
August 2007

REGULARS

Ed’s Note... P03

News ... P04

SPOTLIGHT

Nicklas Nygren, creator of Knytt... P05

OPINION

A Really Juicy Story... P08

REVIEW

Newgrounds Flash Portal.. P09

DESIGN

Blender Intermediate Tutorial: Converting 2D to 3D........................ P10

A Beginner’s Guide to Making Games: Part 3.................................. P12

A Beginner’s Guide to Making Games: Part 2 EXTRA..................... P14

PROJECTS

Roach Toaster 2: Big City.. P15

TECH

Coding Etiquette: Doxygen.. P16

Game Coding with Trigonometry: Part 3... P19

Go optimise!.. P22

HISTORY

The History of I-Imagine Part 6: Enter the Publisher...................... P25

TAIL PIECE

In Casual We Trust.. P29

CONTENTS WHAT’S INSIDE

05

10

22

25

ED’S NOTE THE BIG CHIEF

W
owee, the situation is getting intense. I will confess: things have been slow this month.

With Issue 16, that is. But at the same time, stuff is going really, really fast and it’s getting

pretty tricky to keep up with everything. On the community front, the winners of Comp 15

have been announced and a nifty R 5000 goes to Evil_Toaster for his game Cartesian

Chaos (lucky bugger). We’ve also got some pretty cool games from the runners-up and a full report will be

present in the next Dev.Mag. In the meantime, we’ve also got Comp 16 starting up (text-based graphics

being the theme) and people are scrabbling to get some entries in before the 28th of this month.

Of course, I still haven’t explained why Issue 16 was so long in coming out: as it so happens, we’ve got rAge

coming up at the end of this month. In honour of this annual SA technology expo (a biggie on our calendar),

Dev.Mag Issue 17 will come out complete with a full visual makeover, a massive amount of content, and

some other exciting odds and ends which are taking up a lot of our attention. As of now, while I’m sitting

here furiously tapping out my little editor’s spiel, there’s another little window open on my computer show-

ing the first draft of the new-look mag, accompanied by a tentative first article. Hopefully, the problems

encountered with this edition will be forgiven once our bumper issue sees the light of day.

Until then, you have this offering. I don’t quite know how the team manages it, but every month has at least

one person toddling up to me and presenting something awesome for either a spotlight or a feature. This

month, we’ve snagged a talk with Nifflas, the creator of the popular (and absolutely adorable) freeware

game, Knytt. If you don’t know what it is, turn to page 5 and follow the link. If you do know what it is, turn

to page 5 and have an awesome time reading.

That’s it for now — if I blab any longer, this mag’s going to be delayed even further, and avid readers are

going to be bringing the torches and pitchforks to my proverbial door to make sure I shut up. Stay tuned for

Dev.Mag 17. It’s going to be a blast, and you won’t want to miss that.

Editor
Rodain “ Nandrew ” Joubert

EDITOR
Rodain “ Nandrew ” Joubert

DEPUTY EDITOR
Claudio “ Chippit “ de Sa

SUB EDITOR
Tarryn “Azimuth” van der Byl

DESIGNERS
Brandon “ Cyberninja “ Rajkumar

Geoff “GeometriX” Burrows

MARKETING
Bernard “ Mushi Mushi “ Boshoff

Andre “ Fengol “ Odendaal

WRITERS
Simon “ Tr00jg “ de la Rouviere

Ricky “ Insomniac “ Abell

William “ Cairnswm” Cairns

Danny “ Dislekcia “ Day

Andre “ Fengol “ Odendaal

Heinrich “ Himmler “ Rall

Matt “ Flint “ Benic

Luke “ Coolhand “ Lamothe

Stefan “?rman” van der Vyver

Gareth “Gazza_N” Wilcock

WEBSITE DESIGNER
Robbie “ Squid “ Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the

South African Game.Dev commu-

nity. Visit us at:

www.gamedotdev.co.za.

All images used in the mag are copy-

right and belong to their respective

owners. If you try and claim other-

wise, think again. In fact, think ca-

sual.

... no, wait, scratch that.

Think sentient strawberries.

DID YOU KNOW?
Think that having a job as a tester is easy? Think

again. A recent chat about the testing process of

Crackdown, a free-roam urban game consisting

of 495 city blocks, revealed some startling figures.

One of these was the amount of environment bugs

that were reported and squashed: a whopping

10000. Not a typo.

DEV.MAG ISSUE 16

3

This month’s opinion columnists:
Quinton“Q-man” Bronkhorst

XNA Gamefest videos released

http://creators.xna.com/Headlines/presentations/default.aspx

GameFest 2007 was an educational experience which also provided benefits for the

armchair enthusiasts. Yes, even those who haven’t attended the festival can still watch

several comprehensive presentations on the ver-

satile XNA game development tool, thanks to the

XNA Creators Club website. There are 7 videos

viewable online, most of them at least half an hour

long and ranging from topics like “XNA Game Stu-

dio for Fun and Profit” to profiles of XNA works

in progress. Worth a look if you have the time.

NVIDIA releases third GPU programming book

http://developer.nvidia.com/object/gpu-gems-3.html

NVIDIA has released its third GPU programming book,

entitled “GPU Gems 3”, which outlines some of the

more advanced uses of the graphics processing unit

in NVIDIA cards, even outlining uses such as physics

simulations, financial analysis and even virus detection.

Whoah! The book, which is roughly 1000 pages, also

has the latest algorithms for a menagerie of advanced

graphics effects. The price? $69.99 from Amazon.

NEWS HEADLINES

Casual games study
http://www.gamasutra.com/php-bin/

news_index.php?story=15145

Casual games seem to be the popular

choice for Internet users, according to

a recent study conducted by Parks As-

sociates. Gamasutra reports that the

company has found casual games to be

even more popular than major players

such as YouTube and Myspace. Not

only is casual gaming the most popular

pasttime, but its growth in recent years

has been impressive and this will prob-

ably make room for more avid develop-

ers. Time to clamber onto the bus.

Torque MMO kit free under BSD-style licence

http://www.gamedev.net/community/forums/topic.asp?topic_id=459909

Want a good reason to buy the Torque Game Engine and ArcaneFX?

Well, Gamedev.net reports that the crew from GarageGames have

given fans precisely that with the offer to make the Torque MMO kit

free for both commercial and non-commercial use to anybody who

already owns TGE and ArcaneFX. According to the market blurb,

The MMO kit represents four years of development and thousands of

hours of labour, and the full Python and Torquescript source is now

available.

DEV.MAG ISSUE 16

4

Nifflas is an individual on the web who

seems to enjoy creating the cutest and

most intriguing little games. One of these

is Knytt (http://nifflas.ni2.se/), a freeware

jump ‘n climb platformer that’s notable

for being remarkably polished and eerily

engaging. We decided to have a little talk

with him about the whole game making

deal.

Tell us about how you got into game de-

velopment? What got you interested?

When did you start?

I started out around 10 years ago with Klik &

Play. Since it was a long time ago, I can’t quite

remember what got me interested. I’ve sim-

ply always had an interest in creating things,

no matter if it have been building things with

LEGO, composing music, drawing things, or at-

tempting to create computer games.

It took me quite a lot of years to figure out that I

should keep my game projects at a reasonable

size. If it took Square a large development team

to create a game like Chrono Trigger, I should

have known better than believing that it would

be possible for me alone to create an RPG that

you’d need to spend over 60 hours to beat.

A few years ago I realised this though, and gave

game development another go, and created

#modarchive story - and since then I’ve been

releasing my games on a more or less regular

basis. Since then my games have increased in

size and more people have been helping me

out, but I’m of course still never creating any-

thing nearly as large as the stuff I planned in the

past. But really, it’s not the size of the game that

express me anyway, it’s the content.

What made you decide to create a game such

as Knytt?

Well, I was working on Within a Deep Forest

SPOTLIGHT WELCOME TO THE WORLD OF KNYTT

DEV.MAG ISSUE 16

5

TALKING TO NICKLAS NYGREN
 Creator of Knytt

2, but wasn’t really inspired. I wanted WaDF2

to have some mini-games, so I planned Knytt

to be a WaDF2 mini-game, but as soon as I

started to create the first part of Knytt, I got a

massive amount of inspiration to continue on

that, while I spent less time on WaDF2. In the

end, I abandoned WaDF2 because of the lack

of inspiration, and released Knytt. I’m still really

happy about that decision. I know a lot of people

would have preferred me to finish WaDF2, but

personally I care so much about creating things

which really express myself - and Knytt really

does that, perhaps more than any other of my

games ever has.

Tell us more about your upcoming game,

Knytt Stories.

I’ve been working on Knytt Stories since the

day I released Knytt (December 2006 if I don’t

remember wrong). It’s based on the Knytt plat-

form engine, but features more challenge, pow-

er-ups, and a powerful level editor. This time

I’m trying to encourage the players to create

their own levels with their own unique stories.

It’s with no doubt my largest creation, and it’s

release is just around the corner.

You created a niche on the net for your

games. Do you think every developer can

have this kind of niche?

I see no value in being original just for the sake

of being original itself. I do however think that

most games are too alike these days, as if the

developers just see their games as entertainent

created to meet the demands of the audience,

rather than a form of artistic expression. Of

course, there are plenty of exceptions.

The music in Within A Deep Forest and Knytt

lends a great deal to the atmosphere of the

game. Have you ever considered making

music as a career?

I better mention first that I didn’t create most of

the music for Within a Deep Forest, I only cre-

ated one of the songs on my own (the one in

Utopioca). I created around half of the music in

SPOTLIGHT WELCOME TO THE WORLD OF KNYTT

DEV.MAG ISSUE 16

6

Knytt though. Earlier I was planning to making

music as a career, but at the moment, things

looks like game development is my best chance

for a career...

You have a whole community of fans help-

ing you on Knytt Stories. How do you find

working with such a community??

It’s great fun – I got an insane amount of help de-

signing tilesets for the game, which is why Knytt

Stories will come with a library of 256 tilesets

that can be used in level design. Most games

just come with the graphics that are used in the

game itself (of course, Knytt Stories levels can

feature their own custom graphics too).

Ico was a huge inspiration for Knytt. Do

you think games like these are grossly un-

derrated?

I can’t say Ico is underrated, although Ico never

became a huge commercial success (if I don’t

remember wrong, that is). The reviewers really

loved that game, and gave it the feedback it de-

served. But yeah, I’d love to see more of those

kind of games.

Do you want to continue working on small

games like these, or are you interested in

getting into the major game industry?

I’m open for anything, as long as I don’t have to

sacrifice the personality of my games. In other

words, I’d rather keep releasing small produc-

tions than joining a big company and help out

designing games that I don’t really like or have

any control of. A small company with people

who share my ideas would be the ideal thing.

What recent game that you have played

made you sit up and say “Wow, this is ge-

nius”?

Shellblast by Vertigo Games is fantastic, al-

though I never liked the “war on terror” phrase

used in it (negative associations). It’s portable

too!

language? Do you think there is a place

for games not made in English?

You’re not likely to find Knytt in the average dic-

tionary, but it’s still a word sometimes used to

describe small harmless creatures. Originally,

the word was invented by “Tove Jansson” (the

children’s book author) known for the Moomin

trolls. The particular book that uses the word

is titled “Vem ska trösta knyttet?” (which is

translated to “Who will Comfort Toffle?” in the

English version). I can highly recommend this

children’s book.

About the other question: yeah, I think there’s

a place for games in any language, but as with

all other things, you can get a wider audience if

the game is available in a language that more

people speak.

 TROOJG

Quick Questions ... 3 ... 2 ... 1 ... Go!

Pizza or Pasta?

Pasta

PS3, Wii or Xbox-360?

XBox have always had more good games,

but Playstation have always had the most in-

teresting and unique productions (although

there are only a very few of them). I’m gonna

have to go with PS3.

The Simpsons or Family Guy?

Simpsons

Guitar or Piano?

Piano

W
hen I was approached to write a

nice little opinion piece for Dev.

Mag, I found myself sitting in front

of my word processing application, staring rath-

er blankly at the screen. Only having done low-

level programming in high school (in the form of

Turbo Pascal 7.0) I came to realize that I don’t

really know much about game development

- and that which I do know, is nowhere near

enough to fill a whole opinion article. After all,

the most I’ve done in terms of game develop-

ment, is a little text-based RPG of epic failure.

So while I started typing out space filler about

how little I actually know about game develop-

ment, and how what I did know would not be

sufficient enough to fill a column – it hit me like

a proverbial brick to the head; instead of wast-

ing all this space, waffling on like a pretentious

git, I should write about something I do know a

lot about:

Boy oh boy, do I love to tell a good story..

It should be obvious to most people, that hav-

ing good programming in a game, although ex-

tremely important, isn’t always going to make

your game the winner. Every game needs a

story; from a plump plumber in red saving a

pink princess from a dragon-thing with a spiked

turtle shell on his back, to a journey into the

horrors of one’s own mind to face psychological

demons brought out to attack you, by subcon-

scious guilt. I would even hazard a guess that

OPINION WHAT YOU’RE THINKING

them. There could be minor or major obstruc-

tions he must overcome, or even strawberry

generals to destroy – there are no limits from

this point on.

It may sound like a ridiculous story, but if you’ve

read up until this point, it must have intrigued

you in some way. Without a story for your game

to work on, your game isn’t going to make

much sense to the player. Why am I shooting

these people? Where are these chickens com-

ing from? What is the point of collecting all this

ham? These are the kinds of questions you

need to answer.

If you can sell someone a compelling story of a

brave young orange saving his people from an

evil strawberry siege, and have it make sense

in the context of your game; you just might have

something solid to start working on.

 Q-MAN

If you fancy saying something about game development and have enough

faith in your writing ability to do so, feel free to submit content to our

monthly opinions section.

Send your work, 400-500 words in length, with the subject title “Opinion

Submission” to devmag@gmail.com, and you may just wind up in our pag-

es. Please note that we reserve the right to decide what material is suitable

to publish in the magazine.

DEV.MAG ISSUE 16

8

The Dev.Mag staff does not expressly support or agree with the views of guest columnists in this section. In fact, the Dev.Mag
staff does not expressly support or agree with the views of Dev.Mag staff writers in this section.

It’s a crazy world, isn’t it?

“A really juicy
story”

even games such as Tetris were created with

some form of world in mind.

So we’re making a game right? Ok, so let’s get

started then. Before we can even think about

programming anything, we need some sort of

concept. Oranges. Oranges that are alive. Let’s

work with that. Where are these living oranges

found? Let’s just say they’re living in the magi-

cal city of Citrus, where the buildings are all

fruity and bright. We’re going to now introduce

our main character, Oscar, who is just an every

day kind of orange, going about his everyday

orangey stuff.

Oh dear, but that would be a boring concept (un-

less it were a fruit city simulator – covered in an-

other article sometime perhaps) so we need to

bring some sort of conflict in here. Strawberries!

The evil strawberries have declared war on Cit-

rus City and have besieged the town, taking all

of the oranges captive – to be squeezed for their

juices to make sugar-filled, impure cold-drink in

special ‘Concentration camps’. The only orange

who can stop them is Oscar!

Now that we have our location, characters and

conflict, we can start getting our heads around

how Oscar will go about saving his people. I do

believe this is the point where programmers’

ears should prick up. As Oscar rolls through

the city, he encounters evil strawberries which

he must either ‘power-charge’ through, ‘bomb-

drop’ on, or merely avoid, by bouncing over

9

NewgroundsNewgroundsNewgroundsNewgrounds

REVIEW ON THE WEB

imple, quick and easy games are king

in the world of casual gaming. In this

vein, it is no surprise that flash games

are immensely popular online, with

numerous flash-game portals appearing all

over the web. Nothing is quicker or easier

than navigating your browser to your

favourite portal and selecting a game.

Newgrounds is likely the largest flash portal

around, boasting over a million registered

users and 300 000 submissions, including

flash videos and games. Since its foundation

12 years ago, Newgrounds has done for

flash gaming what YouTube did for online

video.

Part of its success can be attributed to a

large and active community, spurred on by a

ranking system that rewards users for

participating in the site. Rating games scores

users “Grounds Gold” which places more

weight behind future

votes, as well as

increasing the users

rank, earning the user more

respect in the community.

To keep the site fresh,

submissions that have

a low aggregate score

are automatically

removed from the

website, or ‘blammed’. To

encourage fair voting, the

website awards blam/protect points to users

whose votes accurately depict the eventual

fate of the game. These points also

contribute towards a users rank.

Newgrounds has been home to many

popular flash video and game series,

S

DEV.MAG ISSUE 16

including Salad Fingers and Super Mario

Brothers Z. It is also the original home of The

Behemoth’s surprise hit Alien

Hominid, whose prototype

was first displayed at

Newgrounds. Alien Hominid

went on to be a popular PS2

and Gamecube title, with a

HD Xbox Live Arcade

version recently released. The

Behemoth is also currently

working on another XBLA title,

Castle Crashers, which also

looks set to be a success.

For a quick fix of gaming fun, orfor a little bit

a humour, Newgrounds is always a great

place to look for a quality diversion.

CHIPPIT

WebsiteWebsiteWebsiteWebsite

http://www.newgrounds.com/

UpdatedUpdatedUpdatedUpdated

Continuously

10

BLENDER INTERMEDIATE TUTORIAL:BLENDER INTERMEDIATE TUTORIAL:BLENDER INTERMEDIATE TUTORIAL:BLENDER INTERMEDIATE TUTORIAL:

Converting 2D to 3DConverting 2D to 3DConverting 2D to 3DConverting 2D to 3D

DESIGN ENTER THE 3D WORLD

onverting 2D drawings into 3D. Yep,

that sounds pretty cool, right? In this

article I will show you how to take a

2D design and transform it into 3D. Yes,

there are limitations, but what we can do

here might just come in very handy.

We will use the GIMP, considered the best

Open Source alternative to Adobe

Photoshop. In the GIMP we will draw

something, select that drawing and use the

GIMP to create an outline. The outline will be

exported out of the GIMP, and imported into

Blender. Blender will then add the 3D

element. The GIMP can be downloaded from

www.GIMP.org.

For this tutorial we will create a simple game

interface screen using the following steps:

 • Draw in GIMP

 • Select the drawn bits

 • Convert the selection to a path

 • Export the path

 • Import the path into Blender

 • Add depth to the object

Let's get going. Fire up the GIMP. Assuming

that my game screen size will be 800 X 600

pixels, I will create an image of that size in

the GIMP. What actually happens is that you

can scale the object to any size once you

have it in Blender, but it is easier to work with

the actual dimensions in the GIMP. The best

suggestion I have for creating a design that

will work well

for conversion

into 3D is:

 • To do the

design in one

colour only.

This makes it easy for the selection tool to

select only that colour.

 • Your design pieces cannot have holes in

them. If they do, you'll need to think carefully.

Now, use the “Select regions by colour” tool

to select a colour on the image. You should

see the single colour surrounded by a

flashing dotted outline. Now that we have a

selection, we convert that to a “path”. A path

is also called a vector, or curve. It is a way of

C

DEV.MAG ISSUE 16

describing an

outline in

mathematically

precise terms.

You can then

scale or move

that line without

losing any

quality. Use

Select --> To

Path to convert

our selection

into a path/

curve/ vector.

Now, open the Paths dialog. Select the path

you just created, right click on it, and choose

“Export Path”. Type a name, and be sure to

include the extension. Call the file

“interface.svg”. The .svg extension is for

scalable vector graphics.

Now, finally, we get to Blender. Here we can

now import the file as a GIMP 2.0 file, giving

us the outline of what we created in 2D.

Please delete everything you have in your

scene. Easiest way is to AKEY (select all)

and DELETEKEY. Now go to File --> Import

--> Paths (svg, .ps …). Choose GIMP 2.0 in

the next menu. Browse to the location of your

exported path .svg file, and select that file.

Next, just click on “Import Path”, and click

“OK” in the import options menu.

(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)

11

DESIGN ENTER THE 3D WORLD

Well done if you got this far without hassles!

Most people don't even think of this option of

combining 2D and 3D design.

You now have a “curve” object in Blender.

You options are:

 • Use the curve options menu to extrude the

outline into 3D

 • Convert the outline to a mesh and work

from there.

I'm going to use the curve menu options to

extrude the outline into a 3D shape. Go to

the Edit button. This is where you'll find the

curve options:

 Extrude: Makes the object 3D

 Bevel Depth: Adds bevelled edge

 BevReso: Smoothes the bevelled edge

I decided to bring the outside

orange border in as a curve

as well. In this case, Blender

found it easy to understand

the curve. It consists of a

rectangle (4 points) on the

inside and a rectangle on the

outside (4 points). You may

find that if your shape is

more complex, GIMP will

use different numbers of

points to define the curves,

which will lead to unreliable

results in Blender. There

are, however, ways to solve

these problems, but they go

beyond the scope of this specific tutorial.

After importing the orange outline as well, my

Blender curve objects look like the image to

the right.

I had a side-scrolling space shooter in mind,

so I will change the colours and presentation

of the interface to reflect that. I also edited

the curve on the outside so that I could have

space on the left to add some interface

buttons later on.

DEV.MAG ISSUE 16

I won't be entering this design for any gaming

competitions as candidate for best interface

design, but I trust that your creative spirit

may take something from this, and apply it to

your own work.

Happy Blendin', folks!

?RMAN

12

Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making

Games - BackgroundsGames - BackgroundsGames - BackgroundsGames - Backgrounds

DESIGN HELPING YOU ALONG

his is the third article in the Beginners Guide to Making

Games. So far, we have looked at making objects move and

checking whether they collide with each other. This month we

will look at various options we have for setting backgrounds

in our rooms.

The main goal of the Beginner's Guide series is to try and ensure a

detailed understanding of the various concepts so that they can be

applied to other new and exciting games. While most traditional

tutorials will show you what code is needed, these guides will ensure

that you walk away actually understanding each of these concepts.

This article is aimed at someone who has just started learning to

make games. While it is expected that the reader of the article has

completed the first Game Maker tutorial and can thus create sprites

and objects, it is quite possible to follow the article without having

done so. The article is structured to introduce a new programmer to

the concept, and perhaps be of some value to the intermediate-level

programmer as well.

This month’s article will contain the following sections:

1. A Game Maker tutorial looking at setting a background

2. A Game Maker tutorial looking at a tiled background

3. Fiddling with backgrounds in GML

Backgrounds – GM Tutorial Backgrounds – GM Tutorial Backgrounds – GM Tutorial Backgrounds – GM Tutorial

Backgrounds are critical in setting the theme and feel of a game. In

Game Maker, it's easy to set up a background and use it in a room.

Step 1 – Create the BackgroundStep 1 – Create the BackgroundStep 1 – Create the BackgroundStep 1 – Create the Background

Add a new background (either under the backgrounds link on the left)

or by selecting Add|Add a background from the menu. Choose the

image that you want. For now, select an image that is big enough to

cover the whole screen.

In most cases, backgrounds don't need to be transparent or

smoothed as they should be designed to look right just as they are.

If your background image is not large enough to fill the whole screen

it will need to be tiled. In this case, you need to make sure that the

image can tile seamlessly from left to right and top to bottom.

Step 2 – Create a RoomStep 2 – Create a RoomStep 2 – Create a RoomStep 2 – Create a Room
Add a new room and name it. Select the background tab and select

the newly created image as the foreground image. Uncheck the

‘Draw background colour’ check box. It wastes processing power to

paint the background and then to draw the selected background over

the painted background.

If the image used for the background needs to be tiled set the Vertical

and horizontal check boxes and set the number of images to tile over

the horizontal and vertical space.

Another option for backgrounds is to stretch a smaller image across

the full screen. Very small images will become very pixelated if

stretched so only images that are close to the screen size should be

used as stretched backgrounds.

Tiles – GM TutorialTiles – GM TutorialTiles – GM TutorialTiles – GM Tutorial

Tiles are very similar to backgrounds, but instead of using a single

image to cover the whole room the image used to tile is split into

small pieces and added to the screen bit by bit to form an image.

T

DEV.MAG ISSUE 16

13

DESIGN HELPING YOU ALONG

Step 1 – Create the background tilesStep 1 – Create the background tilesStep 1 – Create the background tilesStep 1 – Create the background tiles

Create a background image in the same way as the previous tutorial.

Check the ‘Use as tile set’ option. A Tile Properties panel will open

up where the size of the tiles can be set. Note how the individual tiles

are marked as the size of the edit boxes.

When creating an image to use as a tile set make sure that all the

tiles are the same size and are evenly spaced across the whole

image.

Step 2 – Create a roomStep 2 – Create a roomStep 2 – Create a roomStep 2 – Create a room

Create a new room.

Select the ‘tiles’ tab.

Select the background

that was created as

the tile set. On the left

side panel the tile set

will be displayed. On

the right, a grid will be

displayed (defaulting

to the whole tile set).

One by one select the

tile in the left window and click on the grid on the right to set the tile.

By choosing a tile on the left and placing it on the right a full tiled

background can be created. This allows complex and customisable

rooms to be created to look like a world map or a maze etc.

Game Maker allows multiple different tile layers. Each layer can then

be managed separately. This allows the use of different layers for

different types of objects. This would for example allow the creation

of a map in the background with buildings etc on the foreground.

Fiddling with backgrounds in GMLFiddling with backgrounds in GMLFiddling with backgrounds in GMLFiddling with backgrounds in GML

Backgrounds are not the most amazing things to fiddle around with.

However, there are some fun things to do with backgrounds. Not all

backgrounds need to be created up front. In fact, backgrounds can

be created while the game is running and Game Maker has a number

of methods available to make this happen.

Add the following code to the Room's ‘Creation code’ to create (at

runtime) a red to blue gradient background.

bg =background_create_gradient(room_width, room_height,

c_navy, c_red, 0, true);

background_index[0] = bg;

room_set_background(room1, 0, true, false, bg, 0, 0,

false, true, 0, 0, 1);

background_create_gradient(w, h, col1, col2, kind,

preload)

Creates a gradient filled background of the given size. col1 and col2

indicate the two colors. kind is a number between 0 and 5 indicating

the kind of gradient: 0=horizontal 1=vertical, 2= rectangle, 3=ellipse,

4=double horizontal, 5=double vertical.

background_create_from_screen(x, y, w, h, transparent,

smooth, preload)

Creates a background by copying the given area from the screen.

This makes it possible to create any background you want. Draw the

image on the screen using the drawing functions and next create a

background from it.

CAIRNSWM

DEV.MAG ISSUE 16

14

Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making

Games - Part 2Games - Part 2Games - Part 2Games - Part 2

DESIGN HELPING YOU ALONG

ast month, we had a look at different ways Game Maker
manages collisions. This month's Extra will look at various
methods of doing collision detection in 2D in other
programming languages. The benefit of using Game Maker
is of course that you don’t actually need to understand all the

intricacies of the process.

When looking for collisions between 2D objects there are two basic
methods of doing so:
1. Bounding Box collision detection
2. Pixel perfect collision detection
A third alternate method is also possible through
3. Map-based collision detection

Many developers feel that Bounding Boxes do not give an accurate
enough level of collision detection and insist on doing more fine-
grained collision detection. However in most cases there is no real
visible difference between bounding box and pixel perfect collision
detection.

Bounding Box Collision DetectionBounding Box Collision DetectionBounding Box Collision DetectionBounding Box Collision Detection
Bounding box collision detection is done by defining simple
geometric shapes around the sprites used for the objects and
checking if the geometric shapes overlap. Typically, the easiest
shapes to check for overlap are rectangles.

The overlap of two rectangles can also be defined as the
intersection between the rectangle or even more simply as being
true if any corner of the second rectangle is inside the first
rectangle. For example if each rectangle is defined by x1,y1 as the
top left corner and x2,y2 as the bottom right corner we can define a
collision any time rectangle two’s x1 or x2 is between rectangle
one's x1 and x2 and the same for the y coordinates.

Function BoundingBoxCollision(rect1, rect2 : rectangle)

{

 If ((rect1.x1 < rect2.x1 and rect1.x2 > rect2.x1) or

 (rect1.x1 < rect2.x2 and rect1.x2 > rect2.x2)) and

 ((rect1.y1 < rect2.y1 and rect1.y2 > rect2.y1) or

 (rect1.y1 < rect2.y2 and rect1.y2 > rect2.y2)) then

 Result := true

 Else

 Result := false

 End if

}

Bounding boxes are usually smaller than the full size of the sprite
being used as the picture of the sprite will often be surrounded by a
transparent border. In addition, the bounding box could also be
defined as a circle with a certain radius. If the distance between two
circles is less than their combined radius, there is a collision.

If the shape of a sprite is not generally rectangular or circular it is
also possible to define the collision area of a sprite as a collection of
shapes and check for collision with any of the bounding box
shapes.

Pixel Perfect Collision DetectionPixel Perfect Collision DetectionPixel Perfect Collision DetectionPixel Perfect Collision Detection
Pixel perfect collision detection is where each pixel of the two
sprites is checked to see if they are in the same place as each
other. Due to the number of tests needed to implement pixel perfect
collision detection, it should only be used when bounding box
collision detection is clearly not accurate enough. (such as when
checking if a starfish and an octopus collide).

Of course, it is not necessary to check every single pixel of the two
sprites, in fact in most cases it would be sufficient to use only the
outline of the sprites or even in many cases just a few of the outline
pixels.

Typically, pixel perfect collision detection is used along with
bounding boxes. If a bounding box collision is detected, then more
detailed tests are done to check that there are in fact pixels that
collide with each other. By wrapping the pixel perfect collision
detection within a less complex test the performance impact of the
pixel testing is minimized.

Map-based Collision DetectionMap-based Collision DetectionMap-based Collision DetectionMap-based Collision Detection
Map based collision detection works on the presumption that firstly
you know where in the game world each item is and secondly that
only one item can exist in each space of the world. By using an
array to represent the world and storing a link to the item that exists
in each space it’s a simple check to find which object is in which
space at any time. The use of an array to store where each and
every item of the game is, makes it a lot quicker to check for a
collision.

Whenever an object moves, it is first removed from the world array,
its new location is calculated and the array is checked to see if
another item is already in the required location. If no item is found in
the destination location, the item is again added to the world array.
If an item is already in the location the item wants to move to a
collision between the objects is created.

Map-based collision detection often requires objects to check for
collisions in more than one location in the world array due to things
such as item size or just to make the collision checking more
realistic. Buildings are typical examples of where an item needs to
exist in more than one map location simultaneously.

Map-based collision detection is often very suited to isometric-style
games.

ChoiceChoiceChoiceChoice
The choice of collision detection method is often based on the
game being developed. Each method of collision detection has its
place. Most games will find that bounding boxes are sufficient for
their needs.

CAIRNSWM

L

DEV.MAG ISSUE 16

Well well … This series has come a

long way now. It’s almost a year

since it started. After the previous

article, I have not had time to work on Roach

Toaster 2 due to holidays, work and school.

As I write this article, I have one week of school

left. After that, it’s all just exams until the end of

the year. This is also my senior year in school,

so my work will take priority.

In previous exams, I have worked on games

throughout, but as I sit here, I am not quite sure

if I will have enough time to really pay attention

to Roach Toaster 2 during the exams.

RT2 has been through thick and thin. It’s taking

me much longer than expected. As I have men-

tioned previously, I thought I would be finished

with beta by December 2006.

So, considering that I don’t really know what will

happen and RT2’s tumultuous devving, I have

decided to end this series for now. You will most

likely see a post-mortem once it is done, or a

beta-feedback article.

So, I thought I’d use this article to once again

explain what Roach Toaster 2 and its develop-

ment.

“What the bug is Roach Toaster 2?”

Roach Toaster 2 is the sequel to the award-

winning Roach Toaster 1. By “award-winning”, I

mean it won an international and local competi-

tion. Roach Toaster 2 also won a place in a lo-

cal competition as a WIP (Work In Progress).

RT2 places you in the command of teams of

roach toasters as you defend Big City from be-

ing destroyed by a roach infestation.

It contains multi-level gameplay. You must man-

age your teams on a city-wide scale to obliterate

the roaches. The original and addictive game-

play from RT1 is still here in a new guise. With

updated gameplay and new enhancements,

each level will be a unique challenge that can

be tackled the way you see fit.

“What is the story behind RT2?”

After you defeated your neighbourhood’s roach-

es in RT1, your team set off to Cancune to en-

joy a well-deserved holiday. Where did they get

the money? Don’t know, but who cares?

Unbeknownst to them, the Broodmother incu-

bated inside the Hoover. She then came back

with a vengeance. She is livid, and wants to de-

stroy Big City once and for all.

You must defeat her.

ROACH TOASTER 2: PICKING OUT THE BUGS
PART 7

PROJECTS LEARNING HOW IT’S DONE

Where did you get all the money? Is there some-

thing greater at stake? World-domination? Find

out when RT2 gets released.

Roach Toaster 2 has been an immense learn-

ing curve for me. It’s been my puppy for more

than a year now. Despite everything else that

occupied me, I always had time to fit in a bout

of RT2 devving.

I can’t wait to finally complete the finished, pol-

ished product.

Let me finish by saying that I already have

Roach Toaster 3 planned out. How it will play,

or what it will be, will have to wait.

Keep toasting!

For more info on Roach Toaster 2: Big City,

head on to http://www.shotbeakgames.za.net

or the new site http://www.roachtoaster.com

TROOJG

DEV.MAG ISSUE 16

15

(Wondering what we’re talking about over here? check out Dev.Mag Issue 10 for the beginning of this Project series!)

minimal amount of effort. It also provides much

more complex documentation features such as

call graphs, dependency graphs, inheritance

diagrams, and collaboration diagrams for those

developers who want to integrate these more

complex features into their project documenta-

tion. Another great thing about Doxygen is that it

has native support for most of the more popular

languages such as C, C++, C#, Java, Python,

and even PHP (sorry, no native Delphi support!).

The documentation that is generated by

Doxygen can be output into HTML, PDF, and

(my personal favourite) compressed HTML

(CHM), amongst other formats. The ben-

efits of having this documentation generated

for you automatically should be fairly obvi-

ous as it provides the ability to have your en-

tire code base documented in whatever form

suits you (ie. PDF for reading or printing, or

HTML/CHM for PC-based hyperlink naviga-

tion and searching), with very little overhead

on the part of the person writing the comments.

This documentation can then become a very

important tool for your team as it will allow

programmers to easily search for and see in-

formation (in an easily accessible and read-

able format) on any code that they may need

to deal with. This functionality becomes extra

I
t is a fact of programming life that program-

mers will make mistakes in their code. These

mistakes or errors are not usually down to

“bad programming” or any lack of talent, but

merely due to the sheer scope that most pro-

grams are comprised of. When any one program-

mer is churning out hundreds upon hundreds of

lines of code a day, it’s only a matter of time

before some of those lines will contain errors.

As discussed in the second article in this series,

proper commenting of code is a very important

part of game development. Building upon this

idea, people have gone about developing sys-

tems that allow for developers to easily create

fully featured documentation of their code by

merely altering their comments to include mark-

ers which then allow the comments themselves

to be converted into documentation. One such

system that allows this, and that I fully advocate

the use of, is Doxygen (www.doxygen.org).

Doxygen is incredibly useful because it is very

simple and straightforward to use in its most

basic form, and the results that you can obtain

from it are terrific for anyone managing the code

base of a project. It allows very robust docu-

mentation to be generated for all of the most

important areas of your code such as files,

functions, variables, and data structures with a

helpful if they are dealing with sections of code

written by other programmers, and especially

so if the original writer of the code is no longer

on the team or isn’t available to ask for help

in understanding the code that they wrote.

The basic idea behind Doxygen is that it looks

for and parses various token keywords that are

placed inside of specially formatted comment-

ing blocks that work inside of the language you

are writing your code in. There are four kinds

of commenting blocks supported by Doxygen,

and any Doxygen keyword that is found in-

side of these comment blocks will be parsed

and used for documentation generation, while

any keywords found inside of the standard

language commenting blocks will be ignored.

Supported Commenting Block Formats:

/** add comments here... */

/*! add comments here... */

/// add comments here...

//! add comments here...

One thing that you must note is that by default,

Doxygen assumes that the code being com-

mented on is located after the comment block.

In order to tell Doxygen that the code is actually

located before the comment block, you must

CODING ETIQUETTE:
DOXYGEN

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 16

16

TECH ELECTRONIC PLAYGROUND

\param -- Used to mark each parameter of a

function

\return -- Used to mark the return value of a

function

Doxygen also provides various miscellaneous

keywords that can be used at any time in order

to mark various points of interest in the code.

These keywords are very helpful in creating

more robust documenation, especially for the

purpose of adding specific types of notes to

complement the more technical nature of the

documentation related to the code itself.

Misc Doxygen Keywords:

\ref -- Creates a hyperlink reference to a spe-

cific keyword

add a extra ‘<’ to the comment format. This

style of commenting is most useful when you

are creating a comment for a variable defined

locally, globally, or inside of a data structure.

Trailing Commenting Block Formats:

/**< add comments here... */

/*!< add comments here... */

///< add comments here...

//!< add comments here...

The basic code-items that Doxygen pro-

vides documentation support for are files,

functions, and data structures. The key-

words that denote these items are placed

into comments that exist next to them, and

are used to specifically define various types

of code for the documentation generation.

Basic Doxygen Keywords:

\file -- Used to denote a file

\struct -- Used to denote a structure

\class -- Used to denote a class

\union -- Used to denote a union

\enum -- Used to denote an enumeration

\var -- Used to denote a variable

\def -- Used to denote a #define

\brief -- Used to provide a brief description

about something (ie. function, structure, etc.)

\note -- Creates a ‘NOTE’ in the source docu-

mentation

\warn -- Similar to \note, but it is more visible in

the generated documentation

\todo -- Creates an entry in the ‘TODO’ section

of the generated documentation

\fixme -- Creates an entry in the ‘FIXME’ sec-

tion of the generated documentation

Remember that all of these keywords com-

prise only the core handful of keywords that

Doxygen has available for use. There are

dozens and dozens more keywords that ex-

ist, and it is up to each and every devel-

oper to find out which ones may or may not

be helpful for their documentation needs.

COOLHAND

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 16

17

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 16

18

Simple Example of Doxygen Commenting

/**
 \file vector.cpp
 \author Luke Lamothe
 \date Saturday, 18 August, 2007
 \version 1.0
 \brief File containing vector math utilities
*/

/**
 \struct tVec2D
 \brief Structure that defines a 2-dimensional vector
 \note There is a \ref tVec3D structure for use if you need to use 3-dimensional
vectors
*/
typedef struct
{
 float x; ///< The x component of the 2D vector
 float y; ///< The y component of the 2D vector
}tVec2D;

/**
 \struct tVec3D
 \brief Structure that defines a 3-dimensional vector
 \note There is a \ref tVec2D structure for use if you need to use 2-dimensional
vectors
*/
typedef struct
{
 float x; ///< The x component of the 3D vector
 float y; ///< The y component of the 3D vector
 float z; ///< The z component of the 3D vector
}tVec3D;

/**
 \param psVecA The first vector to use in the dot product calculation
 \param psVecB The second vector to use in the dot product calculation
 \return float The result of the dot product between the two vectors
 \brief Utility function to calculate the dot product between two 2-dimensional
vectors
*/
float Vec2DDot(tVec2D *psVecA, tVec2D *psVecB)
{
 float fResult;

 //calculate the dot product of the two vectors and return it
 fResult = (psVecA->x * psVecB->x) + (psVecA->y * psVecB->y);
 return fResult;
}

/**
 \param psVecA The first vector to use in the dot product calculation
 \param psVecB The second vector to use in the dot product calculation
 \return float The result of the dot product between the two vectors
 \brief Utility function to calculate the dot product between two 3-dimensional
vectors
*/
float Vec3DDot(tVec3D *psVecA, tVec3D *psVecB)
{
 float fResult;

 //calculate the dot product of the two vectors and return it
 fResult = (psVecA->x * psVecB->x) + (psVecA->y * psVecB->y) + (psVecA->z * ps-
VecB->z);
 return fResult;
}

TECH ELECTRONIC PLAYGROUND

W
elcome back, fellow coders! Pre-

pare yourselves for the fi nal,

bumper episode of the Trig Tril-

ogy, where I cover a whole lot of awesome

trig techniques for your game-making plea-

sure. We’ve got a lot to cover, so let’s jump

right in. It’s time for my fi rst trick! Now, as

you can see, there is nothing up my sleeve ...

Relative Angling 101

No matter what kind of game you’re working

on, more often than not you’ll need to calcu-

late the angle between two objects for some

reason. It’s time to look at a chunk of code that

can make your life very easy in this regard:

What this code does is fi rst calculate the dif-

ference in x and y coordinates between

the two objects, then divide as per the arc-

tan ratio. X1 and Y1 represent the coordi-

nates of the object you want to calculate the

angle from. X2 and Y2 are, obviously, the

coordinates of the object whose angle you

want to measure relative to the fi rst object.

We perform the subtraction because all trig cal-

culations assume that our origin is at point (0,0)

on the Cartesian plane. As a result, we need

to use relative measures, essentially making

point (X1,Y1) our origin . If this all seems re-

ally confusing to you, worry not. I’ve summed

it up for you in these two diagrams. As you can

see, there’s a massive difference between the

two depending on whether you subtract or not!

One fi nal thing to note is that this algorithm will

give you the angle in radians, as was discussed

last month. Remember to convert the answer

to degrees if that’s what your game requires!

And there you have it: all you need to know

about calculating the relative angle between

two objects! That wasn’t so complicated, was it?

Goin’ Round in Circles

One of the most prevalent problems that fi rst-

time coders have is making objects follow

a circular path. There could be any number

of uses for this – having a targeting reticle or-

bit around your game character, or perhaps

GAME CODING WITH TRIGONOMETRY
PART 3

TECH WHEN MATHS GETS USEFUL

DEV.MAG ISSUE 16

19

Figure 1a: Angle calculated without subtraction

Figure 1b: Angle calculated with subtraction

GAME MAKER TIP:

There are several functions you can use

in GM to calculate your angles. You can

use the same algorithm as above or use

the slightly altered arctan2(y,x) function,

meaning you don’t have to divide fi rst. By

far the easiest, however, is to use the point_

direction(x1,y1,x2,y2) function, which

also converts the angle to degrees for you

as a little added extra! The choice is yours.

(What manner of trickery is this? To delve into the mysteries of trigonometry properly, maybe Dev.Mag Issue 14 would be a better starting point!)

within a set distance of that centre. We can

do that using the following two algorithms:

“centreX” and “centreY” refer to the coordi-

nates of the position/object we want to rotate

around. It’s important that we have these, oth-

erwise (as with our angle calculations) the ob-

ject is going to rotate around the screen/level

origin (0,0) instead of the centre we want.

“Radius” is obviously the radius of our circle,

and “Angle” is the relative angle between the

centre and the orbiting object. Changing the

Angle will rotate the object around the centre.

Increasing or decreasing the Radius will move

the object further from or closer to the centre.

Changing the centreX and centreY coordi-

nates will, of course, move the centre and the

spinning object with it. That’s all there is to it!

A fi nal note. If you’re implementing a spinning

object where you keep increasing the angle

to create rotation, it’s wise to reset the Angle

to 0 once it exceeds the measure for one full

rotation (either 360 degrees or 2π radians).

Although it shouldn’t make much difference

to your calculations, it certainly keeps things

cleaner, and ensures that you know exactly

what range of numbers your code is working

with. This can make debugging a lot easier.

a spinning-blade-on-a-chain trap for hapless

players to wander into. Either way, if you’ve

ever wanted to have one thing spinning

around another, this is exactly what you need!

Fortunately, circular positioning is not at all diffi -

cult to do for us mighty trig-wielders. As always,

let’s look at exactly what we’re trying to ac-

complish here in the form of a handy diagram.

Figure 2 depicts what is commonly referred to

as a “circle”. This shape is notable because it

has a constant radius. That means that regard-

less of where you are on the circumference,

you’ll be exactly the same distance away from

the centre. This gives us an important clue.

Figure 3 depicts our situation more clearly.

What we really want to do in code terms is

to calculate the x and y coordinates of an

object while ensuring that, regardless of

its angle to the centre, it always remains

What’s this? There’s more?

Yes! Sometimes you may want an object

to move in an elliptical fashion, especially if

you’re creating an isometric game where the

perspective means that you need ellipses

to represent circles and circular movement.

Fear not, good people! By altering the radius

values in the circular positioning algorithms,

we can make objects follow an elliptical path.

The trick is to realize that the radius in an el-

lipse is not constant – the radius for its vertical

proportions is different from the radius for its

horizontal proportions. For instance, the fi rst

ellipse in Figure 4 has a vertical radius of 2,

which is half of its horizontal radius of 4. We

need to alter the radius values in our algorithms

to refl ect this distorted relationship. For the fi rst

ellipse, our expressions would look like this:

For the second ellipse, our ex-

pressions would look like this:

I’m sure that the relationships between the

radii that you specify and the ellipse’s pro-

portions are becoming crystal clear to you.

Other than that, the code works in exact-

ly the same way as with a regular circle.

TECH WHEN MATHS GETS USEFUL

DEV.MAG ISSUE 16

20

Figure 2: The humble circle

Figure 3: Shazam! Trig’d!

GAME MAKER TIP:

Game Maker makes things easy for you

again by providing the lengthdir_x(len,dir)

and lengthdir_y(len,dir) functions. These

take your circle/ellipse radius (len) and di-

rection (dir) and calculate the correct x and

y values for you just like we did above. No

mess, no fuss, and you can use them any

time you need to resolve an angled line to

x and y coordinates, not just with circles.

Just remember to add the centreX and

centreY coordinates to the fi nal answers!

Figure 4: Ellipses gone wild

Here are the algorithms you would use:

These algorithms are actually very similar to the

ones we use for circular positioning. As before,

Radius will determine the maximum distance

from the centre our object can move, and Angle

will determine at what point in the wave our object

is. However, an essential thing to note is that we

no longer have to use Sin for vertical displace-

ment and Cos for horizontal displacement, be-

cause we’re only displacing along one axis now.

Let’s back up a bit. If we don’t have to care

about using Sin or Cos, what’s with the big

“OR” in there? Well, it depends on how you

want your wave to behave. Oscillation using Sin

or Cos results in slightly different wave patterns:

The Sin graph begins its motion at a displace-

ment of 0. This means that using Sin as your

trig function will result in your object’s motion

starting at the centre point you specify. Like-

wise, the Cos graph begins its motion at the

maximum point, so using Cos as your func-

tion for oscillation will result in your object

starting at the maximum radius you’ve set.

Wave Motion - Cowabunga!

For our fi nal trick, we’re going to cover a very

useful function of trig – creating wave motion

(or oscillation), for game objects. Ever played

a scrolling shooter where the enemy ships

move in a wavy pattern across the screen,

or stood amazed at the helical particle trail

left by a weapon? Well, here’s how it’s done!

All the time that we’ve been doing trig, you’ll

have noticed that we’ve been using two algo-

rithms – one to calculate the X (horizontal) co-

ordinate, and another to calculate the Y (ver-

tical). As you learned while we were covering

circles and ellipses, we can use the two to cre-

ate rotation around an object. Altering the ra-

dius values for either equation lets us warp the

circle’s proportions, creating elliptical motion.

Have you asked yourself what would hap-

pen if we left one of the calculations out?

What if we neglected to calculate the X value?

What if we left the Y value out in the cold?

Well, we’d still get movement, but it would

be exclusively on the axis for which we cal-

culated it. That’s the magic behind wave mo-

tion. To demonstrate, yet another diagram:

The arrows in fi gure 5 illustrate the rotational

motion. You should notice that as we reduce

the horizontal component’s radius to zero,

the rotation becomes less “circular” and more

“wavy”, wobbling between the radius points and

the centre. The point that I’m trying to convey is

that, used alone, a trig function can be used to

introduce oscillation to an object’s movement.

So how does this translate to our code? Well, for

example,will result in oscillation along the x axis

starting at the centre, while will result in oscilla-

tion along the y axis starting at the radius. Clear?

One fi nal thing. You may already have gath-

ered this, but it is possible to alter the speed

of oscillation by multiplying or dividing your

Angle variable. You can use this to easily

change how quickly the object moves along

the wave. Multiplication will make your ob-

ject oscillate faster, while division will slow it

down. This can result in quite a few interest-

ing special effects or challenges in your game.

It’s Over!

This marks the end of this little introduction

to game programming with trigonometry. As

you’ve seen over the past three installments,

trig has an incredibly wide range of effective

uses when programming games. Hopefully

you’ve not only grasped the techniques cov-

ered here, but you’ve also gained the abil-

ity to apply trig to whatever problems you

may come across when coding in the future.

Properly applied, trig is a highly fl exible, in-

credibly powerful tool in your programming

arsenal, especially if you plan on creating 3D

games later on. Good luck, and happy coding!

GAZZA_N

TECH WHEN MATHS GETS USEFUL

DEV.MAG ISSUE 16

21

Figure 5: Thinner and thinner

Figure 6: Sin and Cos graphs

O
ptimising data, optimising code ... it

all sounds like such a waste. This ar-

ticle outlines some simple and effec-

tive strategies on spotting and fixing bad code

concepts, which slow a program down in more

ways than one. We will look at these strategies

and cover some new ideas which are all relative

to creating games, especially when stepping

out into coding your own engine or even just

coding. Regardless of the application or code

usage, optimisation is important yet overlooked.

Writing cutting-edge games is on all of our to-

do list, but are we really TRYING to get there,

or are we in a frenzy to learn as much as we

can as soon as we can, skipping vital steps

which get us to a better rounded end prod-

uct? I’m making this statement as it is one

which resides in my mind whenever i step

into any project. Rather take the time and

make a masterpiece than skip a few steps and

end up with another project to revise and fix.

Let’s see what we have here...

Optimisation: Modifying a system to improve

its efficiency – whether it’s a single loop, a

single program, or even the entire Internet.

Profiling: Setting up points in code that count the

number of clock cycles and/or time it takes to

execute certain blocks of code. This effectively

singles out the slow code in your program/sys-

tem and allows you to revise and improve the

system.

Code optimisation may be something out of

your reach, or so you thought. We spend time

making games and i have run into cases where

i end up with a non-viable solution which ends

up in the “bin” or in the revise folder, when a

simple look at optimising DURING a project has

saved me more than a dozen wasted projects.

Optimisation must be approached with cau-

tion. Tony Hoare first said, and Donald Knuth

famously repeated, “Premature optimization

is the root of all evil.” It is important to have

sound algorithms and a working prototype first.

System design and the internal architecture of

the code is the largest weight on performance of

a system. The choices in this stage affect effi-

ciency more than any other area during design.

This was something i read recently which

has quite the obvious pointed out to

you — to look carefully at optimisation:

“’Premature optimization’ is a phrase used

to describe a situation where a programmer

lets performance considerations affect the

design of a piece of code. This can result in

a design that is not as clean as it could have

been or code that is incorrect, because the

code is complicated by the optimization and

the programmer is distracted by optimizing.”

Sometimes, early optimisation over-

throws benefits and can destroy the proj-

ect core with sloppy or dangerous code.

Optimisation is a subject many developers

overlook, which is a fatal mistake in the indus-

try, especially on the game development side.

People think due to the fact that technology is

daily becoming more and more powerful, code

and other optimisation is not really something

that is necessary in projects, but they forget the

main point which they themselves would look

at when evaluating a product or solution: which

one is faster? If the next creator of the same

solution was marketing it as faster, whose

solution would you pick up off the shelf?

Optimisation does not come without costs, as

it is usually more difficult to maintain an opti-

mised program than an unoptimised one, as

many optimisations sacrifice maintainability for

speed, or resources. When you optimise each

piece of code, you need to be aware of a few

things of importance. After I have “optimised”

a piece of code, I must go back and check

the correctness, where sometimes the code

will cause incorrect output. Also, you should

measure the performance and compare it with

that before the optimisation. Often enough, it

will be slower due to compiler optimisations

which you cancelled out, or other less obvi-

ous changes in the compilation and execution

stages. Once I have sorted it out and there is

an increase, I may check the performance ac-

cording to the goal set out, and stop optimis-

ing so I don’t change anything unnecessarily.

There’s a few simple tactics to optimise your

code and not have to run through a hundred

thousand lines of code searching for bottlenecks.

Take these steps practically in your current/next

project and notice how little time is spent on op-

timising small areas of code post-completion.

Optimisation happens during coding as well as

design. If you are inclined towards speed, it

becomes a major part of the coding stage. Be-

low, you will read the strategies I employ when

working with a relatively “slow” acting program,

and these apply to all code strategies and meth-

ods as well as most applications of optimisation

– not only games. For example, I use these

common techniques when I work on mobile ap-

FOR A SPEED SURPRISE, GO
OPTIMISE!

TECH OPTIMUS PRIME?

DEV.MAG ISSUE 16

22

improve your code speed when employed

accurately and in context with the project.

Loop hoisting

I found myself doing this a lot in my code, and

after learning about the inefficiency, it became

a habit to automatically change it if I saw it,

or straight-up code it as I go. The idea be-

hind these loops is illustrated easier through

code, and with time and focus you could eas-

ily use the following to prevent useless redun-

dancy. Below is an example in pseudo-code.

for counter = 1 to 10

 if (thisIsTrue) then

 doThis(counter)

plications due to the limited processor power,

which greatly speed up time on the device, and

on web development projects where effectively

managing code and resources means less

server-side overhead...less cost, less hassle.

Code efficiency

Creating code that is fast AND portable AND

functional is a considerable task and takes

practice to be able to catch the dodgy code

in its tracks and fix the bottlenecks. Code

profilers are your friend – run them and fil-

ter the results for anything that is slower than

it seems it should be, then go to your source

and optimise it. This is where the techniques

and ideas behind optimisation can greatly

 else doThat

 end if

Let’s analyse this code ourselves. The loop

runs ten times checking a certain value. You

may notice that the code is inefficient because

EVERY loop it has to break off into conditional

statements, which is using up CPU power, as

well as the CPU trying to guess logical output

which if is wrong (+- 50% of the time) it needs

to backtrack to carry on with the right instruc-

tion and reload it. This simple problem looks not

so intense, until it is being used to poll or test

every frame of a game, and aiming for higher

framerates will result in even more work. Let’s

look at the new code, which uses loop hoisting

as an effective means to release bottlenecks.

TECH OPTIMUS PRIME?

DEV.MAG ISSUE 16

23

time spent on the array. These situations are

common but often unnoticed and discarded be-

cause more array space may be needed, which

again these days seems more or less irrelevant.

Profiling and disassembling

Running profiling programs on your code can

give you a large amount of feedback. This

will help you pinpoint various issues in code,

and effectively eliminate the problem areas.

Finding the area of problem is one thing, op-

timising it is another. Another strategy I use

is to disassemble the compiled code, which

gives you the assembler representation of

your code. If you know or learn assembler, it

helps you easily see wasted instructions and

find better ways of removing redundant code.

Data management

Please, believe me when I say this: data is

the most often overlooked bottleneck. It slows

down almost every part of an application if

implemented badly. Looking at revising a data

module of sorts could be a hefty task, but weigh

up how much it would be worth it if your data

was well-placed, always ready to be used, and

always efficiently not hogging up memory. The

projects styles always have some restriction of

sorts, and some concept of sorts, and almost

always uses a data setup that is badly imple-

mented due to the “it’s data, it just needs to

be there when i need it” attitude. This, above

all else, can speed an application up by a

MASSIVE amount. Load what’s needed, and

remove it when its not. There’s no point in keep-

ing the data in memory if the user decides to

choose “Quit to menu”. They’re probably not

going back into that section of data and memory

right away, so unload it and load what’s needed

next, instead of having to unload it again while he

is expecting to load a new level or different save

game. Data management and effectively using

the data will benefit you in any type of program.

if (thisIsTrue) then

 for counter = 1 to 10

 doThis(counter)

else doThat

end if

This is QUITE a large improvement – it now han-

dles the if statement once and once only, not

ten times every frame. When it comes to con-

trolling larger structures, nested loops can be

hoisted to avoid excessive use of the processor.

Data types and sizes

Back in the day, using smaller data types was

better because of certain impacts on the sys-

tem and its processor. These days, we see

that using smaller variables is often not an is-

sue for the size of the matter, but more for the

speed. If you’re using smaller sized integers,

use ONLY that size in that piece of code or ap-

plication. For example, using a small integer

value and a long or larger integer value re-

quires a conversion to different sizes EVERY

time that code is used or accessed, wasting

time away in the cycles of the processor. This

has a large impact on the processor in more

intense applications, such as those with image

processing, video encoding, large array usage

and many areas in game map management.

These techniques are especially useful when it

might be that extra “un-lag” strategy you need.

Array sizes

Remember that working inside your proces-

sor is many instructions and commands all

usually which work a lot more effectively with

powers of two. A basic understanding of what

happens inside the processor will show that it

has to make extra calculations for a 3 x 4 grid,

because it needs to use multiplication and other

means to find the index in the array, where as

a simple 4x4 grid would use binary shifts which

are a lot faster and more effective, reducing the

Function sizes

If your function code is crossing boundaries – as

in not doing its SPECIFIC function – it is being

wastefully implemented. If you code your func-

tions effectively, the profiling will be a hundred

times easier. This is because it has to find the

bottlenecks in the code, and if you have twenty

functions in one, the profiler (usually working

on a per-function profile) will tell you it’s slower.

Parallel execution

Amdahl’s Law states, “Parallel execution is the

most common technique for speeding up large

applications, but it alone is not sufficient for all

cases.” In particular, Amdahl’s Law claims that

the inherently sequential portion of a program is

the limiting factor of speed improvements.

These are very basic and not in-depth, but will

get you started before you hit your favourite

search engine and find more information on

taking control of code and effectively speed-

ing up a system. Game development is an

important optimisation concern as the faster

a frame can be processed, the more that can

be done in one frame. For example, this helps

when speeding up the code for drawing the

scene will allow enough of a speed increase

to introduce another interesting effect or phys-

ics change in a game engine. This article is far

from complete, but is sufficient in my views to

take you to the level of understanding that one

needs to watch out for some common pitfalls in

code practices. Take this with a pinch of salt,

and ignore what you don’t need or like! Enjoy!

FUZZYSPOON

TECH OPTIMUS PRIME?

DEV.MAG ISSUE 16

24

A
s the end of 2000 approached us, we

were already well under way with our

Xbox development of Chase. From

what I remember, it took us less than a week

to get almost all of the game as it was ported

from PC to Xbox, which is a terrific testament

to not only how comparable the basics of

Xbox development were to PC development,

but also how robust and easy to use the Xbox

SDK was, as well as how good their support

system was through not only their develop-

ment Newsgroups, but also through their pri-

vate technician support. Once we had finished

getting the game up and running for Xbox,

we began to perform various major overhauls

on it in order to take advantage of the supe-

rior hardware that we now had at our disposal.

We started by completely throwing out all art

assets that we had previously created and went

about making all new worlds, props, and vehi-

cles with polycounts that approached between

5 and 10 times what we had previously been us-

ing for the PC version. We also now had access

to guaranteed shader technology (no more wor-

rying about end-user specs!), so we were able

to start incorporating some special effects such

as bump mapping, light mapping, realtime cube-

map reflections, realtime shadows for objects,

and object self-shadowing. While this graphical

overhaul was being done, additional changes to

the game itself were being incorporated. Dave

added motorcycle physics, complete with the

ability to do “wheelies”, to the game which now

gave us four types of vehicles that we could use

(standard four wheel vehicles, three wheeled

vehicles, multi-body articulated vehicles, and

motorcycles). Pedestrian and traffic AI were

also overhauled in order to make them behave

smarter as well as more realistically, and a

dynamic replay system was added which al-

lowed levels to be recorded and played back.

Unfortunately, all of this exciting stuff was offset

by more unsettling events within our team, the

first of which being Matt’s wife moving back to

the US in early 2001. She was tired of not being

able to work, due to the lack of a work permit,

and she also was starting to miss her family

back home. This obviously put a lot of strain on

Matt as he really wanted to stay and finish the

development of Chase, but in the end, he did

the only thing that he could do and also returned

to the US sometime around August of the same

year. Dave and Staci had a baby boy early in

the year, which I think made Staci miss her fam-

ily even more, and as a result, she also moved

back to the US when we went overseas for E3

THE HISTORY OF I-IMAGINE
Part 7: Enter the publisher

HISTORY WHERE IT ALL BEGAN

in May. As expected, Dave also left us in order

to be with his wife and child at the start of July,

once he had come back to South African after

E3 in order to tie up some loose ends. Luckily,

we were able to find two very able replacement

programmers for them in Chris and Matt who

along with a third programmer, Andrew, helped

us to complete the development of Chase.

However, before Dave and Matt would leave us

to be replaced by Chris, Matt, and Andrew, we

had the small matter of E3 2001 to prepare for.

The lead up to E3 was was pretty exciting

for us as we were asked by Microsoft to sub-

mit some video footage of Chase for them to

incorporate into their E3 promo video which

would be running on the big screen in the

middle of their stand. From what I can remem-

DEV.MAG ISSUE 16

25

(Who? What? Where? If you’re lost concerning I-Imagine, check out Dev.Mag Issue 10 for the start of this article series!)

ber, I think that they ended up using three or

four clips of the video footage, each one run-

ning for between three and five seconds or so.

It was definitely quite an awesome feeling to

be standing in the Microsoft booth at E3 while

watching footage of your game up on the big

screen! But before we even got to Los Angeles

for E3, I had to endure the craziest crunch of

my life. For the most part, the deadline leading

up to E3 was relatively normal. We had some

pretty good stuff to bring with us already due

to the pre-E3 deadline that we had imposed on

ourselves in order to get the video footage to

Microsoft, but there was one important feature

that we needed to have working perfectly before

going to E3, and that was our replay system.

The system itself was basically a list of inputs

from the player, which when played back at

their appropriate time, would recreate a previ-

ous gameplay experience perfectly. However,

this means that the entire engine needs to

behave in a deterministic manner, and if any

code is added that goes against this philoso-

phy, it will cause the replay system to come to a

grinding halt. Unfortunately, this is what began

to happen to us the day before we were due

to fly to E3. I don’t remember the specifics of

what caused the system to break, but I think it

was an addition to the AI code which was us-

ing the “random” function in ways that it wasn’t

supposed to. I do however remember staying

awake at my desk for 21 hours while Dave

worked his butt off trying to fix the problem.

What made this crunch even more important

(and therefore stressful...) is that Dan had left

for E3 a day earlier than us without so much as

a single working copy of the game, so it was up

to us in order to get everything in order before

we left to join him in LA. Luckily, Dave managed

to sort out the issue at around 7am the next day

and we boarded the plane to LA with a well put

together demo of our game. Looking back, I can

always manage to laugh about the situation, but

at the time, it was insanely stressful and scary

for all of us. Unfortunately, yet again all of the

hard work that we put into the game before

heading to E3 didn’t pay off for us as we were

still unable to attract a publisher for Chase,

With yet another trade show gone past us

where we were unable to sign a deal for Chase,

we decided that another overhaul was needed

for the game in order to get everything to the

level where we would be able to have pub-

lishers interested in signing us. We yet again

threw out all of our worlds (I believe that there

were only three at this time) and went about

redesigning them to be even better look-

ing than we had in done up to now. We also

decided that we needed to make the game

more than just A-to-B driving, and ended up

coming up with a challenging yet rewarding

system for the gameplay to be based around.

At the end of the day, our desire was to make

the game fun to play while limiting the frustration

factor as much as possible. We took to heart a

lot of what we learned from Noah Falstein’s time

with us and decided to focus on rewarding the

player while at the same time removing as many

forms of punishment as possible. We achieved

this by making each level in the game have a

certain number of objectives to complete, where

each objective was worth a certain number of

points in the player’s career. Once an objective

was completed in a particular movie scene, it

would stay completed and the player would re-

HISTORY WHERE IT ALL BEGAN

ceive the points for it. A player could then replay

the level, doing another “take” for the movie

scene and focus on completing objectives that

he wasn’t able to during the previous attempt.

This system allowed us to make it that most lev-

els actually required the player to do multiple

takes if they wished to complete all of the objec-

tives, as it just wasn’t possible for them to com-

plete each and every objective in a single take.

The points that the player received were nec-

essary in order to “unlock” the next scenes in

each movie, and ultimately the next movie

in the player’s career. This meant that the

player could play a level and complete what-

ever objectives he was able to, then as long

as they had earned enough points based on

the completed objectives, they would be able

to progress to the next scene in the movie.

This enabled us to lower the frustration level

for players who weren’t necessarily “hardcore”

gamers and possibly wouldn’t be skillful enough

to complete all objectives for each and every

level. However, a player may only complete the

bare minimum number objectives necessary to

progress for a while and then reach a scene or

movie that they wouldn’t have enough points

to unlock. In these cases, the player could

DEV.MAG ISSUE 16

26

HISTORY WHERE IT ALL BEGAN

backtrack to a previous scene and attempt to

complete any objectives that still remained in

order to earn enough points to unlock the next

scene or movie. In most cases, players would

have increased their skill level with the game

compared to what they had when attempting to

complete earlier scenes, so objectives in these

scenes that may have been too difficult earlier

on, would now be within their ability to complete.

As mentioned, not only did this system reduce

the amount of frustration in our game for nov-

ice to intermediate players, it provided play-

ers with a longer gaming experience without

feeling punished for failure, as in each take

they could focus on achieving an objective or

objectives that they felt were within their abil-

ity. This also had the beneficial side effect of

allowing our small development team to only

have to build a relatively small number of lev-

els for the game, and then reusing some of

them to stage more than a single movie scene.

On top of creating better looking graphics and

designing a more fun and interactive game-

play system, we also felt that in order to make

players feel as though they were involved in

a Hollywood action movie that we needed to

have a lot more action happening around them.

In order to achieve this, we went about mak-

ing the game environments as interactive as

we possibly could. The first part of doing this

involved creating a more advanced vehicle

damage system that had per-vertex damage,

which allowed us to blend both vertex and tex-

tures between normal and damaged versions

of each vehicle in the game. We expanded

this system to allow us to have parts of the

vehicle detach and become interactive parts

of the world once they had sustained enough

damage. This meant that bonnets, doors, and

even roofs would eventually break off of the ve-

hicles once they had been sufficiently battered.

The second part of creating a more interac-

tive world was for us to make as much of the

environment as possible to be destroyable in

some way or another. We were able to have

pretty much every object in the game that could

be hit except for buildings (ie. fire hydrants,

lamp posts, telephone booths, etc.) damage-

able or destroyable in when interacted with.

This meant that all of these items either

swapped to damaged versions of them-

selves, or broke up into multiple pieces,

each one with their own physics (ie. a tele-

phone booth would break into it’s four sides

plus the roof, a wooden fence section would

break up into individual planks of wood, etc.),

And on top of that, some objects would even

have their own added effects (ie. a fire hy-

drant would leave behind a shooting jet of

water that would apply a force to any objects

that hit it, including the player’s vehicle).

HISTORY WHERE IT ALL BEGAN

While we were busy implementing all of these

changes, we were contacted pretty much out of

the blue by a producer from a company called

BAM!. They were relatively new to the world of

game publishing and they were looking at add-

ing titles to their Xbox lineup. The producer’s

name was Joe Booth and he liked what he saw

in Chase from our website, so he wanted to

come down to South African and visit us in or-

der to see how our studio was set up. So some

time in August 2001 I believe, Joe made his

way to the I-Imagine offices where he was more

than impressed at what he saw. Not only was

he happy with the direction that the game was

taking and how it looked in person, he was even

DEV.MAG ISSUE 16

27

more impressed with the team that we had put

together and the tools and technology that we

had developed as the backbone of the company.

In the next week or so after Joe had returned to

the UK, we were already in contact with them

in regards to their interest in publishing Chase.

We began to negotiate with them via phone

and email, and then headed to ECTS in Lon-

don at the start of September in order to work

on the finer details of the publishing deal. As

the deal wasn’t 100% guaranteed yet, we also

met with some other publishers while we were

in London, but all of our focus and energy was

really spent on getting the deal with BAM! done.

By the time that we left ECTS, which was to-

wards the end of the first week of September

2001, we were quite confident that the deal

would be finalised in the next few weeks or so.

However, only a few days after we got back to

South Africa, the unthinkable happened. 9/11.

As everyone knows, the financial climate imme-

diate after the events on September 11, 2001

was not very stable. There were big drops in the

stocks of virtually all companies due to worry

about the state of world affairs, and BAM! was

not an exception. Due to the stock price of BAM!

suffering as it did, they unfortunately had to pull

out of negotiations with us for the time being

as they just didn’t have the capital in order to

publish Chase available to them anymore. As

you can imagine, we were quite upset about

this turn of events, but luckily towards the end

of the year, the stock markets stabilised and

BAM! was once again in a position to publish

Chase, so Joe flew back down to South Africa

after Christmas in order to meet with us and our

board of directors in order to finalise the deal.

Once the deal was completed, we were as-

signed a Producer by the name of Barry. At first,

Barry worked with us remotely in order to get

the production schedule finalised and to work

on the final direction that the game would take.

A few months into the schedule, he came down

to our offices and stayed with us for a couple

of weeks while he tested the game and we

all worked together on ideas for finalising the

rest of the game levels. Once this was finished

however, we realised that we were behind on

our initial time projections, and that we would

not be able to make BAM!s deadline for hav-

ing the game to market. Unfortunately, this

date could not change as they had already an-

nounced their financial projections for the quar-

ter in which the game was due to be released,

and they did not want to cause unrest with their

shareholders. So, Barry came back down to

South Africa a short time later and spent the

next few months crunching with us in order to

not only have the rest of the game built, but also

gameplay balanced and bug tested so that we

would be back on track again. This unfortunate-

ly meant that we had to drop 1 scene from each

of our 4 movies, so we ended up with 16 differ-

ent movie scenes instead of our intended 20.

Even with the change of schedule, we managed

to complete the game around the start of Au-

gust 2002, at which point it went into the TRC

(Technical Requirement Certification) process

at Microsoft. It failed at least once, possibly

twice, but it was finally approved for gold status

around the middle of September, and was avail-

able in stores in North American and Europe in

the last week of September 2002. Once reviews

for Chase: Hollywood Stunt Driver (as it was

now known) started to come in, we were sur-

HISTORY WHERE IT ALL BEGAN

prised at how mixed they were. There seemed

to be just about as many people scoring us at

80% and higher as there were scoring us at

50% and lower. Ultimately, I think that this was

probably due to the pick-up-and-play design

that we had for the game. A lot of people found

the game very fun, compelling, and addictive to

play, while a whole range of other people found

the game to be too easy, bland, and repetitive.

After all of the reviews were finally done, we end-

ed up averaging around 65% or so if you look at

Metacritic (http://www.metacritic.com/games/

platforms/xbx/chasehollywoodstuntdriver?q=c

hase) and GameRankings (http://www.gamer-

ankings.com/htmlpages2/518048.asp). While

we weren’t very happy with the lower scores,

we were quite proud of being able to make a

game that a lot of people found to be fun to play,

which after all is primarily what playing games

should be about. As for how well the game sold,

the last sales figures that I was made aware of

indicated that about 175 000 units had been

sold worldwide. This isn’t a tremendous amount

at all, but we were pretty happy with it consid-

ering that it was our first title, that BAM! didn’t

spend very much money on marketing it, and

that it was available on only a single platform.

Overall, we were pretty happy with how things

turned out with Chase: Hollywood Stunt Driver.

We made a lot of mistakes and learned a lot

of good lessons. We lost a lot of good, expe-

rienced employees, but we were able to find

many talented South Africans who were ready

to jump in and take their place. In addition to the

previous South Africans who were hired, during

the final year or so of our development of Chase

we manged to hire a whole slew of additional

3D artists with Steven, Louis, Corlen, Gary, and

Lee. Around the start of 2001 we also began

to put together a team to focus on developing

titles for the Gameboy Advance. To achieve this

we hired an additional programmer named Dio-

rgo to work with Derek, and also hired Michael

and Dominique as 2D artists to work alongside

Jeanine in developing the art for the game,

who’s story will have to wait until another time.

COOLHAND

DEV.MAG ISSUE 16

28

O
ne day, you stumble into your

friend’s room and find him sitting in

the corner with a Gameboy Advance,

hunched over it like a guilty teenager caught

reading Playboy – except the hunch isn’t in-

spired by guilt. In fact, your friend hasn’t even

noticed you entering the room. He’s completely

absorbed with the little machine’s electronic

antics. You begin to wonder what the heck is

going on. After all, this friend is not a gamer.

Not by a long shot. He doesn’t even know

how to play Quake. In fact, you’d be surprised

if he even knew that the game existed. Yet

there he’s sitting, enthralled by a Gameboy.

Surprising, but cute. The poor bugger’s trying

to dabble in a world he has no idea about! At

this point, a strange paternal instinct kicks in

(either that, or a subconscious urge to go laugh

at him), so you go to see how he’s doing with

his foray into gaming. Then comes the next

surprise.

“Oh, this old thing? I’ve had it for ages, play it

every day.”

Turns out he loves Gameboy. He also shows

you his collection of bookmarked web games,

puzzle titles and miscellaneous gaming doo-

hickeys. All this time, he’s been gaming even

more than you had, and you never had a clue.

You’ve sat with your AAA titles and large-scale

LAN events for all that time without a hint of

what lay beyond your own small gaming world.

Yes. Small.

Ladies and gentlemen, the truth is that gam-

ing as we know it is only the tip of the iceberg.

Sure, the big titles out there receive the press

attention, the rave reviews and the competi-

tive events, but in the eyes of the industry,

our world is but an afterthought – a sugar-

coated entity which garners attention but is

ultimately shallow. Under the radar, an esti-

mated 60 million people are heavily involved

in the world of casual gaming, an industry

which is already worth about $350 million.

These numbers are set to increase radically in

the next few years as gaming becomes even

more accessible and appealing to

the mainstream. And game develop-

ers need to cotton on to this idea.

TAILPIECE DA CASUAL GAMER

Why casual gaming?

More realistic scope

As much as most new or hobbyist developers

are hoping to create “the next big thing”, the

casual gaming market is not only far more ac-

cessible, but a far more logical target. In by-

gone eras of game development, a one-man

team could go ahead and code a masterpiece

– nowadays, the industry is dominated by ...

well, the industry, which leads most indie de-

velopers to believe that the noose is tighten-

ing around their necks. Yet a quick look on

the Internet will provide an alternative – a ripe

playground free of hundred-strong teams and

gigantic budgets. Developers, your niche calls!

Focus

A common trait of casual games (particularly

that quick “puzzle” brand of games that people

can play in 5-minute sessions) is that they rare-

ly fuss with such concepts as storyline, mid- to

long-term user goals, variation or continuity.

IN CASUAL WE TRUST
A look into the casual gaming market...

DEV.MAG ISSUE 16

29

Put yourself in this situation: you’re

an enthusiastic gamer, you’ve played

your fair share of the latest releases,

you humbly proclaim yourself su-

preme overlord of Counter-Strike,

and you regularly peruse your copy of

the latest ‘zines. For all intensive pur-

poses, some may call you a hardcore

gamer.

Yes, there is the consideration of replayability

value, but when your aim is to keep somebody

occupied for five minutes instead of half an

hour, your task becomes a lot easier in many re-

spects. A good game designer with a solid and

fun concept can go about putting it into action

without being burdened with most of the wor-

ries that plague most “large” game developers.

Portfolio boost

Even if you have your heart set on building the

bigger games, a common aspect of your work

that potential employers ask about is your port-

folio of functional prototypes and completed

works. In this respect, the ability to use pixel

shaders and create epic storylines is sometimes

secondary to the merits of having an extensive

showcase of original, bite-sized and fun-to-play

games which have received exposure and com-

mendation. Not only is casual gaming condu-

cive to quick and easy prototyping, but it’s far

easier to finish a game with few resources de-

mands beyond the central gameplay dynamic.

Distribution opportunities

Continuing on the previous idea, the big WWW

is the perfect spot for showcasing casual games.

However, not enough people realise that there

are different manners in which this showcasing

can take place. Flash portals are amongst the

culprits – places like Newgrounds (http://www.

newgrounds.com/) are great for quickly up-

loading masterpieces that can be accessed by

a lot of interested people. Taking it one step

further, sites such as The Great Games Ex-

periment (http://www.greatgamesexperiment.

com/) aim themselves at linking gamers and

game developers. From the moment you load

up the front page, you have access to a wide

variety of blogs, flash games, game down-

loads and many other handy resources that are

ready and waiting for any interested parties.

Even the big guns are doing it

Biggest-publisher-ever-ever (known to most

mere mortals as EA) recently announced that

it was going to split itself into four develop-

ment divisions, one of them committed solely

to casual games. Ubisoft is also hopping

onto the casual games bandwagon, putting its

weight behind a game called “Word Coach”.

Konami is doing something similar with a

beauty care game on the DS console. Even

episodic gaming (pushed by notable developer

Telltale Games, amongst others) is a reflec-

tion of this more-than-viable market concept.

Half-Life 2 Episodes and the new Sam and Max

series of games are testament to the fact that

the public have just as much fun with gaming in

TAILPIECE DA CASUAL GAMER

more bite-sized chunks. The big boys are get-

ting quite serious about being casual, which fur-

ther questions the perspective of indie develop-

ers who stick their noses up at doing “2-bit titles”.

Considerations for casual game design

It’s a sprint

As a rule of thumb, casual game sessions tend

to be far shorter than those of their triple-A

counterparts. A far cry from the hours spent

grinding in World of Warcraft, the casual game

designer often has to cater for an individual

who will sit in front of their computer and play a

game in half an hour. Most good game design

involves the designer catering for short-term,

mid-term and long-term goals. For example:

in some generic FPS game, the player may be

given a long-term goal of blowing up the enemy

space platform. Their mid-term goal is finding

a lever to open the door to the main engine

room. Their short-term goal is to survive an

encounter with the monsters in the next room.

With shorter games, these goals are either

compressed or in some cases eliminated,

leaving only the short-term gratification to

be catered for. Thus, a “long-term” goal

may in fact be fulfilled within 30 seconds, or

may even be considered as non-existent.

If your game hinges around the short-term, it’s

all the more necessary for every single one of

the player’s actions to be justified and interest-

ing. If a player needs to shoot a helicopter, then

immediately shoot another helicopter to further

boost score, it goes without saying that the ac-

tion of shooting should be a satisfying one, or

at least satisfying enough to keep the player

going at it for however long he or she needs to.

Goals should be easily attainable, and if it’s

technically possible to win a game, it should

be easily done in a short amount of time (pro-

vided that players know what they’re doing).

Some “casual” games can actually get very

long and involved, but it may be a good idea

to build up a bit development experience

before attempting these sort of projects.

DEV.MAG ISSUE 16

30

Replayability
There’s a lot of casual games out there that

you can only really play once. Perhaps they’re

detective stories or linear platformers. On the

whole, however, casual games are notable for

their replayability – consider Tetris, Bejeweled,

or even Solitaire. The whole idea behind these

games is that you play them for as long as pos-

sible (or win as quickly as possible) then hit

them again with renewed gusto. This changes

the developer’s goals considerably – now, it’s

no longer a matter of sustaining player interest

with feature creep or plot development. There’s

less concern of getting a player to explore your

game fully – chances are, if they put it down af-

ter five minutes, they’ve still gone through it.

Instead, you need to be able to offer an experi-

ence that a player will want to repeat. Variety

and true replayability are very important – at the

most basic level, you’re going to need an ele-

ment of randomisation in your game so that no

two experiences are the same. Additionally, it’s

important to consider the “easy to learn, impos-

sible to master” trick – online leaderboards and

score accolades are a great way to challenge

a player even after they’ve made it through the

game the first time.

Exploration
Casual gaming is a brilliant arena for check-

ing out new avenues in gaming, seeing what

works and what doesn’t. Most players will try

TAILPIECE DA CASUAL GAMER

something new at least once, provided it’s easy

to get into and brings rewards timeously. Con-

cepts that would be too difficult or unsuitable to

implement in full-length games are perfect for

the casual environment. Want to create a game

centred around the player’s ability to randomly

turn into a sandwich (with all the masticatory su-

perpowers that being a sandwich would natu-

rally grant you)? That’s great! Instead of sitting

down and puzzling out 30 stages around the

concept, burning your brain out and eventually

realising that such an idea is simply not going to

work in the long term, you can put your hero in a

single arena with a bunch on constantly spawn-

ing enemies and work on designing a single

good level that simultaneously incorporates

all the design goodies that you were trying to

stretch out over the long term.

Conclusion

Casual gaming is quickly gaining ground, and

not enough indie developers are latching on to

the idea that it’s actually a viable plan to base

your game design career on a title that gives as

little as five minutes of joy to any given player.

Too short? Not “big” enough? If these are re-

ally our complaints when it comes to the idea

of games that are by now “beneath” our devel-

opment skills, perhaps we need to shed some

collective pride and realise that the player on

the other end is going to thank us far more

for a few minutes of awesomeness than any

amount of wasted time blundering through a

tech demo that reeks of incompletion and an

overextended developer whose good intentions

were marred by some very real constraints.

A lot of game developers advise newbies to

start small. My own advice is to keep small.

NANDREW

DEV.MAG ISSUE 16

31

