Blending

IPO Curve adjusted with straight vectors

Your final render settings should look something like this

his is the fourth article in the

Beginner's Guide to Making Games. So

far we 've looked at making objects

move and checking if they collide with each

other, as well as different options available

for setting the background of the game. This

month we'll extend the fancy look of our

games with particle effects.

The main goal of the Beginner's Guide series

is to try and ensure a detailed understanding

of the various concepts so that they can be

applied to other new and exciting games.

While most traditional tutorials will show

what logic is needed, these guides will

ensure that you walk away actually

understanding each of these concepts.

This article is aimed at someone who has just

started learning to make games. While it is

expected that the reader of the article has

completed the first Game Maker tutorial and

can therefore create sprites and objects, it is

quite possible to follow the article without

having done so. The article is structured to

introduce a new programmer to the concept

but still be of some value to the intermediate

level programmer as well.

This month’s article will contain the

following sections:

 • A Game Maker tutorial on creating

particle effects

 • Other Options available with particles

through Game Maker Actions

 • More effects on particles through GML

Particles are only available in the registered

version of Game Maker.

Particles can be used to make a game look

that little bit more polished and professional

– in other words, they add that bit of spice

that makes a game look more than just a

cluster of sprites.

Step 1 – Create a Sprite and an
Object

Create a new Game Maker game containing a

sprite and an object. I’ve used the dynamite

sprite from the Maze example that comes

with Game Maker.

If you need help creating a sprite and an

object, have a look at previous articles in

this series.

Step 2 – Create a Room

Create a room and place the dynamite in the

room.

If we run the game now we have a room in

which nothing happens. But now the fun stuff

starts. We are going to blow up that

dynamite!

Step 3 – Prepare for Particles

Go back to the dynamite object, and add a

Create event.

Particles do not exist in Game Maker on their

own, but rather exist within the Particle

System object. So the first thing to do is to

create a Particle System to hold all the

particles we are going to create.

Just as Particles cannot exist without a

Particle System, so particles cannot be

created without a Particle Emitter. Particle

Emitters control the way particles are

created, so as to create different effects.

While Emitters control the way particles are

created, the particle type defines the way in

which particles behave.

Within the Create event, we need to create a

Particle System, define the behaviour of a

particle type, and declare a particle emitter

to create the particles.

The Default value for the Particle System

Depth can be used.

TUTORIAL

PARTICLES
Beginner’s Guide to Making Games

By William “ Cairnswm” Cairns

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

Use a smoke shape for the particle as this

creates a good explosion effect. Play a bit

with the sizes and size increment values to

adjust the effect to your liking. For the

Particle Colours, use a red and a yellow as

these are mixed to give various shades of

orange.

For the Particle Life set a value of min:10 to

max:20.

Define the motion of the particles - for a

platformer a min direction of 30 and a max

direction of 150 makes the explosion appear

to go upwards, while for a top-down shooter

you probably want a min of 0 and a max of

360 to allow the particles to go flying off in

any direction.

And lastly, create an emitter to create the

particles when we need them. I quite like the

diamond emitter shape, but for this example

as we want all the particles to be created on

the sprite it doesn’t really matter what

shape to use. Set the minX to x-10, the maxX

to x+10 and the same for the y values.

At this point we have everything ready to

create particles. The only thing left to do is

to actually emit the particles from the

emitter.

Step 4 – Make Particles

On the dynamite object, create a Mouse-Left

click release event, and in the event add the

“Burst a number of particles from an emitter

action”. Ensure you use the same emitter as

defined in the create event and the same type

of particles defined before. For a neat small

explosion use a total of about 20 particles.

And there it is, a neat little explosion system

for Game Maker. The same emitter and

particle type can be used when two trucks

collide, or a missile hits a plane, or Doctor

Death's super explosive nuclear device lands

on his enemy's city.

Actions – Other Particle Effects

Each of the particle actions takes a number

of parameters and for each parameter there

are various options for creating a different

result within your game.

Particle System

The biggest extra effect that can be created

by the particle system is the depth that the

particle system is created at. This results in

particles being either in front of or behind

the other objects in the game. So for

example you could explode a tank, letting

the explosion be above the other ground

level units, while being below the level a

plane is flying at.

Also note that there is an action to clear all

the particles within a particle system. This

can be very useful when levelling up a player

or something where the level resets itself.

Particle Types

Game maker has a number of predefined

shapes to use for your particle types. It is

also possible to add your own sprites to use

as particles. Sometimes it is worth playing

with the various shapes before deciding on

the shape to use for your particles. For

example I find the smoke shape better for

explosions than the explosion shape.

Also spend some time playing with the size of

the particles. You might prefer other than

the default sizes for your effects. In the

tutorial above, for example, I use very small

particles for the explosion but you might

prefer larger particles.

TUTORIAL

Particle Motion Settings

Particle emitter settings

Burst settings

Explosive result

Particle shapes

Particle life and Colour

The colour facilities in the Game Maker

particle system are actually really nice. You

don’t need to define the change of colour

the particles go through, instead let Game

Maker transition between the two colours

and give you a wide range of effects for free.

Like Particle Type, the Particle Life Span

needs a lot of trial and error to find the right

values. The randomness built into finding the

particle life is effective in that it results in

different particles living for a different time

and effectively fading the particles over time

on the screen.

Particles in GML

Particles can be created and managed using

GML in the same way that particles can be

created and managed using actions. Just as

with actions, particles in GML require a

Particle System, a Particle Type and a

Particle Emitter. These can all be created

using GML.

Setting up for Particles

As with using actions, it is necessary to set

up everything first. I prefer putting all this in

a controller object (i.e. an object that

cannot be seen on the screen), and these

commands in the Create event:

global.ps = part_system_create();

part_system_depth(global.ps,-10);

global.pt = part_type_create();

part_type_shape(global.pt,pt_shape_smok

e);

part_type_size(global.pt,0.01,0.05,0.01

,0);

part_type_orientation(global.pt,20,45,0

,0,0);

part_type_life(global.pt,10,20);

part_type_color2(global.pt,c_gray,c_sil

ver);

global.pe =

part_emitter_create(global.ps);

This will set up the particle system, type and

emitter for a smoke trail system.

Making particles

In a little motor car's step event, we can

move the emitter to where we want it and

emit a particle to look like smoke behind the

car.

part_emitter_region(global.ps,global.pe

,x+6,x+10,y+4,y+7,ps_shape_rectangle,ps

_distr_linear);

part_emitter_burst(global.ps,global.pe,

global.pt,1);

Now with each step we get a new particle

trailing away behind the little car.

Other

There are lots of other things we can do with

particles - think of cool things like fireworks,

etc. Many of these can be done through

actions, but as is often the case you can have

more impact by using GML to control your

particles.

TUTORIAL

o, you’re developing games with Game

Maker or you want to start developing

games and are on your way to making

the next best game ever. To do that, you

can’t be using the default images that come

with Game Maker or the images that you can

muster up with MS Paint. You need some nice

polished images to make your games really

attractive and fun to play. By creating your

own images, you have absolute creative

control - you can design exactly what you

want in the game, and exactly the way you

want it to look. It also adds that professional

feel to the game. You could have a great

game but if the appearance is poor then the

overall feel of the game could pay the price.

You will learn how to create useful sprites,

backgrounds and all other images related to

developing a game in this series of tutorials.

To make use of this tutorial, you need the

Adobe Photoshop software suite. You can

download a free trial version from

www.adobe.com/products/photoshop. I am

currently using Photoshop CS2, so if you have

a really old version of Photoshop you might

need to upgrade, but the basic tools are

present in most versions.

Let's get started. In this tutorial you will be

introduced to the most basic tools used in

Adobe Photoshop. These tools will be the

basis from which you create your game

artwork. More complex tools and methods

will be discussed in future tutorials.

One of the main concepts that you need to

understand in Photoshop is “layers”. Layers

are exactly that - layers of images. If a top

layer should overlap a bottom layer then the

bottom layer might not be visible or could be

partially visible, but we will learn later how

to use layers to our advantage by mani-

pulating them to suit our needs. The

different layers currently available in the

project will appear in the layers window. If

this is not present in the workspace, simply

press F7.

Note: Some tools can only be used on the

selected layer/layers. Select the desired

layer in the layers window. Select multiple

layers by holding the Ctrl key, and choose

the desired layers by clicking on them. Tools

that are not essential for images for game

development have been omitted. Shortcut

keys appear in brackets next to the tools

name.

Colour Box: This shows your

currently selected Background

and Foreground colours. You may select any

desired colours and store it in this box. You

can quickly swap around the Background and

Foreground colours with the X key.

Move Tool (V): This tool is used

to move the different layers in

the project. Its purpose is to

move any layer or selected piece

of the image as long as the layer is not

locked. A layer is locked when a small “pad-

lock” icon appears next to the layers title;

the background layer is usually locked. You

wouldn’t need to move it but if the need

arises, you can simply right click and select

“Layer from background”.

Marquee Tools (M): These tools

are used to make selections in an

image. The different tool shapes

allow you full control over the

parts of the image that needs to be selected.

The selected area stencil can be moved

without modifying the layer at all - just hold

mouse click and drag, although if you would

like to cut a piece of a image to create

something else, you may do so by selecting

the Move Tool while the desired area is

selected, and drag the piece of image. (Note:

you cannot cut if more than one layer is

selected but if the need arises, you may

merge the layers by selecting all desired

layers>right-click>merge layers or pressing

Ctrl+E).

TUTORIAL

GAME GRAPHICS DESIGN
Part 1: The right tools for the job

By Rishal “TheUntouchableOne” Hurbans

S

Magic Wand Tool (W): This tool is

another select tool; it can be

used to select different areas on

the image based on the flow of

colour in that area of the image (also known

as the colour range). You may select/

deselect the Contiguous option to determine

whether or not the colour selection is

localised. You can also adjust the colour

tolerance – you may only want to select a

very particular shade of green, for example,

or all shades of green indiscriminately.

Everything but the currently selected area

can also be selected by: right-click>select

inverse.

Lasso Tools (L): The Lasso tools

are another set of selecting

tools, but they give you more

control over the detail of the

selection. There are three types of Lasso

tools, namely the basic Lasso tool, the

polygon lasso tool and the magnetic lasso

tool. The lasso tool is a freehand tool used to

select any desire area on the currently

selected layer – this is probably the best tool

when using a stylus. The polygon lasso tool

draws a straight line between each click. The

magnetic lasso tool is attracted to the

nearest solid contour line, and will move

along the line as the cursor is moved. You

can fine-tune and add to your current

selection by holding down the Shift key when

drawing a new selection, or subtract by

holding down Alt.

Crop Tool (C): This tool is

similar to the marquee tool and

is used to change the angle of a

selected area of the image and

disposes of the rest of the image. The crop

tool does not apply to a specific layer; it

applies to all the layers and will change all

layers respectively.

Brush Tool (B): The brush tool is

used to paint on the canvas; it

will paint the selected colour in

the colour box onto the selected

layer. The size of the brush, texture of the

brush, hardness of the brush, the opacity of

the brush (transparency) can be adjusted in

the options tool bar located on the top panel

of the screen, as well as hotkeys. Quickly

change the size of your brush, for

example, with the [and] keys, or

the opacity by tapping a number

between 0 - 9. The flow can also be

adjusted. This is the smoothness of

the brush as you paint over the

canvas. There are also various

modes related to the brush that can

be used. Experiment with them to

see the difference in their use.

Pencil Tool (B): This

tool is the same as the

brush tool. The flow of

the pencil cannot be

adjusted though. It is usually used

for more detailed manipulation.

Hint: By holding the Shift key and drawing

with the brush or pencil tool, you are able to

draw straight lines.

History Brush Tool (Y): This tool

can be applied to one layer

technically but it is seen on all

the layers before the current

layer. This tool “paints” desired

areas on the image to the state of when the

image was first open for editing or back to a

predefined point. You can define this point

by opening the History window, and checking

the History Brush box to the left of the

desired step.

Art History Brush (Y): This tool

has various “artistic” styles that

can be applied to the tool when

using it. This tool “distorts” the

current selected layer using the selected

style.

Gradient Tool (G): The Gradient

tool applies a gradient to the

selected layer. The colours and

styles can be selected and

customised to achieve the effect that is

needed. Spectrums of colours are available

to make your images bright and attractive.

Paint Bucket Tool (G): This tool

colours a selected colour range

in the layer, it will use the

colour currently in the colour box

to replace the colour that it is applied to.

Eraser Tool (E): Yes, you guessed

it-this tool erases parts of a

selected layer.

Magic Erase Tool (E): This tool

erases a section of the image

where the colour is closely

matched; it is basically a magic

wand tool that erases.

Blur Tool (R): This tool will blur

a desired area on a selected

layer, it is commonly used to

smooth-out rough edges on an

image, to make the image look cleaner cut

and polished in some cases.

Sharpen Tool (R): This tool does

the opposite of the blur tool; it

“sharpens” the selected layer.

This reduces the colours in the

image to simpler lines with basic

colours if used excessively on the same area

of a layer.

Smudge Tool (R): Everyone

knows what smudging is; in

Photoshop it is not much dif-

ferent. If you observe closely

while smudging in Photoshop,

you will see that is the blending of colours in

the space where you have applied the

smudge tool. It works well to blend colours

that are slightly mismatched.

TUTORIAL

Dodge Tool (O): This tool

increases the contrast of a

desired area in a layer (i.e. It

lightens the image). It is not

effective on extreme colours such as black

and white.

Burn Tool (O): The burn tool

decreases the contrast of a

desired area in a layer, the area

is darkened and if used

excessively in one area, it will result in

absolute black hence absolute black will not

be affected by the burn tool.

Type Tools (T): These tools

allow you to type text and add it

to your image. Text can be

written horizontally or vertically (if the

vertical type tool is selected). The text forms

a new layer in the project. The text colour

will be the current colour in the colour box.

Mask Type Tools (T): These

tools also allow you to type text

and add it to your image but it

only displays the text’s mask, this means that

the “outline” of the text will be selected and

it can then can be edited and manipulated. It

does not form a new layer, if necessary, a

new layer can be created manually by

pressing Ctrl+J.

Shape Tools (U): The shape tools

allow you to draw many different

types of shapes and create them

as a new layer. These could be particularly

useful for developing simple but polished

sprites for a game.

Pen Tool (P): This tool is used

to create paths in an image. The

paths can be used in many

different ways. It can be used for selection

purposes, drawing shapes etc. There are

various sub-tools linked to this. You can

experiment with them to get a better

understanding to this set of tools.

Eyedropper Tool (I): This tool

allows you to select a colour from

an image; this colour will now

replace the foreground colour in the colour

box. The colour can now be used in editing

the image.

Hand Tool (H): This tool is used

to navigate around the entire

image, just click and drag. It is

particularly useful when the zoom tool is

used (see below). You can quickly jump to

this tool by holding down the Spacebar.

Zoom Tool (Z): This is pretty

obvious, this tool zooms the

image to your requirements, this tool is

important if detail is required. This is a very

useful tool indeed.

There you go, that’s it, you now know the

basic tools used in Photoshop for creating

game graphics and their fundamental uses. I

suggest that you play around with each and

every tool mentioned. Once you get the feel

of each tool and understand their functions,

you will be ready to tackle the second part to

this series. Good luck.

TUTORIAL

GOING SLOW-MO
How to adjust speeds in your game without grinding to a halt

TUTORIAL

25DEV.MAG ISSUE 17

by Rodain “Nandrew” Joubert

There’s something in the gaming world

that seems to be best known as the

“matrix effect”. People aren’t talk-

ing about anything technical or mathemati-

cal here, they really are referring to that

pop-culture, slow-motion, bullet-dodging,

my-name-is-Neo phenomenon that seems to

be all the rage recently.

An idea that a lot of developers are swoon-

ing over at the moment is to have slow-mo-

tion effects in their games. Whether it’s

some world-changing Max Payne tribute or

just a means to emphasise a radical explo-

sion, slow-mo is something that is attempted

often, yet rarely executed flawlessly.

This tutorial is hardly the de-facto standard

in successful slow-mo implementation, but it

can steer a few wannabe programmers away

from some common mistakes. Those who

read on will also be offered a fairly reliable

method of securing snail-paced gameplay.

The following code doesn’t aim itself at any

particular language or tool. Instead, it’s

hoped that the glorious secrets you uncover

while reading here can be applied universal-

ly, so you should be able to fire up anything

from C++ to Game Maker after this and gain

the greatest benefit.

Mistake the first: frame-skipping

Frameskip. This is usually the first stop that

an enthusiastic programmer will make in

their quest for slow-motion success. With

pun fully intended: skip it. It may be quick,

it may be cheap, but it’s also nasty and really

looks awful.

The premise behind frameskipping is simple:

quite a few games (usually the 2D ones) run

at a respectable 30 frames per second. This

is a regular rate for a

regular speed and some

pretty regular gameplay. To slow

a game down, some developers are tempted

to grab the frame-controlling code and mess

with it, which is generally a bad idea. In

some instances, this may be a system timer,

forcing a wait of several milliseconds after a

single iteration of the main game loop code

has been completed. In other cases, it could

be a “wait for refresh” method that depends

on specific hardware events (though this is

rather archaic and inefficient in itself). If

your development tool is particularly friend-

ly, you may even find a handy function such

as framerate() that happens to trigger all the

dirty maths for you. Some programs (such

as Game Maker) simplify this even further by

allowing the room speed to be controlled by

merely changing a variable.

Interfering with these sections of code will

have several consequences. First off, your

game will become slower. This is what the

programmer is looking for, and has succeeded

in doing. However, the side-effect of this

is that your game will get a lot choppier as

well. Halving the game speed in a program

that runs at 30 fps will set it to 15 fps. This

is VERY noticeable for

the player. Moreover,

to gain any truly appreci-

able slow motion it’s likely that you’ll need

to slow the speed down to between 20% and

10% of its normal rate. This means as little

as three isolated frames of action every

second. Yikes!

Some programmers at this stage decide to

get clever and up the game’s normal framer-

ate to a ridiculous number like 300, so that

the decrease in framerate isn’t as easily

noticed by the player. This is also a bad idea

– your machine effectively needs to become

ten times as powerful to run all the game

calculations, which it would only usually have

to do 30 times a second.

Mistake the second: manual labour

Programming well isn’t just about putting

down the code to make things run as quickly

as possible. Sometimes, it’s important to

TUTORIAL

26DEV.MAG ISSUE 17

have physical brevity in your code file as

well, both for readability and debugging

capability.

Unfortunately, while most people know about

optimisation and getting their programs to

run faster and more efficiently, few acknowl-

edge the importance of the latter point and

suffer massively as a result.

A trap which a surprising amount of people

fall into is poor planning. They decide to

implement slow motion capability after hav-

ing programmed a fair amount of the core

game already, or have implemented it rather

patchily from the start, and realise only

then that they’ve effectively “programmed

themselves into a corner”. In practice, this

is the problem of people implementing quick

fixes: they want to slow down the hero and

the monster that they’ve created so far, so

they decide to enter the code of the hero ob-

ject and the monster object in turn, and put

in a line or two (usually an IF statement) to

manually set the speed. Simple, right? Well,

only for the time being.

Such people usually get the idea of hav-

ing a global variable to determine speed.

Something like global.goslow to satisfy the

aforementioned IF conditions. This is on the

right track, but simply isn’t good enough.

In a game where hundreds of objects may

eventually exist, developers have to repeat

those “simple” lines they’ve hard-coded

into the hero and monster, as well as all the

associated code that eventually crops up for

every monster, weapon, bug or blood particle

that the programmer adds to the game.

There’s enormous room for error here, and if

the programmer ever decides that they want

to change the slow speed from 30% to 25%,

they either have to hunt through all of the

code and change everything that’s been done

already, or simply be content to remain with

30%. Not good.

Mistake the third: universality

Regardless of a programmer’s methods, they

sometimes make the mistake of adopting the

slow property to every entity in the game.

You may not think this is a bad thing to start

with, but it soon becomes problematic when

you realise that the entire game, rather than

just the game world, has become sluggish.

For example, animations on a character’s

HUD may be slowed down undesirably. Tool-

tips which appear after holding the mouse

cursor over an object for one second may

now only appear after ten seconds. A popup

menu which usually expands in moments sud-

denly takes ages to show up.

To avoid this, each object needs a class

variable indicating whether or not it can be

slowed down (defaulting to true or false, de-

pending on personal preference), rather than

blanketing the entire game with “slowcode”.

A much better idea

An effective method to slow down your game

is contained in a simple global variable: for

purposes of this article, we’ll call it

global.gamespeed. The idea is that this

TUTORIAL

27DEV.MAG ISSUE 17

variable is by default set to a value of 1 (full,

or normal, speed). When needed, it can be

set to a fractional value such as 0.1 (for one-

tenth normal speed) or even a greater value

such as 2 (which would in fact double the

game’s speed). It needs to be built into your

game from the start – if introduced later, it

could end up forcing you to perform repeti-

tive chores or even prompt a restructuring of

your program. Either way, that would be far

more work for pretty much the same result.

Once you’ve created your global variable and

had it set it to 1, you need to examine both

your development tool and your programming

know-how. If the situation permits it, you

should create two basic template objects:

one called NoSlow and the other called

YesSlow (or, preferably, some names which

are a little more inspired). All other objects

in your game should then be set to inherit

the traits of one of these two templates.

The idea is to then place code in YesSlow

which sets spatial and quantitative object

values to be affected by global.gamespeed

(something to be repeated every game step,

like objectSpeed = objectBaseSpeed * glo-

bal.gamespeed). NoSlow has no such code

included.

If this is not possible, or simply too confus-

ing, then an equally viable (though not quite

as classy) method is to make sure that when-

ever you’d usually type an object’s spatial

movement rate (for example, speed = 5) you

instead type in code that factors in the global

variable (speed = 5 * global.gamespeed).

Make sure that you put this in a section of

code that updates with every frame, or at

least updates whenever a change in game

speed is registered.

This is a reasonably effective technique,

but be warned: holes in your logic can still

appear if you’re not careful. Although most

people will know to change the movement

speed of an object, there are other factors

which are often left unconsidered:

-interval-based events (such as how many

game steps must pass before a gun fires)

-<value> per <time> events (such as how

much air you lose for every step you’re

underwater)

-rate of velocity change (how quickly you can

skid to a halt)

Moreover, while this technique is good for

slow motion, additional care must be taken

if you’re planning on speeding the game up

beyond normal. One of these problems,

for example, is collision detection – if a

character is moving at ten times its normal

speed, it can run right through a narrow wall

without ever registering a collision, because

the wall was thin enough to “skip over”

entirely. Another issue crops up when a gun

usually fires a bullet every single frame, and

is suddenly required to shoot twice as fast.

Either the programmer forgets to cater to

this at all, or has to adjust the code to have

multiple bullets fired in that single frame

– and not occupy the same space, either.

There may very well be more efficient ways

to handle speed changes in games, and

you’re welcome to try your own techniques.

What’s been offered here, however, is a

reasonably solid technique, along with a few

pointers for avoiding bad habits. If you’re

a newbie to slow motion, or maybe are just

looking for something better than the old

framechange habit, then maybe it’s time to

dodge that bullet and create a masterpiece

that even snails would outrun.

Line Wars
A game project analysis

DESIGN

29DEV.MAG ISSUE 17

by Rodain “Nandrew” Joubert

I’m a programmer. Or at least, I do some

dabbling and study it a little. I’m also

a game designer. I believe that the

projects I crank out have a reasonably good

premise, work well and often bring some-

thing reasonably new to the table. One thing

I am not, however, is an artist. Back in the

day, I did everything in my power to make

every one of my games a little visual master-

piece, which provided some rather gruesome

results – great for a horror game, but not so

wonderful when I was trying to craft Pony

Island 5.

That has recently changed, and one of my

favourite game development projects is

something I worked on a bit last year. It was

called Line Wars. The idea was simple: I

forced myself to use lines. For everything.

All artwork, all sprite animations, all parti-

cles were reflections of this geometric mar-

vel. Did it look great? Well, that depends on

your definition of great. I’m not an artist, no

matter what sort of tricks I try, and I’m lazy

to boot. But did it look better than anything

else I’d done before? Well, sure!

Line wars was a simple platform shooter,

complete with that all-too-awesome “bul-

let-time” effect and enemies which could

be blown back (and apart) by the various

weapons. The plotline was terrible – in

fact, almost pointedly so – but it was great

to jump, double-jump, go slow-mo, and let

forth a devil-may-care salvo of liney death at

stacks of hapless enemies.

In these pages, I’ll present a postmortem of

the game in the traditional sense. In other

words, it’s a nice little piece with some nice

little headings, waxing lyrical about the pros

and cons of the game’s development – what

made it strong, and where it got pulled

down. All in my own humble little opinion.

At this point, I suggest that you follow the

instructions at the top of the page and head

on over to the Dev.Mag site to grab the game.

It’s not a complete project, but there is one

mission available consisting of six levels to

play through, and having a go at it will help

you understand what’s going on in the rest

of this article. That, and it’s not half bad to

spend some of your hard-earned time playing

it.

What went right

The graphics

The main idea of this game was to make

something reasonably pretty without having

to insert even a modicum of artistic talent.

Great success, here. The entire game ended

up consisting of lines with the exception

of text, though even then I tried to use a

simple-looking font. The art resources for a

complex forest scene were as simple as a few

dozen-lined creations in the closest drawing

program handy, and I could place props and

doodads liberally without the risk of every-

thing looking overly ugly – if the player could

accept that the game was based on lines,

then the rest was in the clear.

In some instances, using lines actually made

things better. Stylistically, particles such as

explosion effects and bolts from a lightning

gun suited the line-based environment really

well, and for some reason a whole lot of

other elements just seemed to click as well.

I could make my backgrounds more varied

and interesting because it was so easy to

generate new material. However, the true

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

DESIGN

30DEV.MAG ISSUE 17

shining point came with elements such as

enemies and even the player character itself.

Instead of drawing frames to represent each

of the individual motions (crouching, jump-

ing, running, etc.), I decided to patch to-

gether a rudimentary vector editing program

and constructed character “models” using

points and line indexes. Once I’d created

one frame, I’d save it to a file and simply

adjust the co-ordinates of the points already

in place to strike a different pose, then save

that to another file.

The true value of this approach came when I

threw the models into the game. Instead of

simply flipping between frames of anima-

tion, such as when a character was spin-

ning through the air, I implemented a crude

method of tweening to make the points in

the model move gradually from their original

positions to those of the destination frame.

Tweening is a method most commonly in the

Flash application, and is basically the con-

cept of inserting multiple frames of anima-

tion between two preconfigured ones.

The result was cool. I produced seven frames

in all for the main character for his entire

range of movements, but still had a smooth

set of animations to show for it.

The slow-mo

My “bullet-time” plan turned out to be a

huge plus for the game. I put a great deal of

care into it, making sure that the project was

geared towards the eventuality of slow mo-

tion from the moment I started throwing in

the object code. The tweening for character

models went hand-in-hand with this. Instead

of being forced to draw extra frames to

keep animation fluid when the slow motion

struck, I was able to simply sit back and let

the tweening do its work. My life was made

much easier as a result, and things generally

looked prettier.

Specific areas of the game were also heavily

laden with explosive barrels and the like

– when struck in the midst of bullet-time,

the resulting explosions looked far more

spectacular, especially if the player had to

dodge fiery death in the middle of it. Other

game aesthetics were geared towards this

sort of effect, such as air flow from vents or

elaborate rocket trails.

I also fiddled about with the practicalities of

having slow motion, aside from the greater

response time that it afforded players. I

eventually settled with the simple option

of allowing the fire rate to remain the same

even after the rest of the world had slowed

down. I advertised this feature in the game’s

tutorial level, and otherwise just put my

faith in the fact that the player would catch

on to this benefit after some experimenta-

tion.

Player motivators

The slow motion also tied in with one of my

other game goals: fast-paced action. Yes,

the irony of putting those two phrases near

each other is cringeworthy, but my reasoning

is valid. Upon defeating an enemy in Line

Wars, a small energy pod would be dropped,

which needed to be retrieved quickly

before it disappeared. This recharged not

only health, but slow-mo “power” as well.

The idea was inspired by a similar dynamic

present in American McGee’s Alice, and one

which I instantly wanted to put into my own

game. It granted the player the incentive

to not only kill enemies rather than simply

running past them, but to also charge in with

guns blazing rather than picking enemies

off from a distance or while hidden behind

cover. If they didn’t grab the pods in time,

they didn’t recover energy. Considering that I

made these items the only source of health in

the game, the need to go in for close contact

became quite considerably heightened.

Did this make the game a mindless shoot-

and-hope fest? Not at all. All that players had

to do in the midst of a heated conflict was hit

that handy bullet-time trigger and make sure

that they collected the pods in good time.

Additionally, I had about eight differ-

ent weapons programmed into the game

(although not all of them are available in

the currently released demo), most of them

geared towards aesthetics as well as func-

tionality. Although the weapons acquired in

the later stages of the game were superior

in terms of damage done per second, I tried

to make ordnances with fun and varied uses.

Grenade launchers could send bouncy (and

deadly) projectiles through narrow openings

or over walls to gib enemies on the other

side. A flame thrower was included to set

enemies on fire and stop them from shooting.

A sniper rifle could deliver multiple headshots

with one bullet. Even the lowly shotgun, if it

struck an enemy with full force, could send

unfortunates flying across the game screen.

All of these effects were aimed at mixing

usefulness with player satisfaction.

DESIGN

31DEV.MAG ISSUE 17

What went wrong

Programming flaws

The tweening process involved in making

smooth animation ultimately cost me. Heav-

ily. It made characters look smoother, and

allowed for some humble physics and ragdoll-

esque effects, but I did it poorly and without

due regard for consequences. This was the

most mathematically heavy aspect of the

game, and in a tragic turn of events my game

got slowed down whenever too many enemies

came on-screen.

In this one instance, I honestly regretted

having used a framework like Game Maker

to create Line Wars. Most of my coding was

done in a high-level GML interpreter, and

I wrote a lot of custom lines without fully

understanding the implications of such. Trig

functions and way too many processes involv-

ing the default floating-point mathematics

created a bottleneck which I struggled with

for a while before giving up on. It’s likely

that I could have imported an external Game

Maker library to solve the problem for me,

but I feared that this would involve a radical

restructuring of the game. Considering that

I only discovered the extent of this problem

after a good four or five levels had already

been created, I was understandably reluctant

to start over on core game mechanics.

I lost a significant amount of my drive to

finish the game after realising that I couldn’t

get around the issue. One of the ideas that

I had envisioned at the outset was to have

swarms of enemies in the game that could

be mowed down by heavy firepower. This

was no longer a possibility. It also interfered

severely with level design, which now had to

work around clustering too many enemies in

the same area.

No design document

Foolish as I was, I decided not to put my

game on paper before I put it on the screen.

I had weapons, basic storyline, slow-mo

dynamics and even bosses neatly organised

in my mind. I believed this to be enough,

and set about working on the first few levels

without even realising that there was a gross

portion of the project that I had NOT catered

for.

As a creator of games which are very often

small in size and scope, I tend to skip over

the design doc process at times. My reason-

ing behind this is that I have the entire game

in my head already – I only want to make five

stages with two types of monsters in them,

and the game is of a type where there isn’t

much room for error or finicky gameplay

issues. This mode of thinking stabs me in

the back when I turn to larger projects, and

often makes for an unfinished game that basi-

cally has a nice starting point to its name.

My biggest problem was level design. Al-

though the performance issues mentioned

earlier were a considerable thorn in my side,

I started off with very little direction regard-

ing how I laid out individual portions of the

game. The result was that I expended most

of my creative energy in the first few levels

that I coded, but quickly realised afterwards

that I was running on a proverbially empty

tank. My level design soon became unin-

spired and generic, and I started moving from

on section to another without any real plan

of what I was doing. It became tiring and I

soon became disinterested.

There were several other aspects that a lack

of design docs tended to hamstring, but I felt

that levels were the biggest issue.

Summary

I feel that Line Wars is a good attempt, but it

needs to be reapproached. The game has a

solid core dynamic and the demo is reported

to be incredibly fun, but such an idea would

not hold over for the long term without due

consideration for its weaker areas. A better

understanding of the tools I was using was

definitely needed. A design document would

have been invaluable. I had neither, and

these two flaws in my war plan combined to

drive me off the battlefield long before the

project was complete.

Once those obstacles are overcome and I

have a fair amount of time to commit, Line

Wars shall truly strike with a vengeance.

GAME.DEV COMPETITION 15
The who, the how, the why, the winners

DESIGN

32DEV.MAG ISSUE 17

by Danny “dislekcia” Day

The Game.Dev organisation recently

wrapped up its latest competition,

focused on making educational games

and offering impressive amounts of cash to

the winners. After much pleading, beg-

ging, biting and scratching, we got the head

of Game.Dev, Danny Day, to write us a few

words about what’s arguably South Africa’s

most high-profile set of game develop-

ment competitions. This is his field report

on Competition 15. Grab the popcorn and

enjoy, and remember to hop on over to

www.gamedotdev.co.za for more competi-

tions, articles and important updates!

After NAG stepped in out of the blue last

year and decided to sponsor R10000 for

Competition 10 – which coincided perfectly

with rAge 2006 – I’ve tried to make the idea

of a yearly “big cash” competition a goal for

Game.Dev.

Mindset had gotten in contact with me

earlier in the year after asking around about

educational games and how anyone would go

about building them locally. After meeting

with Dylan and co a couple of times, it was

perfectly natural to posit the idea of them

sponsoring a competition with rather unique

rules and see how things turned out. Unique

rules because Mindset is an educational sup-

port organisation, they regularly send out

curriculum support material via a custom-

ised content network to hundreds of schools

around the country. They’re also responsible

for local educational DSTV channel 100.

After ruminating on good ways to get young

developers keen on building something edu-

cational without having them get turned off

by the horrendous legacy of “edu-tainment”

(which is quite possibly one of the worst

ideas ever), the idea of Guerrilla Learning

popped up. Essentially, Guerrilla Learning is

my own personal philosophy on how people

learn while playing games married with the

concept of taking that learning and making it

relevant to more than just the current game

being played. That’s it. Players automatically

learn how the game they’re playing works,

it’s part of the reason we enjoy games as

human beings (monkeys like learning, despite

what school beats into you), if you make your

game mirror an aspect of the real world or

an interesting/novel concept, that’s Guerrilla

Learning potential.

I was a little worried about the reception

that GL would receive on the forums, but

thankfully cold hard cash is a wonderful

motivator and I think that a lot of Comp 15’s

entrants were rather intrigued by the idea

of making a learning game. My fears proved

unfounded as we had over 25 initial entrants

that resulted in 20 entries with something to

download and judge at the end of the compe-

tition. That’s a new Game.Dev record.

The judging process really got Mindset into

the picture and produced some very valuable

insight into how educational content and

games can come together. One of the more

interesting (and sadly scary, from my per-

spective) results was that it became obvious

that someone who was still in school was far

less likely to understand the concept of GL

than someone who was either finished with

their schooling or in a tertiary institution.

That shocked me: It’s almost as though the

current schooling system works very hard to

make the idea of learning as unenjoyable as

possible.

DESIGN

33DEV.MAG ISSUE 17

Worrying conclusions aside, Mindset were

quick to label their Comp 15 experiment a

success after we picked the winners. They

were particularly keen on the idea of taking

quite a few of the entries a little further

and expanding on both the concepts that

our intrepid community had come up with

as well as helping to cement the learning

information. The best part is that Mindset

themselves really do get the thinking behind

Guerrilla Learning, they don’t want to make

the games boring or confusing, they’d rather

have a fun output with a slightly less im-

mediately testable learning outcome, than a

series of pointless quizzes with no gameplay

just so that someone can “test” that you’re

learning something… If you finish a GL game,

you’ve learnt something. End of story.

The Winners:

As with Comp 10, the Best New Entrant cat-

egory was there to encourage new members

to submit their games and ideas without

having to feel like they need to compete

against the more experienced community

members. Kosie “ShadowMaster” van der

Merwe’s Typing Tower took the honours and

the R1000. Mindset loved the idea of extend-

ing the typing mechanic in the game to cover

slightly more curriculum-themed content like

English drill and practice exercises that are

otherwise insanely boring on paper, but with

a little tension (escape the rising water!)

quickly become much more enjoyable.

Third place and R1500 went to Robbie

“Squid” Fraser for his prototype puzzler/

arithmetic game Math Attack. Keen to see it

re-implemented as a cellphone game (which

it’s astoundingly perfect for), the Mindset

judges were quick to see the potential in

the rotation and manipulation of the puzzle

mechanic to select the right number to make

the sum make sense.

Second place, along with the R2500 prize,

was the realm of Gareth “Gazza_N” Wilcock’s

Rockets! A game in which you’re tasked with

building and tweaking a functional rocket to

hit various targets across different missions.

All the while the forces of physics are there

to aid or hinder you, depending on how you

put things together. With a fantastically

designed tutorial (“Aaaah! Soooo close!”) and

some smart onscreen information, Rockets! is

a lot of bang for our buck… Forgive the pun.

First place and a whopping R5000 goes – for

the second time – to Cadyn “Evil_Toaster”

Bridgman, who won first place in Comp 10

last year with Fast Food in Space. His entry,

Cartesian Chaos, built on the extended FFS

engine, is a casual game clickfest with a

Cartesian plane themed battleground. You

have to select the right co-ordinates to blast

simple monsters, create lines to defeat

tougher ones and even point out answers to

boss-monster equations. It’s a hoot, espe-

cially with ET’s trademark humour cropping

up throughout the game. Polished nearly to

perfection, Cartesian Chaos has everything

you’d expect a commercial game of it’s ilk

to contain: Difficulty progression, different

modes of play, combo systems, the works.

The next step:

Given the great quality of the games

entered, I’m currently working on getting

them some press in international gaming for

educational uses circles, as well as simply

popularising them because I think they’re

cool. Hopefully some of the developers will

be able to work in partnership with Mindset

to take their ideas a little further, that would

be a dream come true for Game.Dev’s goals.

Not to mention pretty damn cool for the

developers themselves!

I can’t wait to see what the next competi-

tion creates. A ton of great ideas rise to the

challenge each time I make a competition

announcement, who knows what will emerge

in the future? All I know is that this is a

great way to grow game development in our

country.

THE HISTORY OF I-IMAGINE
PART 8: “Round 2 ... FIGHT!”

DESIGN

34DEV.MAG ISSUE 17

by Luke “Coolhand” Lamothe

Once we had finally completed Chase

after three years of hard work, we

felt as though we had turned a cor-

ner for I-Imagine. We now had a completed

and published game to our credit and a good

relationship with a publisher who trusted

us as a developer. To us, this meant that we

would finally be past the point of having to

fight publishers in order to be interested in

what we were working on, and that we would

finally be in a position to make game after

game and perhaps even make some money!

Things did indeed start off with promise,

as shortly after Chase had been completed,

BAM! started to talk to us about their interest

in porting it to both PS2 and GameCube. They

saw the potential to turn Chase in a franchise

which could be a valuable IP for them, and

they wanted to start exploiting it as soon

as possible. Right away we knew that we

wouldn’t be able to handle the PS2 version of

Chase as the PS2 was quite a difficult beast

to master, so BAM! arranged to have another

developer whom they had worked with

before begin to work on it. However, we felt

comfortable with doing the GameCube ver-

sion as it had a much more friendly SDK and

hardware setup for first time developers. We

received our development kits from Nintendo

shortly afterwards and began to re-write our

engine to make it multi-system friendly as it

was currently only designed to work for Xbox.

While the initial work for the ports of Chase

was going on, BAM! also began to talk to us

about starting work on a sequel to the game.

They asked us to begin coming up with a

design for it so that we could begin develop-

ment of it as soon as the ports were finished.

Unfortunately, bad luck managed to strike us

yet again not long after these talks started

as near the beginning of 2003, there was

quite a big slump for all technology stocks

and BAM!’s was no exception. Their stock

weakened a lot over a very short period of

time and this unfortunately meant that they

just didn’t have the capital in order to fund

either the port of Chase or a sequel to it. By

the end of 2004, BAM! would be nearly bank-

rupt and out of the video game publishing

business altogether.

Meanwhile, towards the end of 2001 and

long before Chase was nearing completion,

another exciting project was underway at

I-Imagine. This time, it was a 2D platform

game for the Game Boy Advance entitled

D.A. Dork. The premise of D.A. Dork was that

players took on the role of a computer nerd

who has to enter the virtual environment of

a computer in order to rescue his computer

generated girlfriend who was kidnapped by

his arch-nemesis ... yes, another computer

nerd! Inside of the computer, the player is

aided by his trusty PDA sidekick whom he

needs to take control of at times in order to

help solve puzzles necessary for progression

through the game.

The game itself was actually very fun and

it looked great to boot, but unfortunately,

publishers were not at all interested in pub-

lishing original IP for GBA. In other words, if

you didn’t already have an existing successful

IP or your game wasn’t based on a movie or

television license, publishers feared that your

unknown product would just get lost amongst

the glut of GBA titles out in the market. This

unfortunately meant that after about a year

and a half of hard work by

our GBA team, a 95%

complete D.A. Dork

was retired to ROM

heaven with the lack

of a soundtrack being the

sole remaining item stop-

ping the game from becoming

completed.

With our options for working on

both the Chase property and

our Game Body Advanced title

no longer being possible, we

turned all focus onto another

game idea that our design

team had been working on for a

DESIGN

35DEV.MAG ISSUE 17

while on the side. The project was known

as D4L which stood for Driving for a Living,

and as you can probably guess, it was also a

driving game*. We kept the design to be an

arcade-style experience that put players into

all kinds of various driving scenarios where

they had to earn money to buy better cars,

vehicle upgrades, and earn credibility in

order to progress through the game.

In other words, players may start off in the

game having to work as a pizza delivery driv-

er until they had enough money and/or cred-

ibility to compete in street races. Eventually

they would be able to move onto other such

jobs as a limousine driver for the rich and

famous or a camera truck driver for the local

news station. What we tried to do in order to

set this game apart was to create everything

in the game around a quirky sense of humour

that let everyone playing the game know that

we weren’t taking things very seriously at all.

We had designed pretty much every aspect of

the game as well as the characters in it upon

caricatures of real-life people or pop-culture

icons and events. So for instance, we had

players street racing against a Britney Spears

look-alike, running away from UFOs trying to

destroy the city, and driving a limousine for

Austin Powers and his entourage of femme-

bots.

We worked on D4L up until E3 2003. Unfortu-

nately, the response for it was lukewarm, and

we decided to sit back and re-evaluate our

direction with the game design. This led us

to realise that there were actually some very

serious flaws with the design of the game,

and that we would not be able to easily make

the changes that were necessary to make

the game fun to play. In other words, while

we were confident that the idea of the game

was sound, the mechanics of it were flawed,

and unfortunately this meant that we had to

make the decision to cancel the project en-

tirely. It wasn’t a complete loss however, as

we were able to keep the technology that we

had been building during this time and move

forward with it**. Fittingly, the next project

that we decided to undertake would be our

own sequel to Chase.

Due to the publishing contract that we had

signed with BAM!, we no longer had the rights

to use the name “Chase” as it was now their

IP. However, there was nothing in our con-

tract against using “Hollywood Stunt Driver”

as a title, so we began our project under

that name. Before we began any work on the

actual development of the game, we went

through every single review of Chase that we

could find and analysed the elements which

people seemed to enjoy as well as the ones

which they didn’t. This enabled us to come

up with a design which we felt kept the fun

and easy pick-up-and-play aspects of Chase,

while adding the addictive and challenging

elements that a lot of people felt were lack-

ing from it. We also decided to incorporate

as many “big action” set-pieces as we could

in order to try and emulate what people find

exciting while watching Hollywood movie

stunt chase scenes, so action like the scene

from Bad Boys 2 where the cars fall off of the

trailer and the Ferrari dodges them would

also be key to the design of the game.

We spent the next year or so working on a

solid design for the game, great-looking tech-

nology***, and a really good demo containing

4 missions. This allowed us to receive some

very positive interest from a few publishers

who knew us from Chase and who liked the

idea of doing a title that was familiar enough

to people (it was still car driving) but with

a unique enough angle to differentiate it

from competing driving games (it was about

doing stunts). The most interested publisher

was Buena Vista Games, and as far as I can

remember, we were actually pretty close

to signing a deal with them. However, once

again we were strung along for months and

months as a publisher said “Keep working

on it and show us some more when you have

it!”, and in the end, nothing concrete ever

materialised from our communications with

them.

While we were busy working on Hollywood

Stunt Driver, another opportunity came along

that we also decided to pursue. We somehow

were put in touch with the management

* We wanted to continue to make use of the vehicle-centric technology that we had built to date.
**It was a re-vamped Chase engine which was now built around the RenderWare middleware platform and was running on Xbox, PC, PS2, and
GameCube.
***Which now boasted complete liquid dynamics for water-based missions.

DESIGN

36DEV.MAG ISSUE 17

company that held the marketing rights for

the ChampCar Series, which takes place in

North America and is an open-wheel rac-

ing championship similar to Formula One.

They were quite keen on giving us the sole

mandate to create a racing game for them

based around ChampCar, but we would still

be responsible for funding it and finding a

publisher in order to get the game to market.

We ended up putting together a pretty killer

demo towards the end of 2003 of ChampCar

cars racing around Kyalami, but we were

unable to convince a publisher to take us

onboard as the ChampCar license didn’t seem

to be high enough profile for them, so we yet

again had to abandon a project that we were

doing quite well on.

In October 2005, a full two years after we

were attempting to develop a ChampCar

game, ChampCar announced that it had

signed a deal with Jester Interactive Publish-

ing to produce a game for them. However,

the deal apparently fell through and to this

day, no games have yet been made with the

ChampCar license.

The middle parts of 2004 were spent working

on a couple of different pitches to publish-

ers. In June we got a call from Codemasters

who wanted us to pitch for a game built

around a cops and robbers scenario where

players had to do A-to-B racing while per-

forming stunts and crashing through things.

We pulled off an amazing demo for them in

a short couple of months, but they ended up

deciding to scrap the game idea from their

production pipeline.

After doing this demo, we worked on doing a

Need for Speed: Undergound style night rac-

ing demo for another publisher who I can’t

seem to recall the name of (it was possibly

Activision). Again, we were able to do a very

good demo in a very limited amount of time,

but the feedback from the publisher was

once again not positive for us.

Finally, in October 2004, I-Imagine would be-

gin to work on its final title during my time at

the company. Perhaps prophetic in a way, the

name of this game would eventually become

known as Final Armada...

WE ARE LEGION
A smattering of game dev enthusiasts from all around South Africa. You’re not alone!

TAILPIECE

37DEV.MAG ISSUE 17

Danny “dislekcia” Day (26)
Pretoria

When I first started going to school I started drawing mazes on the fly and giving them to my

classmates to solve. They’d ask why I didn’t join in and help them get to the end of the epic

multi-page, item dependant, branching path mazes we’d end up with. My answer was that I

enjoyed making the mazes far more than I ever enjoyed playing them. Even today, watching

someone play a game I’ve made and having a blast brings a ludicrous smile to my face. I love

that feeling… Watching people run with Game.Dev, seeing how individuals have grown and

passing competition entries and things like Dev.Mag around, that’s special. It’s that ludicrous

smile all over again.

Dominic “CiNiMoDZA” Lennon (18)
Durban

Well, it all started when I was born a very small, young child in Durban. I moved Estcourt, a

town so small that not even its own mayor knows where it is! While there I stumbled across a

group of nerds who kidnapped me and brain-washed me into doing nerd things, like game dev,

chess, and dishes and stuff! After a while I moved back to Durban, and fell away from the spell

of those evil red-headed nerd-mages, I started doing crazy things, like running, for fun!?! After

being sent to Joburg to jump into a sand pit for KZN, and having a little rest from other daily

activities(visiting the girlfriend, washing dishes, having a bath etc...), I found an old friend!!!

Since I had some extra time, and NAG had just decided to sponsor a fair amount of money for

some people to make some games, I decided to enter! After getting an award for Best-New-En-

try, I was hooked yet again, and don’t plan to leave this time! After discovering the gamedot-

dev site, I was home!

Bernard “MushiMushi” Boshoff (25)
Durban

I am part owner of Indigo Child Studios [http://www.indigochildstudios.blogspot.com]; a media

and sound studio in Durban, South Africa. We specialize in offering a range of solutions for all

sorts of occasions. In the not too distant future we would like to diversify into a full service

interactive marketing studio, offering our clients an interactive means of reaching their target

market through the use of corporate games and online products. Our long term goal is to cre-

ate a full fledged interactive online gaming experience codenamed S-T-O-M-P, which we hope

to achieve by harnessing up and coming young local talent who are technically and graphically

skilled. For the time being, I work as an investment and insurance broker in a large South

African firm which will give me the financial means to fund my ambitions for Indigo Child. I also

work on the DEV.MAG team from time to time and have been a part of the Durban Game.Dev

Hotlabs initiative, which I wish to continue on my own capacity once I get settled into my new

line of work.

TAILPIECE

38DEV.MAG ISSUE 17

William Morgan “cairnswm” Cairns (37)
Randburg

The first programs I can remember writing were games. Using old BasicA on a monochrome

screen with no pixel capability I wrote racing car games, management games and even adven-

ture games. At university I move onto Pascal and thereafter onto Delphi. I have contributed to

one PC title so far. I have done contract work on a few other game development projects. The

game that had the most influence on my wanting to develop games was Starcraft, once I had

played it I knew that my final goal from game development was to be able to write an RTS.

Over the Last 8 years I have mad on average R20 per day from my Game Development Hobby.

Simon “Tr00jg” de la Rouviere (17)
Stellenbosch

When I was 15, a hooded roach forced me into the art of game development. He said, “Young

padawannabe, make games, or I will let David Hasselhof make a come back.”

It was easy to accept, and here I am, still doing the thing I love! As you can see, humour is kind

of my forte (depends on your taste). Roach Toaster (a unique turn-based strategy game) was

my 1st success. It is totally awesome to do something creative and be able to entertain people.

You should too (yes you), don’t you think?

Kosie “ShadowMaster” van der Merwe (16)
Cape Town

OK... Hi I am Kosie van der Merwe and I am a... Game developer. I am 16 years old and cur-

rently live with my parents in the (sometimes) sunny Cape Town. As can clearly be seen from

the previous sentences; I like jokes and all things funny.

My first venture into game development was modding Jazz Jackrabbit, i.e. making new levels. I

later got on to writing games in Sphere, my only completed one is a Yahtzee clone. In grade 8,

during exams, I learnt C++ and this year I finally wrote the first game I am really proud about,

Typing Tower FTW! ShadowMaster out!

Luke “Coolhand” Lamothe (29)
Joburg

Since a young age growing up in Canada, I have always had a passion for video games. After

graduating from high school I decided to pursue this love further by attending DigiPen, where I

graduated with a Diploma in Video Game Programming with a Level of Excellence. After spend-

ing a year teaching at DigiPen, I moved to South Africa in 1999 to start I-Imagine Interactive,

where I oversaw the development of both Chase: Hollywood Stunt Driver for Xbox and Final

Armada for PS2 and PSP. At the end of 2006, after spending more than seven years at I-Imag-

ine, I decided to pursue a new challenge. I ended up joining Luma Arcade where I now oversee

the development of multiple game titles for various platforms.

TAILPIECE

39DEV.MAG ISSUE 17

Gareth “Gazza_N” Wilcock (22)
Johannes Burger (believed to be Joburg)

As of writing this, I’ve been part of Game.Dev for about a year. Now, most may think that my

first ever foray into design was the first 2D Deathbringer prototype, but I’ve been attempt-

ing games pretty much my entire life. In fact, my first ever attempt was in Grade 6, where I

whipped up a choose-your-own-adventure-style text game in QBASIC. Yes, I’ve had the game

development bug for a looooooong time.

Rodain “Nandrew” Joubert (20)
Grahamstown

I like candles, trucks and hamsters. After those, game development. In fact, since about the

age of ten I’ve been making terrible games and generally upsetting a lot of people in the proc-

ess. Nowadays, I hang my hat at the Game.Dev community forums, shove projects in mem-

bers’ faces and regularly set up threads that whine at them to write for Dev.Mag. I’ll whine at

you too if you happen to stumble by.

That’s a choke collar around my neck. I don’t know why.

Ian “Thaumaturge” Eborn (24)
Cape Town

Magic. Sorcery. Enchantment. Thaumaturgy, for that matter. If it’s a creation of mine, there’s

a pretty good chance that magic is involved. If I were to create a ‘mech game, or a space-

based action game, there’s a reasonable chance that it will be a fantasy ‘mech game or space-

based action game, and, of course, involve magic. (I actually half-created an instance of the

latter once upon a time...) I do very much enjoy other genres. I just often prefer fantasy.

Oh, and I can (and do, at times) give what I think to be a fairly decent villainous laugh, of the

“mwahaha” variety.

Ernest James “edg3” Loveland (16)
Johannesburg
(The poor soul typed all this from his cellphone. That’s commitment!)

My name is ernest james loveland, im 16 and ive been programming for about 2 years, starting

seriously about 18 months ago. I taught myself visual basic, and then took IT (information tech-

nology or otherwise programming) at school. I have always been interested in game develom-

ent, and after dabbling in game maker for a few hours decided i didnt have time for it. This all

could actually boil down to me being an expert in the art of procrastination and disorganisa-

tion. Living in JHB and being the South African I am, i have one thing to say: “when life hands

you a game idea, shut up and work on it!”

Ricky “Insomniac” Abell (20)
Pietermaritzburg

I’m currently a second year university student doing a BSc with a double major in Computer

Science. One of the things I love most about game development is how it combines the crea-

tiveness of design with the logic of programming. When I’m not studying or making games I can

usually be found jamming away on Guitar Hero II. I also find the field of cryptology interest-

ing as it’s like a big game of chess but instead of pieces and a board you have maths and the

power of computers. Unfortunately I have yet to come up with an idea to incorporate it into a

fun game but I’ll keep trying.

TAILPIECE

40DEV.MAG ISSUE 17

Tarryn “Azimuth” van der Byl
Age: Carbon dating suggests somewhere between 2 and 10 000 years.
Location undisclosed ... how mysterious

Subject demonstrates pronounced aversion to light, exceptional literary aptitude, a prefer-

ence for caffeinated beverages, and an entirely unwholesome appetite for heavy metal music.

Subject has previously begun development on a Flash-based remake of Space Quest II, but has

since abandoned this in favour of playing other people’s games for money. Subject will mani-

fest immoderate hostility when confronted with sloppy grammar or spelling.

Quinton “Q-Man” Bronkhorst (Ham)
Johannesburg

I’m a second year Journalism student and have a passion for writing! Although I know very ba-

sic programming, my interests lie more in the concepts and stories behind the games we play.

I have a deep respect for the programmers and designers, but I believe that story is everything

and can ultimately give a deeper and richer gaming experience! Nothing grips me more than a

deep, complex plot, be it an epic tale where the unlikely hero must take to arms and save the

world, or a dark psychological horror where the protagonist must face his inner demons, his

past, and reach that epiphanic moment of truth.

Rishal “TheUntouchableOne” Hurbans (18)
Pretoria

Well, I’m an everyday well-balanced type of guy with a zest for COMPUTERS, I love program-

ming and creating great pieces of work from scratch drives me. I program in Delphi, Python

and Basic. I am eager to learn Game Maker as it may be a simple tool but proves to be very

powerful. Developing games interests me a lot as it provides a great way to channel your

knowledge into producing something that can be productive yet fun. I’m supposed to write my

interests here but too many things in the world interest and intruege me so this is all you get-

ting for now. For the love of Games, develop for the sake of fun!

TAILPIECE

41DEV.MAG ISSUE 17

Claudio “Chippit” de Sa (19)
Sasolburg

Besides my other hobbies, I like to spend my time creating things, ranging from drawn models

to 3D models to Lego models to model games. At least, I like to tell myself the games are a

model example of something, whether or not effort counts is disputable. When I’m not doing

that, I’ll likely be at the campus grounds (diligently?) studying towards my BSc in IT, or listen-

ing to some music from my varied selection.

Robbie “Squid” Fraser (16)
Centurion, Pretoria

Hi, I’m Squid. I like to frolic with wombats in the meadows… Also I love to make games. Some

of my amazing talents include rock climbing, playing soccer and of course playing games. My

ultimate goal is to own my own game development company with an in-house publisher, being

a multi-billionaire is also on the list though.

Random tidbits:

Love heavy metal, especially Iron Maiden

Coded the Dev.Mag website

Like guitar although not a very competent player

Have a natural attraction to marsupials and large rodents

Have two cats

Can’t stand seafood

Pretty lazy when it comes to anything non-game-development related

Sucker for green eyes, HDR and physics simulations

Christian

The name Squid was given to me by a school friend in an internet café in a ski resort in Serbia,

pretty random eh?

Stefan “?rman” Van der Vyver (he’s the one on the left!)
Cape Town

I thought I could program games, so I bought Game Maker. I also bought the Blender Game

Handbook from the Netherlands. Time became an issue. I quickly realized that I should focus

my skills on doing 3D, teaching 3D and making music. So, I’ve got 7 guitars, 1 keyboard, 1 elec-

tronic drumkit and six computers. With that I create content for educaional games, corporate

multimedia content, television ads and original soundtracks. And that’s about as close as I’m

going to get to game programming.

