
JULY 2007

REGULARS

Ed’s Note... P03

News ... P04

SPOTLIGHT

Daniel Brewer, Digital Extremes programmer.................................. P05

OPINION

Business Models: Thinking Outside the Proverbial Box.................. P10

Hard Coding is Bad! (?)... P11

REVIEW

Tactics Arena Online.. P12

DESIGN

Taking the Blue Pill for: XNA.. P13

A Beginner’s Guide to Making Games: Part 2.................................. P14

A Beginner’s Guide to Making Games: Part 1 EXTRA..................... P20

PROJECTS

Roach Toaster 2: Big City.. P22

TECH

Coding Etiquette: Defensive Programming...................................... P23

Game Coding with Trigonometry: Part 2... P25

HISTORY

The History of I-Imagine Part 6: Xbox, Lies and Videogames........ P28

TAIL PIECE

STINK Produksies... P32

CONTENTS WHAT’S INSIDE

05

12

13

32

ED’S NOTE THE BIG CHIEF

S
o, Comp 15 is over and the Game.Dev crew are moving over to a new forum. For local readers

who dwell at school or on campus, I hope that the new term has treated you better than it has

some of us! In fact, we’re still not sure where that giant carnivorous hamster ran off to with our

poor Dep Ed’s arm, but it’s a problem we’re working on.

Putting the mag together was an awkward little deal this month, and we’ve skipped out on one or two stan-

dard sections in favour of other cool stuff. One of the gifts that this month provided us with was a nice little

surprise shortly before deadline — one of our writers grabbed a fantastic 18-minute interview with Daniel

Brewer, a local programmer who’s been a great help at a lot of the Hotlabs down in good ol’ Durban and

happens to be lead coder on a Warhammer mod for Unreal Tournament called UT40K: The Chosen.

Thus, our feature this month is basically a 4-page Spotlight piece with Mr Brewer (officially the longest chat

we’ve ever subjected anybody to, the poor guy), not only because he worked on this mod but because he’s

landed a job with Digital Extremes as a result. Some of you should have little alarm bells going off in your

heads by now, since DE are the blokes responsible for the Unreal series in the first place. Being an Unreal

fanboy myself (hey, we all have our weaknesses), it’s really great to be able to have Daniel in the mag this

month, and it was even more fun playtesting his mod (http://ut40k.planetunreal.gamespy.com/).

I was also flipping through the most recent installation of I-Imagine’s history (oh, this may surprise some

people, but I really do read the stuff that goes into this mag), and it’s amazing how hectic the politics of

mainstream game development can really be. More than ever, it’s become important for eager new devel-

opers to get informed about the industry, even with the indie development scene, and anybody who has an

interest in knowing what it takes to start a game studio should really check out the I-Imagine series, starting

with Issue 10.

But hey, overall lesson of this editorial: Unreal Tournament is cool, and I’m off to play some after this edition

of the mag has been released. Enjoy this month’s offering!

Editor
Rodain “ Nandrew ” Joubert

EDITOR
Rodain “ Nandrew ” Joubert

DEPUTY EDITOR
Claudio “ Chippit “ de Sa

SUB EDITOR
Tarryn “Azimuth” van der Byl

DESIGNERS
Brandon “ Cyberninja “ Rajkumar

Geoff “GeometriX” Burrows

MARKETING
Bernard “ Mushi Mushi “ Boshoff

Andre “ Fengol “ Odendaal

WRITERS
Simon “ Tr00jg “ de la Rouviere

Ricky “ Insomniac “ Abell

William “ Cairnswm” Cairns

Danny “ Dislekcia “ Day

Andre “ Fengol “ Odendaal

Heinrich “ Himmler “ Rall

Matt “ Flint “ Benic

Luke “ Coolhand “ Lamothe

Stefan “?rman” van der Vyver

Gareth “Gazza_N” Wilcock

WEBSITE DESIGNER
Robbie “ Squid “ Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the

South African Game.Dev commu-

nity. Visit us at:

www.gamedotdev.co.za.

All images used in the mag are copy-

right and belong to their respective

owners. If you try and claim other-

wise, we’re going to have a problem

that involves a Melta-gun, a Tyranid

invasion and your face. Respect the

Space Marines.

DID YOU KNOW?
Sometimes, small technical issues can vastly

change large aspects of a game. In the Dreamcast

version of the original Unreal Tournament, most of

the Assault maps were too large to fit into memory,

so the game mode got replaced with a new Chal-

lenge mode instead.

DEV.MAG ISSUE 15

3

This month’s opinion columnists:
William “Cairnswm” Cairns

Ricky “Insomniac” Abell

Torque Game Builder update available

http://www.garagegames.com/products/torque/tgb

Torque Game Builder 1.5 is now available for fans of this game making tool. TGB is a powerful

game creation utility from indie developers GarageGames, and the new version (free for those

who have already paid for the initial product) sports several major improvements, including a

much smaller file size for final executables, easier file access and platform support, several

package updates and a new “Behaviors” system for game objects. For those who haven’t

tried TGB and would like to see what it’s like, a free 30-day trial is available from the website.

New Pascal-centred online magazine release

http://www.delphigamer.com/

PascalGameDevelopment affiliate Delphi Gamer has just re-

leased its first edition of a quarterly magazine that deals with

game development using the Pascal family of programming lan-

guages. Delphi Gamer is a showcase site for PGD’s games and

aims to promote the idea of game development with a showcase

of articles, interviews and postmortems. The magazine is free

for download from the site, and issue 1 features XNA Chrome,

Pascal’s contribution to game development on the Xbox 360.

NEWS HEADLINES

The rAge build-up begins

http://www.gamedotdev.co.za/

South Africa’s annual gaming and tech-

nology expo, rAge, is just around the

proverbial corner. In anticipation of this

year’s coming events, Game.Dev’s offi-

cial website has released an article de-

tailing the shenanigans which the crew

were involved with at last year’s event,

along with the promise that this year is

set to be bigger and even better. Game.

Dev also keeps an archive of game de-

velopment articles that have been pub-

lished in NAG magazine, so those who

are interested in further reading (and

some handy tutorials) can check it out.

AI Design for Turn-Based Strategy

http://www.gamasutra.com/view/feature/1535/designing_ai_algorithms_for_.php

An interesting challenge that most programmers are presented

with in their games is the matter of AI. One of the most tasking

genres for this is the Turn-Based Strategy game, where a com-

puter’s conventional advantages of speed and accuracy mean

nothing against a skilled and carefully thought-out human player’s

plan. Gamasutra’s recent feature on algorithm design looks at

some of the challenges that face programmers in this arena, and

provides a simple but useful technique to employ for a typical TBS

game’s AI.

DEV.MAG ISSUE 15

4

Tell us about yourself

Well, it all started way back in the old days on

the Commodore 64. I got into programming

and really started getting into game dev when I

was in varsity, where I decided to start working

on a few projects, though they’ve kinda always

been on a little bit of the ‘back burner’. So while

I’m at work, or during my spare time, I work on

some games and mods — which is what has re-

ally been getting me out there.

Awesome! You said you went to Univer-

sity. What did you study?

Ah… I went the University of Natal in Durban and

studied Electronic Engineering. There was orig-

inally a choice between Computer Science and

Engineering. In the end, I thought Engineering

would give me a more well-rounded base of

skills to work from, so it’s what I decided to do.

There was quite a lot of programming in the En-

gineering course — having to program electron-

ics, physics and chemistry as well as all sorts of

other subjects — but programming is something

I’ve always done and it just grabbed me and just

sorta came naturally ... so I managed to start

there.

So what language did you start coding in?

Originally in LOGO for the Commodore, but

Basic was the first language I really started on,

and of course Turbo Pascal at school and from

there moving through to C and C++, which is

what I program in today.

A jack of all trades, it seems. What sort of

traits separate you from the rest?

Well, I’ve got a strong background in C++ which

was predominantly self taught and about 4 or

5 years ago I started looking at OpenGL, a 3D

rendering library which is also cross-platform

and can be used on Windows, Linux and Sili-

SPOTLIGHT UT40K! Go go go!

DEV.MAG ISSUE 15

5

TALKING TO DANIEL BREWER
 Digital Extremes programmer and UT40K coder

Yeah, sure, we’ll let him out in a few years. Until then, he’s gonna be our code
monkey. Muahahaha!

cone Graphics Workstation. It’s fairly open and

out there and very powerful. So I got into that

and taught myself OpenGL from scratch and

started entering a few demo competitions on-

line. More recently I’ve started doing mods for

the Unreal Tournament Engine and that works

in Unreal Script, which is their own scripting

language that the Unreal Engine uses. Quite

similar to C++ and JAVA.

Sounds like a lot of time and effort. Where

do you go if you want to DIY it?

There are some really good resources out there

on the net like Gamasutra, which is a great site

for articles on the industry as well as articles

on how to do certain things. Also Gamedev.net

which is a big international site that has a lot of

information of a slightly more technical nature,

as well as an open forum where you can post

questions and share views. It’s free and quite

helpful. The place where I learned OpenGL is

a place called Neon Helium which is done by a

guy in the States who started writing some re-

ally good tutorials for OpenGL. They introduce

you to the basics and progress upwards.

Hey that’s pretty sweet, and you say this

stuff is all free?

Yup …

And would you definitely recommend a

language such as C++?

C++ is pretty widespread for game develop-

ment, mainly because it’s very powerful and is

SPOTLIGHT UT40K! Go go go!

DEV.MAG ISSUE 15

6

cross-platform so you can code for Windows,

Playstation, Xbox and so on.

Really? I see a lot of C# stuff coming about

nowadays.

C# is a lot more recent and being punted by Mi-

crosoft. C# is also Microsoft Specific so it’ll only

work on Windows. With their new XNA setup

and libraries they’ve got, you can write games

for your Xbox 360. I’d say that C# is a good

place to start learning because once you’ve

been programming for a while and learned one

language its very easy to learn another, espe-

cially if they are similar. And luckily, C# and

C++ are quite similar. C# does handle a lot of

things automatically where you have to do them

manually in C++.

SPOTLIGHT UT40K! Go go go!

Well, enough shop talk! Let’s get onto

why you are here. Digital Extremes. Tell us

more.

It’s actually quite a long history. I’ve been ap-

plying for jobs in the games industry for 2 years

now on the game dev sites Gamasutra and

Gameindustry.biz, which have regular postings

for jobs throughout the industry and the world.

I got into the mod scene to do a mod for Unreal

Tournament to try and get a bit of a portfolio

going. A mod is really a good way to test your

skills and shows a level of teamwork which is

very important in this industry as well as be-

ing able to meet release dates and deadlines.

This provides ample experience for you to base

your portfolio on. So I then started looking for

a mod to join and came across a Warhammer

40K mod for Unreal Tournament 2004. Being a

huge fan of the Warhammer and Warhammer

40K universe because I play the tabletop war

games. I decided to join the team and it just

so happened when the team leader received

my email they were desperately looking for a

coder, as their programmer had left them. So

they welcomed me aboard, I then had to learn

Unreal Script and started going from there. That

was 2 years ago and we have released quite a

few versions of the mod, just keep adding more

stuff and fixing bugs, improving the game play.

Where can we find this mod?

It’s online at:

http://ut40k.planetunreal.gamespy.com

You can download it from there. You need Un-

real Tournament 2004 with the latest patch and

the bonus pack.

SPOTLIGHT UT40K! Go go go!

DEV.MAG ISSUE 15

7

Fantastic! So you were searching, had the

drive, had the ambition and it’s worked

out.

Yeah, well, I had enough of my current job and

just sent out a whole flurry of job applications,

and was even contemplating starting my own

independent game development company.

Then I got an email back from Digital Extremes.

They said they liked my CV and my portfolio,

which I’d put online, and the mod. Then they

wanted to know if I wanted to do a program-

ming test, so they sent me the test just to check

firstly how good my C++ problem solving skills

were, which they were happy with, then asked

for a phone interview. I then had a very long

phone interview with some of the big hotshots

in the industry including the father of Unreal,

their lead programmer, the producer, and some

other people who grilled me for an hour. There

was a lot of talk about the mod, which raised a

lot of interest, as they probably get a kick out of

seeing what people do with their game. Then

they emailed me a little while back with a job

offer and that was that.

Awesome stuff! So what do you know

about the company itself?

From the few pictures I’ve seen on the website,

it looks like a nice place to work in as there are

about 60 developers and its quite big. I’m just

really looking forward to getting there eventu-

ally once everything gets cleared with visa and

customs and such.

How do you know about Dev.Mag?

It started on the NAG Game.Dev forum, where I

frequent under the name SilentBob, and I found

out about the Hotlabs initiative and decided to

check it out. I then signed up to help grow the

knowledge base by giving talks and lectures on

game development related issues and some

nifty coding examples and AI scripting. This was

great as the Hotlabs became about pushing the

envelope, getting the community together shar-

ing the knowledge and sharing your time. As

its no good sitting in your room coding the next

best game engine that’s going to beat Oblivion

SPOTLIGHT UT40K! Go go go!

DEV.MAG ISSUE 15

8

if no one out there is going to see it. That’s what

Hotlabs are about, bringing together guys who

are passionate about game development so

that they can share their knowledge and share

problems that they’ve had and just show off

what they’ve been doing.

And having fun!

Definitely! I think some of the most rewarding

programming that can be done is in game de-

velopment. I mean, it’s one thing to just program

an accounting package. When you’re program-

ming a little fighter zapping across the screen

blowing up stuff it just doesn’t compare, and

even in the Hotlabs here when you see people

starting off with Gamemaker and getting their

little flying sprite moving across the screen, it’s

a time where you can see that they’re really get-

ting into it.

What does this all mean to you? The suc-

cess, this opportunity that’s just come to

you now… What is your plan for the next

3-5 years?

I’m extremely excited to begin with going off and

working at Digital Extremes, as I’ve been a fan

of the Unreal games for a long time now. Well,

I’ve just really gotta see where it goes when I

get out there. There’s a game I’ll be working on

which hasn’t been announced and will be re-

leased next year or the year after for the PC,

XboX360 and Playstation 3. I’ll really have to

see where the ride goes, as it’s been a lot of

hard work to get this far.

Sounds cool! Any advice for our readers?

You gotta just keep plugging away, keep at it

and keep the momentum going. Get your stuff

out there, share it with other people, put it out on

the web and keep going and eventually some-

one will answer. Focus on teamwork. These

days, companies do value that sort of skill as it

takes many, many people to make a game and

you can’t just do it on your own. And remem-

ber, have fun doing it!

MUSHIMUSHI

a

Out 1Out 1stst August 2007 August 2007
Available from www.delphigamer.comAvailable from www.delphigamer.com

Issue 1Issue 1

Chrome & XBOx 360Chrome & XBOx 360

Airblast Airblast
PostmortemPostmortem

And MUCH More...And MUCH More...

The ONLY The ONLY
Pascal Game Pascal Game
Development Development
MagazineMagazine

“Business models:
thinking outside

the proverbial box”

G
ame development can be a lot of fun

and a passionate hobby for many

of us, but I’m sure most have also

thought about how some money can be made

from this awesome hobby, whether you thought

about making a bit of extra cash to help fund

that next graphics card or would like to make

a living from it. The problem is that while we all

have bucketfuls of great ideas for our games,

in my opinion not enough time is spent on

thinking of innovative ways for our games to

earn some cold, hard cash. Most of us just

think of the standard business model where

you make a game and then sell it for some

arbitrary amount to as many people as pos-

sible. While this may work for the big players

in the industry such as Nintendo, EA etc. things

are way too crowded in the industry for your

game to have a good chance of being noticed.

I had been trying to think of how games could

bring in money in a new way and then inspiration

struck from a question in a recent Computer Sci-

ence exam. I won’t go into the gory details of the

question, but basically we had to code an applet

that was a game advertising for a food shop.

If the user won the game they got a voucher,

otherwise they got told that they won nothing.

This simple little example struck the idea of how

powerful a form of advertising games can be.

Heaps of companies are always competitively

trying to market and advertise their products.

The old and traditional ways for companies to

reach mass markets such as adverts on televi-

sion just don’t work any more, as not only are

people watching less TV due to other distrac-

tions such as the Internet, but people have also

become desensitized to most adverts and hit

the mute button as soon as some come on.

OPINION WHAT YOU’RE THINKING

That’s why an avenue such as games which

advertise a product can be a very power-

ful and attractive way for companies to reach

audiences. Think about how much exposure

a company can get if, say, a recent popular

game such as Peggle – which a lot of people

got hooked on, including me – had advertised a

product. With all the talking on forums and other

places around the world Peggle received I’m

sure any companies sales would dramatically

increase by a huge margin from the exposure.

As long as the advertising is kept subtle and

ties into the gameplay rather than the game-

play tying into forcing a product down the play-

ers throat then surely everyone can win. For

a great example at how a game and brand

can be fused successfully just look at South

African company Luma and their game Mini

#37(check Dev.Mag issue 12 for more on Luma

and the game). The game manages to have a

fully featured, fun racing game while incorpo-

rating the sheer coolness of the Mini brand.

Trying to pitch an idea to a company to con-

vince them to just hand over money for a

game may sound a tad crazy, but with the

proper amount of research into a market

and a solid way to incorporate the brand into

the gameplay I can’t see any reason why a

company won’t at least consider it and the

viral nature of exposure games can offer.

INSOMNIAC

DEV.MAG ISSUE 15

10

The Dev.Mag staff does not expressly support or agree with the views of guest columnists in this section.
In fact, the Dev.Mag staff does not expressly support or agree with the views of Dev.Mag staff writers in this section.

It’s a crazy world, isn’t it?

“Hard coding is
bad! (?)”

H
ard coding is bad? Says who?! I sup-

pose it depends on what you consider

hard coding and where in the project

life cycle you are. But let’s take an example:

Print(“Hello World”);

Okay, so where is the hard coding? Do you con-

sider the string the hard coding? Well then what

about this:

SetWindowTitle(“Text Editor”);

 Is that bad? What if your application is called

“Text Editor”?

Hard coding is considered a bad development

practice as it restricts the ability of the software

to be modifi ed to suit new requirements. For

example if the string “Text Editor” is used 33

times through the application code it makes it

very diffi cult to modify the name of the applica-

tion to something like “Textpad”. So the idea is

to ensure that values are not hard coded into

the system, but rather stored in such a way that

they can be easily modifi ed.

Sometimes hard coding is not bad. Sometimes

hard coding is the clever way of doing things.

In South Africa, for example, almost all applica-

tions are done in English. Why go to the effort of

allowing alternate language options for button

captions, etc. - especially when you are proto-

typing a new idea.

When prototyping, the whole idea is to do it AS

QUICKLY AS POSSIBLE. Take the shortcuts,

etc. But when implementing the “bad” hard cod-

ing, keep in mind that you may want to fi x it later

if the prototype leads to a large project. Make

use of constants, set a value in one place and

reuse the variable storing the value everywhere

else.

AppTitle = “Text Editor”;

SetWindowTitle(AppTitle);

 Another example of this “bad” hard coding is

database connection strings. When develop-

ing a prototype, the connection string should be

hard coded. As soon as the prototype is ready

to hand over to users to test or use, the connec-

tion string should be moved into a confi guration

fi le.

Let’s look at our fi rst example again:

Print(“Hello World”);

What if I told you that Print is also hard coded?

In fact every little bit of code we write is actually

hard coding logic into our programs. So in fact,

our job as developers is to hard code logic – so

is this good or bad? If all hard coding is bad,

then we need to develop self modifying code all

the time. In fact the whole purpose of unit test-

ing is to ensure our hard coded logic is correct.

OPINION WHAT YOU’RE THINKING

Don’t just accept that hard coding is bad. Give

it some thought fi rst. Hard coding is good, in the

right place. It saves time, saves effort and often

saves a project!

CAIRNSWM

If you fancy saying something about game development and have enough

faith in your writing ability to do so, feel free to submit content to our

monthly opinions section.

Send your work, 400-500 words in length, with the subject title “Opinion

Submission” to devmag@gmail.com, and you may just wind up in our pag-

es. Please note that we reserve the right to decide what material is suitable

to publish in the magazine.

DEV.MAG ISSUE 15

11

The Dev.Mag staff does not expressly support or agree with the views of guest columnists in this section.
In fact, the Dev.Mag staff does not expressly support or agree with the views of Dev.Mag staff writers in this section.

It’s a crazy world, isn’t it?

12

TACTICS ARENA ONLINE

REVIEW IN THE GAMING WORLD

he advent of online gaming, as

well as its inevitable rise in

popularity, has seen numerous

old formulae rehashed to work in

a dedicated multiplayer environment.

While Tactics Arena Online cannot claim

original gameplay, it has nonetheless

succeeded in bringing an addictive turn-

based combat system to any online user.

Boasting tactical gameplay similar to

established games such as Fire Emblem,

Tactics Arena pits two player’s wits

against each other in turn- based combat.

With a relatively simple user-interface, the

game is easy to pick up, but the hidden

complexities of the game system may take

a little while to decipher. However, these

very same complexities grant the player a

lot of tactical opportunities to utilize in play

and forms a major part of the game’s

appeal.

The greatest attribute of Tactics Arena

Online is that it can run straight in your

web browser without needing any

additional downloads or software besides

Macromedia Flash. Within moments of

creating a game account you can test your

battle-worthiness against other players on

one of the game’s online servers.

Offering players customizable starting unit

lineups and arrangements, no two battles

will ever be alike. However, a large portion

of available units and customization

options, including two entire races, are not

available to free accounts. A small

monthly fee of $5 is required to obtain a

gold account which allows players access

to extra units and game features.

Overall, Tactics Arena is a great way to

bend your mind and test your wit against

other players, and, for fans of tactical

gameplay, this is a gem. Single-player

experiences against AI can never truly

compare to battles against human players.

CHIPPIT

T

DEV.MAG ISSUE 15

Developer:

Year of creation:

Website:

Genre

Digital Seed Entertainment

2003

www.tacticsarena.com

Turn-based tactics

13

Microsoft XNA Framework

DESIGN TOOLS OF THE TRADE

hat is XNA? XNA is a set of

libraries created by Microsoft for

its C# programming language.

Apparently it stands for “Xna’s Not

Acronymed”. A bit paradoxical…

XNA is decent set of libraries for the

aspiring game developer. Although XNA is

not recommended for total beginners, it is

definitely a great way to get yourself

accustomed to a standard programming

environment.

 Where do I get it?Where do I get it?Where do I get it?Where do I get it?

http://msdn2.microsoft.com/en-us/xna/

default.aspx.

Just follow the links.

You need the XNA Game Studio Express,

Visual C# express and the .NET

framework. Installing XNA is easy, but it

requires some extra steps.

You must first install Visual C# Express.

This is the basis for XNA, since XNA is just

a set of libraries. You must also attain the

.NET framework, which comes with

Windows XP service pack 2 and Vista by

default. And then last, but not least, you

should install XNA Game Studio Express.

This sets up your libraries and creates

easy templates to get coding as soon as

possible.

Tutorials:Tutorials:Tutorials:Tutorials:

http://www.xnatutorial.com

http://www.xnaresources.com

A Spacewar game example is included

with XNA. Unless you understand the

basic coding structure, this example is

actually very complex to understand for

any beginner.

XNA-Tutorial is a great site for getting info

and examples although the blogger hasn't

posted in a month.

Comments:Comments:Comments:Comments:

As mentioned, XNA is a very decent

offering from Microsoft for the

intermediate indie developer. Game

Maker will still be your best if you are a

total beginner.

XNA has some cons. It has poor sharing

capabilities for the Windows platform. If

you want to hand out your game to your

family they will need the XNA framework

and .NET framework on their PC!

The other thing is the poor audio support.

It can currently only support .wav and

similar formats. This means, while your

code is very small, a minute of music is in

the range of 20mb. We can only hope that

OGG Vorbis support could be added in the

future.

Fortunately, XNA’s ability for any

developer to develop games for the Xbox

360 makes up for any of its cons. To

create a game for a console so easily is

just pure magic!

TR00JGTR00JGTR00JGTR00JG

W

DEV.MAG ISSUE 15

TAKING THE BLUE PILL FOR...

14

Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making

Games Part 2 - CollisionsGames Part 2 - CollisionsGames Part 2 - CollisionsGames Part 2 - Collisions

DESIGN HELPING YOU ALONG

elcome to the second part in the Beginner’s

Guide to Making Games series. Each month

a single important concept required for

making games is discussed in detail. This month we

are taking a look at collisions. Collisions are core to

most games because you need to have working

collisions to blow up enemy space ships or to land

missiles accurately on top of enemy cities.

The main goal of the Beginners Guide series is to try

and ensure a detailed understanding of the various

concepts so that they can be applied to other new

and exciting games. While most traditional tutorials

will show what code is needed, these guides will

ensure that you walk away actually understanding

each of these concepts rather than just having done

an example.

This article is aimed at someone who has just started

learning to make games. While it is expected that the

reader of the article has completed the first Game

Maker tutorial and can thus create sprites and objects

it is quite possible to follow the article without having

done so. The article is structured to introduce a new

programmer to the concept but yet give some value

to the intermediate level programmer as well.

The vast majority of games require collision scripting.

Some games such as word puzzle games get away

without having collisions but these are the exception

rather than the rule. To keep things simple we will

only look at collisions in 2D space.

Today’s article will contain the following sections:

1. A brief Game maker tutorial showing the

basics of getting two objects to collide.

2. This is followed by a discussion, in detail, of

the various Game Maker collision actions available to

you

3. Game Maker Language (GML) is a powerful

way for the developer to get closer to the action, and

contains numerous functions for collisions

Game Maker TutorialGame Maker TutorialGame Maker TutorialGame Maker Tutorial
This tutorial is going to create a room that contains a

ball and a wall. The ball will move in a random

direction until it hits the wall.

This tutorial is not as such a game, but is designed to

show various methods of checking for collisions. A

few small changes could make this into a fun game.

You might create a bat that gets moved by the

mouse, and give the player a score each time they hit

the ball, or even create a two player tennis game. Or

how about adding blocks that blow up when hit by the

ball, or perhaps make the player click on different

blocks to make them change shape and then bounce

the ball differently around the screen, like a reverse

pinball game.

To demonstrate how collisions work we need to

create two objects that can collide with one another,

as well as the events to define what happens when

they collide.

W

DEV.MAG ISSUE 15

(Feeling lost? Check Issue 14 for the first part of this series.)(Feeling lost? Check Issue 14 for the first part of this series.)(Feeling lost? Check Issue 14 for the first part of this series.)(Feeling lost? Check Issue 14 for the first part of this series.)

15

DESIGN HELPING YOU ALONG

Step 1 – Create spritesStep 1 – Create spritesStep 1 – Create spritesStep 1 – Create sprites

In Game Maker, add a new sprite. Select an image

for it, such as one of the balls in the default graphics.

Set the origin of a sprite to the centre of the sprite to

assist with collision detection. To do so press the

Centre button on the Sprite screen. As the ball sprites

that come standard with Game Maker do not

completely fill the image it is a good idea to use

precise collision checking for them.

Transparent sprites usually look a lot better than a

solid sprite unless for some reason the sprite is a

single block of colour. The colour used to make the

sprite transparent is the colour in the top right hand

corner of the sprite.

Now create a second sprite to represent the walls we

are going to need.

Note that the wall sprite

does fill up the complete

area of the image. Therefore

exact collision checking

wont get you any change in

behaviour. To improve the

performance of the game,

switch off the precise

collision checking.

Step 2 – Making the wall objectStep 2 – Making the wall objectStep 2 – Making the wall objectStep 2 – Making the wall object

Using the wall sprite, create a wall object. The

difference this object will have from the other objects

we have made is that it needs to be solid. Game

Maker has two main categories of objects - solid and

non solid. Non solid objects are typically the player

object and other creatures in the game. This allows

these objects to float over one another while using a

main category to check that they don’t go through

solid walls etc.

Often the solid objects in the game don’t have events

added to them. The idea of solid objects is that they

sit in the room and act as obstacles of one sort or

another for the player object.

Step 3 – Making the ballStep 3 – Making the ballStep 3 – Making the ballStep 3 – Making the ball

Make the ball sprite an object.

As we want a moving ball we add a Create event with

a “Start moving in a Direction” action. Select all the

directions and give it a speed. When the game starts

the ball will move in a random direction.

Now for the collision code. Add a new event, select

Collision and select the wall object. Add a “Start

moving in a Direction” action with the center button

selected and a speed of 0. This basically tells the ball

to stop moving as soon as it collides with a wall object.

DEV.MAG ISSUE 15

16

DESIGN HELPING YOU ALONG

Step 4 – Creating the roomStep 4 – Creating the roomStep 4 – Creating the roomStep 4 – Creating the room

Rooms are where everything happens in a Game

Maker game. Without a room objects can do nothing.

Using the Wall object build a frame around the room.

The idea here is to ensure that the ball cannot leave

the screen.

Now add a ball object in the middle of the room.

Step 5 – It worksStep 5 – It worksStep 5 – It worksStep 5 – It works

Run your game by pressing the green “Run Game”

button. The beauty of Game Maker is how your game

runs every time without fail (I think I’ve said that

before!).

Watch the ball go flying off in a direction until it hits

the wall, and then stops. Using the standard, most

basic, Game Maker events and actions we've got

collision checking working.

Colliding Objects and ActionsColliding Objects and ActionsColliding Objects and ActionsColliding Objects and Actions
Game Maker is cool because it's easy, and actions

are one of the most important things to making Game

Maker such as easy tool to use. To get the most out

of the Game Maker action, you need to understand

what they do, and what alternate options are

available for each thing you want to do.

Often in Game Maker there are alternate options to

achieve the same thing. However by understanding

what the various options do, they can be better used

to achieve the effects that your game requires.

Stop on collisionStop on collisionStop on collisionStop on collision

There are different ways of making objects stop

moving when they collide with each other. In the

tutorial we have just done, you will notice that when

the ball stops moving it is actually not touching the

wall. This is because the ball will move 5 pixels on the

screen each step it takes. If the wall is ever less that

5 pixels away the ball will stop at its previous position,

often leaving a few pixels open between itself and the

wall.

Move to Contact PositionMove to Contact PositionMove to Contact PositionMove to Contact Position

Game Maker gives us a nice easy action to solve this

problem. Move to Contact Position allows you to

instruct the object to move from where it currently is

to the nearest contact point in a direction. A nice

feature is you can define the maximum distance it

should move to collide (think of magnets – they attract

up to a certain distance).

Earlier I mentioned that the wall should be solid. In

the Move to Contact Position action you can select to

move to the nearest solid or non solid object. If we

had more than one ball in the room, setting the action

to only solid objects will ensure that balls can't collide

with one another.

DEV.MAG ISSUE 15

17

DESIGN HELPING YOU ALONG

Change Movement on CollisionChange Movement on CollisionChange Movement on CollisionChange Movement on Collision
Many games that use balls make these bounce

around the screen. When they hit a wall, or the

player's paddle they bounce neatly off the obstruction

and head off into a new direction.

Bounce against objectsBounce against objectsBounce against objectsBounce against objects

The easiest way to make an object bounce is to use

the “Bounce against objects” action. In the real world

an object bounces off an obstruction at the same

angle as it hit the obstruction - in other words if you

drop something straight down, it will bounce straight

up. The bounce against objects implements the same

behaviour.

You will notice that

you can select a

bounce action to be

precise or not

precise. Consider

very carefully before

choosing precise as

it means the game

needs to do many

more calculations to

do it exactly, and in

most cases wont have a material difference on the

way the game works.

 Change Movement Change Movement Change Movement Change Movement

Quite often there are simpler rules for making objects

change movement in the game. For example if you

add a bat to the game, and the player needs to move

the bat left and right to bounce the ball back into the

screen, the ball will only ever need to change its

vertical movement when it hits the bat. As we saw

last month we can just use the “reverse vertical

direction” action to implement this. This will again

save a lot of time in the game as its much quicker for

the game to execute this command than work out the

details for a true bounce action.

OptionsOptionsOptionsOptions

There are almost always different ways to make an

object behave the way your want it to. Always try the

various options to find a way to make the object

behave the way you want it to, and choose the option

that most suits the current requirement.

Moving objects with GMLMoving objects with GMLMoving objects with GMLMoving objects with GML
Game Maker actions are typically shortcuts to certain

Game Maker Language constructs. While that

sounds complicated, it basically means that actions

are the easier way of doing things that can be done

in Game Maker Language, but they only implement a

subset of the possible GML functions.

When using the collision event, checking is based on

the object currently executing (i.e. the object

executing the script), and other objects as defined by

the developer. The various collision checking

methods compare the collision parameters with a

certain type of object. The type of object can be

based on an object type or a specific object.

The collision event will only execute if a collision

actually happens. The various GML collision

methods are typically used to test for a collision to

decide if movements are possible or to check that

other objects are where they are expected to be. In

addition the collision methods will allow for checks

such as determining which object is below the mouse.

 Calling a script Calling a script Calling a script Calling a script

To call a script for an object, add an event to the

object and add the “Execute a piece of code” action

to the action list. In the popup text editor add the

commands you want to be executed.

Scripts can contain any of the Game Maker

Language functions as well as various control

structures such as for loops and if statements. GML

allows statements to be grouped together through the

use of braces to identify start and end sections { }.

Remember also that it is possible to access

properties of other objects. So it's quite possible to do

things like moving toward other objects or using the

position of other objects to check for collisions.

DEV.MAG ISSUE 15

18

DESIGN HELPING YOU ALONG

Identifying objectsIdentifying objectsIdentifying objectsIdentifying objects

Everything in Game Maker is identified by its id.

This id can be the object or an instance of the

object, as well as things like sprites, paths and

even scripts and rooms. EVERYTHING in Game

Maker is identified by an id.

Each of the collision methods returns an id of an

object that has a valid collision or a -1 if there is

no collision. The id returned can then be used to

check if the object is of a specific type using the

object_index property.

Checking for CollisionsChecking for CollisionsChecking for CollisionsChecking for Collisions

Here is a piece of example code that checks for

objects within a 100 pixel radius of the current

object. Once the object id has been retrieved

using the collision method, the object can be

interacted with.

This example code below will

find all instances of an object

type within a 100 pixel radius

of the base object.

This can be used for

something like blowing up all

boxes around a grenade

exploding, or for causing

damage to all enemies within the explosive

radius of a fireball.

 Collision MethodsCollision MethodsCollision MethodsCollision Methods

Game Maker supplies 5 collision checking

methods. Here is a small section copied from the

Game Maker help files:

All these have three arguments in common:

The argument obj can be an object, the

keyword all, or the id of an instance. The

argument prec indicates whether the check should

be precise or only based on the bounding box of the

instance. Precise checking is only done when the

sprite for the instance has the precise collision

checking set. The argument notme can be set to true

to indicate that the calling instance should not be

checked.

collision_point(x,y,obj,prec,notme)collision_point(x,y,obj,prec,notme)collision_point(x,y,obj,prec,notme)collision_point(x,y,obj,prec,notme)

This function tests whether at point (x,y) there is

a collision with entities of object obj.

DEV.MAG ISSUE 15

while collision_circle(x,y,100, ObjectType,false,false) >= 0

{

 d := collision_circle(x,y,100,ObjectType,false,false);

 .. Do something with object D ..

}

19

DESIGN HELPING YOU ALONG

collision_rectangle(x1,y1,x2,y2,obj,prec,notme)collision_rectangle(x1,y1,x2,y2,obj,prec,notme)collision_rectangle(x1,y1,x2,y2,obj,prec,notme)collision_rectangle(x1,y1,x2,y2,obj,prec,notme)

This function tests whether there is a collision

between the (filled) rectangle with the indicated

opposite corners and entities of object obj. For

example, you can use this to test whether an

area is free of obstacles.

collision_circle(xc,yc,radius,obj,prec,notme)collision_circle(xc,yc,radius,obj,prec,notme)collision_circle(xc,yc,radius,obj,prec,notme)collision_circle(xc,yc,radius,obj,prec,notme)

This function tests whether there is a collision

between the (filled) circle centered at position

(xc,yc) with the given radius and entities of

object obj. For example, you can use this to test

whether there is an object close to a particular

location.

collision_ellipse(x1,y1,x2,y2,obj,prec,notme)collision_ellipse(x1,y1,x2,y2,obj,prec,notme)collision_ellipse(x1,y1,x2,y2,obj,prec,notme)collision_ellipse(x1,y1,x2,y2,obj,prec,notme)

This function tests whether there is a collision

between the (filled) ellipse with the indicated

opposite corners and entities of object obj.

collision_line(x1,y1,x2,y2,obj,prec,notme)collision_line(x1,y1,x2,y2,obj,prec,notme)collision_line(x1,y1,x2,y2,obj,prec,notme)collision_line(x1,y1,x2,y2,obj,prec,notme)

This function tests whether there is a

collision between the line

segment from (x1,y1) to (x2,y2)

and entities of object obj. This is

a powerful function. You can, for

example, use it to test whether an

instance can see another instance by

checking whether the line segment

between them intersects a wall.

As can be seen a reasonable selection of

collision checking methods are available. Using

these various collision methods you can

implement various different effects.

The power of scriptsThe power of scriptsThe power of scriptsThe power of scripts

While it is certainly possible to create a fun

playable game without using scripts, the person

using scripts will probably be able to create a

more immersive game as they will be able to

include proper AI and more believable

behaviours. Taking the time to learn to use GML

will certainly improve your games.

Using the various collision methods allows the

game developer to have a lot more control over

what happens in their game. Checks for

collisions with objects, and the resultant actions

forced on the colliding objects offers many

opportunities for special effects and effective

game controls.

CAIRNSWMCAIRNSWMCAIRNSWMCAIRNSWM

DEV.MAG ISSUE 15

20

Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making Beginner’s Guide to Making

Games - Part 1Games - Part 1Games - Part 1Games - Part 1

DESIGN HELPING YOU ALONG

ast month we had a look at different ways of moving an

object around the screen in game maker. This month's

Extra will look at doing the same sort of thing in other

programming languages. The benefit of using Game Maker

is of course that you don’t actually need to understand all the

intricacies of the process.

When moving 2D objects on the screen there are two basic

methods of doing so:

1 Frame Base Movement (as used in Game maker)

2 Time Based Movement

Frame Based MovementFrame Based MovementFrame Based MovementFrame Based Movement
Frame based movement is based around a fixed distance an

object can move on the screen each frame.

Typical code for a frame based movement loop is

{

 Object.X += 2; // Move the object 2 pixels right

 Object.Y += 2; // Move the object two pixels down

}

Frame based movement can only be used when the number of

frames being refreshed on the player’s screen each second is

constant. (Game Maker by default refreshes the screen 30

times per second). Because the game is therefore being

throttled in its refresh rate, it often uses less of the user's

processor than a similar Time Base Movement system.

Time Based MovementTime Based MovementTime Based MovementTime Based Movement
Time based movement moves the object a certain distance over

a set amount of time. This is very useful when the actual screen

refresh rate is variable.

An example of the code used to implement Time Based

movement would be something like this:

{

 GameTime = now – lastTime; // Get the amount of

time since the last movement

 GameDelta = GameTime / 1000; // Typically time is

based on milliseconds.

 Object.X += (20 / GameDelta); // Move the object

20 pixels right each second

 Object.Y += (20 / GameDelta); // Move the object

20 pixels down each second

}

Time based movement is very important in games where the

power of the computer running the game may vary greatly. An

old Pentium 1 may only run at 20 frames per second, while a

new dual-core with the latest video card may run at over 1000

frames per second. By implementing Time Based Movement,

both players will have pretty much the same gaming

experience.

AppearancesAppearancesAppearancesAppearances
One of the great things about developing games for humans is

that there is a limit in what they can perceive. Time based

movement has a vastly superior smoothness of movement

across the screen – just consider an object moving across the

screen in 30 frames or 1000 frames, each change in position is

obviously smaller for the 1000 FPS movement. However the

human eye cannot distinguish any difference once the refresh

rate exceeds about 30 frames, and often a whole lot less. This

can be shown by the fact that 35mm movie cameras use a

standard exposure rate of 24 frames per second

Your ChoiceYour ChoiceYour ChoiceYour Choice
Neither method of moving objects is better than the other, each

has its place. Whichever method you choose to implement in

your game must support the user base you have defined as well

as the type of graphic application you are developing.

If you are developing an application that shows the progress of

items on a conveyor belt, it is doubtful that the user will be too

happy if you use the full power of their CPU. On the other hand,

if you have a fast paced action game with a large number of

missiles and terrific explosions on the screen, it is just as

doubtful that a player will thank you for not using the full power

of the CPU.

CAIRNSWMCAIRNSWMCAIRNSWMCAIRNSWM

L

DEV.MAG ISSUE 15

Roach Toaster 1 has been success-

fully remade in XNA! By the time you

read this, I might have already been

placed in the Top 20 - or not. Who knows? I

seriously do not know what to expect. *Holds

thumbs*

Anyway, this project series is all about Roach

Toaster 2. Here is the current development sta-

tus.

As you might know, I could not release the beta

of Roach Toaster 2 some while back, because I

did not have a decent internet connection. Well,

that is about to change, and again, by the time

you read this, I will have my internet!

Roach Toaster 2 beta can commence, but

during my hiatus from its development, I took

a back seat and looked in depth at the game-

play. As I have not played “Big City” since its

inception, I stumbled upon some things I want

to change.

These changes stem from the following design

issues:

1) A player hates it when he is punished for

things out of his control.

Seeing “Big City” breed, I felt a loss of control. I

could not really efficiently curb the spread, and

it made me feel incompetent.

2) The importance of letting it flow.

After playing addictive games like Peggle, I re-

alized how important it is to let the game flow.

When you finish a level in Peggle, it immediate-

ly takes you into the next level, without an op-

tion to quit. Although a tad diabolical, I enjoyed

it and it kept me enthralled. This is what Roach

Toaster 1 did right. The game kept flowing into

the next level.

So, taking the above design issues into account,

I am going to develop two different prototypes

for “Big City”. The first is the current non-linear

approach it has now, i.e. after each level you

ROACH TOASTER 2: PICKING OUT THE BUGS
PART 6

PROJECTS LEARNING HOW IT’S DONE

are taken to “Big City” to choose your next level,

and then a more linear approach. The testers

will have to choose between them. I am for the

latter, though. We will see how it turns out.

Unfortunately, I can only begin development on

it again after July 31st. I have to work on my

matric Computer Studies project. I am lucky

though. XNA code is very similar to Java, which

means, I can easily port it Roach Toaster:

XNA.

Having Roach Toaster 1 in Java is also a very

good thing. This means that I can put a web ver-

sion online, which in turn means that I can draw

many more visitors to my site, and I can use it to

test the finer gameplay in Roach Toaster 2. So

all in all, this brief hiatus from development has

proved to be very beneficial!

For more info on Roach Toaster 2: Big City,

head on to http://www.shotbeakgames.za.net

or the new site http://www.roachtoaster.com

TROOJG

DEV.MAG ISSUE 15

22

(Wondering what we’re talking about over here? check out Dev.Mag Issue 10 for the beginning of this Project series!)

the ones that seemingly only show up during

the final phases of testing, or perhaps they ap-

pear to come and go at random, making it dif-

ficult to actually track down the cause of them.

Debugging these kinds of errors or crashes in

code is probably the most frustrating as well as

one of the most time consuming aspect of any

development project, not to mention the fact that

bug fixing is ultimately the single most likely rea-

son for a project missing its targeted deadline.

Therefore, it is essential that programmers take

the time to properly check for any and all potential

errors in their code. Ultimately, this is achieved

quite easily by merely writing simple verification

checks at any point in their code where resultant

data has the potential to be incorrect. These

“checks” are usually referred to as assertions.

I
t is a fact of programming life that program-

mers will make mistakes in their code. These

mistakes or errors are not usually down to

“bad programming” or any lack of talent, but

merely due to the sheer scope that most pro-

grams are comprised of. When any one program-

mer is churning out hundreds upon hundreds of

lines of code a day, it’s only a matter of time

before some of those lines will contain errors.

The kinds of errors that I am referring to here

are not, however, the simple ones (i.e. syntax

issues) that are easily picked up by compiling

the code or doing a quick execution of the newly

written logic. Unfortunately, the errors that I am

talking about are the ones that sleep in your

code and only rear their ugly heads when very

specific or unlikely situations arrive. These are

A few common places where asser-

tion checks should be employed are:

After memory allocations

There may be no free memory available or the

size requested may be either too large or poten-

tially a corrupt number.

On data returned from a function call

It may not be the result that you are expecting

or the function may have had some form of in-

ternal error.

On data assigned from a mathematical operation

The operation may have had incorrect or cor-

rupt inputs, or the result may not be within the

valid ranges for whatever you may need to do

with it next.

As with most aspects of proper coding etiquette,

many programmers consider these checks to

be too time consuming for them to do, which

is once again merely an excuse to justify their

coding laziness. A few minutes spent here and

there performing very simple checks will, in the

long run, save immeasurable time when track-

ing down what are quite often nasty errors that

could easily be caught with simple assertions.

COOLHAND

CODING ETIQUETTE:
DEFENSIVE PROGRAMMING

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 15

23

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 15

24

Simple C Code Example of Error Checking

 char *DynamicStringCopy(char *pcSourceString)
 {
 char *pcDestString;
 int iStringLength;

 //determine the size of the source string, and allocate some memory to
 //store a copy of it (add ‘1’ to in order to hold the NULL terminator)
 iStringLength = strlen(pcSourceString);
 pcDestString = (char *)malloc((iStringLength + 1) * sizeof(char));
 if(!pcDestString)
 {
 //there was an error allocating the memory... either we are out of
 //it (unlikely...) or ‘iStringLength’ is somehow a very large
 //number...
 printf(“Unable to allocate destination memory for string copy.”);
 return NULL;
 }

 //now that we have a chunk of memory, copy the string into it
 strcpy(pcDestString, pcSourceString);

 //return our new string
 return pcDestString;
 }

 void main(void)
 {
 char *pcMyArbString;

 //store a constant string into memory for no reason whatsoever...
 pcMyArbString = DynamicStringCopy(“I am a useless string!”);
 if(!pcMyArbString)
 {
 //output an error message for our invalid string copy call
 printf(“Unable to store the arbitrary string into memory”);
 }
 else
 {
 //do arbitrary stuff with the arbitrary string...
 }
 }

L
ast issue we covered the core prin-

ciples of trigonometry and learned

how to use these to calculate unknown

sides in a triangle. Well, I hope you’re rested

and ready Commander, because we’ll be

jumping straight back in with another essen-

tial technique – calculating unknown angles.

Angling 101

As always, let’s start with a triangle. This

one has two known sides (the hypote-

nuse and one other), but the angle, theta

(Θ), is unknown. Bummer. Let’s fi x that.

Okay, let’s use our super trig techniques from

last time. Last time we learned to solve sides by

substituting into the magic formula that follows.

“But hold on,” you might think, “we’re not solving

for an unknown side this time!” You’re absolutely

correct. When solving for angles we need to per-

form a little tweak to the formula, but the core prin-

ciple remains the same. Watch and be amazed:

Still looks familiar, right? Let’s see how it works.

Since we’re solving for Θ, we’ll name our sides

relative to that angle in the usual way. This

leaves us with h equal to 9 units, and a equal

to 3 units. Now we need to set our ratio. As you

can see in our adjusted formula, we’ll be using

our known sides for this. However, if you study

the ratios from last month, you’ll realize that

there are two possibilities for the ratio depend-

ing on which side of the division line we choose

to put our numbers. For instance, if we choose:

we would use Cos(Θ) as our ratio. However, if

we choose:

our ratio would be Sec(Θ). The choice is re-

ally up to you, but since Cos is generally

the easiest and most frequently used ratio,

that’s the one I’ll be working with. While

we’re at it, I’ll plug the numbers in as well.

Now we need to solve for Θ. That means that

we’ll have to cancel Cos out to get Θ on its own.

For this, we’ll use the arccos(Θ) trig function.

Huh?

Inverted (arc) functions are essentially the an-

timatter of the trigonometry world. By applying

the inverted version of a function (arcsin, arc-

cos, arctan, etc), we can cancel it out to obtain

an angle on its own. However, in accordance

with the algebraic method, this means that we

also have to apply it to the numbers on the right-

GAME CODING WITH TRIGONOMETRY
PART 2

TECH WHEN MATH GETS USEFUL

DEV.MAG ISSUE 15

25

Figure 1: Mystery Angle Θ

Radians are not difficult to understand. Degrees

are based on one full rotation being measurable

in 360 units. Radians are based on one full rota-

tion being measurable in 2π (π = +-3.142; 2π = +-

6.283) units. Therefore, conversion is just a mat-

ter of looking at the angles proportionally. Don’t

panic! It’s as easy as using these two formulae:

Let the games begin!

At long last! We’re going to learn how to

use trig in our games! We’re going to start

with one of the most essential trig ap-

plications – accurate angular movement.

Imagine that we have a player character that we

want to move at a rate of 2 units per frame. We

go ahead and program the game to move the

character at that rate when the movement keys

are pressed: move +/- 2 pixels vertically when

the up/down keys are pressed, and +/- 2 pixels

horizontally when the left/right keys are pressed.

When we press vertical and horizontal keys to-

gether, the player simultaneously moves 2 pix-

els vertically and 2 pixels horizontally. Diagonal

movement is sorted, right? Well, you would

think so, but you’d be wrong. If you implemented

your movement that way (and many people do),

you’d probably notice that something was a little

off... To elaborate, let’s take a look at your player

movement in terms of a triangular arrangement.

hand side of the equation. As a result, our ex-

ample will play out a little something like this:

Note: In the Windows Calculator, using in-

verted functions is as easy as selecting

the “Inv” checkbox in the upper left of the

screen before clicking a function button.

There’s our answer! Angle Θ is roughly 70.5

degrees.

By now you should have a fairly good idea of how

to calculate both unknown sides and unknown

angles in a triangle. Soon you’ll be ready to learn

how to apply all of this to your games, but first...

Degrees and Radians

Before we begin with game applications, one

last tidbit of essential information that will make

or break your ability to use trig in your games

- are you aware that there are two units of

measure for angles? Most people are taught

to measure angles in degrees, and for this

reason I’ve been using degrees as the angu-

lar unit in all of the calculations so far. Now,

while there’s technically nothing wrong with

degrees as a unit of measure, radians are con-

sidered to be more mathematically correct. For

this reason they are the primary unit of angu-

lar measurement in science and engineering.

Luckily, most decent programming languages

have trig functions built into them by default.

Unluckily, they mostly operate using angles

measured in radians. Because of this, you’ll

need to be able to convert between the two.

See the hypotenuse? That represents your

diagonal movement rate. When we apply the

theorem of Pythagoras, we get the amount that

you see in the diagram. No, neither the num-

bers nor your eyes deceive you – moving diago-

nally with this method, the character is travelling

nearly 50% faster than it would normally! Defi-

nitely not too good for our gameplay. And what

if we didn’t just want to travel in cardinal direc-

tions? What if we wanted to move at any angle?

We’d have to find a way to map hundreds of key

combinations with different horizontal and verti-

cal movement rates, which is hardly practical.

What can save us in our time of need? Trig to the

rescue! Firstly, we’ll need to reconsider how our

movement system works, since we know that

this one is fundamentally broken. Well, we know

that our speed is a constant 2 pixels/frame. We

also know what our eight angles of movement

would be (0, 45, 90, 135, 180, etc. degrees). This

situation can be represented by this diagram:

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 15

26

GAME MAKER TIP:

Game Maker saves you from all this math-

ematical nastiness by compressing

all of it into two simple functions:

degtorad(angle) and radtodeg(angle).

Just be sure that you plug the right

measurement into the right formula!

Figure 2: Pythagoras > j00

Figure 3: Reworked movement system

correct movement rate/displacement for each

of the two axes. As you can see, this means

that you can move an object accurately in any

direction at any speed. This is especially use-

ful for elements such as bullets or other pro-

jectiles which you want to fly in all directions!

Taking the above arrangement into account

and applying our trig theorems, we can calcu-

late accurate horizontal and vertical displace-

ments for that angle. You’ll notice that when

converting trig statements into algorithms we

forego all the algebraic number juggling and

only use the final arrangement of numbers and

variables for our calculations. As a result, our

algorithm will look a little something like this:

Horizontal Displacement

= speed * cos (direction of movement)

Vertical Displacement

= speed * sin (direction of movement)

All you need to do is alter the direction (in radi-

ans, remember!) and speed of movement, and

these two algorithms will happily give you the

That’s all folks!

Yes, we’re done - for this month, at least. Hope-

fully the little taste of applied trig has made you

hungry for more, and the fun doesn’t stop here!

I still have a few trig tricks to show you: tricks

such as relative angle calculation, circular/el-

liptical movement and positioning and wave/he-

lix movement. Until next issue, happy coding!

GAZZA_N

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 15

27

GAME MAKER TIP:

Although the above is very easily

implemented via GML scripts, Game

Maker has built-in speed and direction

variables in every object you create.

All you need to do is assign number

to these, and GM automatically does

all the calculations and movement for

you! Hax!

A
fter returning from E3 and before we

started to get geared up for ECTS,

there were a couple of issues that had

to be taken care of. The first was to send our

current demo of Chase to Infogrames for evalu-

ation, which we did as soon as we all got back

to work after our short lived holidays. The sec-

ond was to decide whether or not we wanted to

develop a game that Ubisoft had approached

us about developing while we were at E3*.

Ubisoft had the Batman license and were de-

veloping a driving game around it, where vari-

ous Batman villains would trigger crimes in a

city and the player (as Batman) would have to

rush off to apprehend the villains before they

could escape. The game was in an incomplete

stage as the previous developers of the project

had either gone bankrupt, or Ubisoft had just

decided to take the development of the game

out of their hands. However, they were not look-

ing to spend a lot of money on having the title

completed as they had already given a lot to the

initial developers of the game. Unfortunately, at

the end of the negotiations, the highest amount

that they were willing to pay us was about three

times lower than the amount that we were will-

ing to do the work for, and we reluctantly had

to tell them that we would not be able to do it.

While these talks with Ubisoft were going on,

Infogrames was busy evaluating the copy of

Chase that we had sent them. Pretty much

around the time that we had decided not to do

the Batman game for Ubisoft, we received a re-

sponse from Infogrames, but it was the news

that we didn’t want to hear. As far as I can re-

member, they said that while they found our

game to be fun and graphically impressive, they

weren’t able to reconcile themselves with the

overall idea that the game put the player into the

role of a Hollywood stunt driver. I believe that

the exact words that they used were: “The stunt

driving angle is disposable.”. Oh, the irony...

Regardless of our post-E3 struggles, September

was quickly approaching us and we knew that

we had to have a killer product to bring to ECTS

with us. We had built up some momentum at E3

and a lot of publishers were keen to see what we

new stuff we would have to show to them when

next we met, and if we didn’t impress them at

our next round of meetings we would probably

never do so. Luckily for us, the demo of our

game that we sent with Dan to London at the

start of September was easily our best effort to

date. We had six fast-paced missions set in our

Asian themed city that were not only fun to play,

THE HISTORY OF I-IMAGINE
Part 6: Xbox, Lies, and Videogames

HISTORY WHERE IT ALL BEGAN

but our game engine was very good looking for

the time with lots of nice effects and a busy,

bustling city full of vehicles and pedestrians.

Dan had set up meetings with all of the usual

suspects and I will be honest when I say that I

do not remember the outcomes of any of those

meetings except for the one with Infogrames.

The reason why I do not remember what hap-

pened with the other meetings is most likely

because just like at E3, nothing came from

them. Another reason is probably down to the

fact that something quite interesting happened

in one of the meetings that Dan had set up with

someone who we hadn’t really met with before.

I say “hadn’t really met with” because at the

previous E3, we had one of the main guys

DEV.MAG ISSUE 15

28

(Who? What? Where? If you’re lost concerning I-Imagine, check out Dev.Mag Issue 10 for the start of this article series!)

* I had mentioned in the last article that nothing particularly interesting had happened to us with publishers at E3, however I was reminded afterwards that our dealings with
Ubisoft were during E3 2000, and not ECTS 2000 as I had originally thought.

from Microsoft Games Publishing come by our

booth to check out what we were doing. I can’t

remember the exact reason why he was there,

but I think he ended up coming via roundabout

means as one of my friends who was work-

ing at Nintendo brought his old producer (who

was now at Microsoft) by our booth, and then

he came back a second time with this other

guy. Anyways, they had shown some inter-

est obviously for the one guy to come a sec-

ond time, but all that I can remember from the

main guy’s visit were the critical things that

he had to say about our game at the time*.

Now that I-Imagine’s “history” with Microsoft

has been established, you can see that we

didn’t have much hope in what our meeting

with them at ECTS would hold for us. From

what I remember, Dan was expecting to meet

up with some of the European Microsoft guys

however, so we felt as though we weren’t just

wasting our time trying to impress someone

who already didn’t like what we had to offer.

Now, I probably don’t have the following story

100% correct, but I think that I have the gist of

it. Basically, when Dan arrived at his meeting

with Microsoft, instead of the people whom he

thought that he was going to meet, there in front

of him sat Kevin Bacchus and Seamus Black-

ley, the creators of the Xbox game console.

He talked to them about Chase and then when

he tried to install it on the PC that they had

there, it wouldn’t run. Dan was quite puzzled

as to why it wouldn’t work and naturally, Kevin

and Seamus were more likely thinking along

the lines of, “Loser!”. However, Dan did some

tinkering on the PC and found out that it didn’t

even have DirectX installed on it. Yes, on a PC

used for demoing games in the Microsoft meet-

ing room at a major game trade show. Luckily,

Dan had a copy of DX7 with with him on an-

other CD, he installed it on the PC, and Chase

ran perfectly on it afterwards. Needless the say,

the guys were quite impressed with the whole

turn of events and they were equally impressed

with the demo of the game. Unfortunately, Kev-

in an Seamus were not the correct people to

speak to about publishing our game, but they

were interested in helping us to find a publisher

and in providing us with Xbox development

kits if it was something that we were inter-

ested in, and so they told Dan that they would

be in touch with us in the next month or so.

The meeting with Infogrames was just as excit-

HISTORY WHERE IT ALL BEGAN

ing for us. After Chase had failed their evalu-

ation, we had pretty much lost all hope with

them, but Dan received an email just prior to

ECTS from the guy at Infogrames who had

been our main contact there, telling him that he

had a hot property that he wanted to discuss

with him at the show. So Dan grudgingly set

up a meeting with him and was quite surprised

when he heard what Inforgrames had to say.

It turned out that they were looking at porting

Driver 2 from PSX to PC, and they thought

that we would be perfect for the job due to the

technology that we had already developed.

Dan was naturally very intrigued at the idea of

this, so when he was asked for permission for

Infogrames to send a copy of our new demo to

their internal studio Reflections (the creators

and developers of the Driver series) in order for

them to approve us as potential developers to

work on their franchise, he didn’t have a mo-

ment of hesitation. Perhaps he should have...

So Dan returned from ECTS with a lot of ex-

citement and enthusiasm, and it was only a few

days before we started to receive contact from

Kevin Bacchus regarding out involvement in the

Xbox program. It turns out that he and Seamus

had been thinking of starting a development

DEV.MAG ISSUE 15

29

* One thing in particular that stands out and that we laughed at quite heavily afterwards was that he wasn’t happy with the fact that the particles from the booster engine on our desert buggy vehicle would
penetrate the other meshes in the world. I mean, what game developer in the world in the year 2000 wasted CPU time on making sure that all particles behaved completely realistically in their environments?

HISTORY WHERE IT ALL BEGAN

program for Xbox that would assist independent

developers who didn’t already have publishing

deals to be able to develop for Xbox. We would

still have to pay for development kits, but we

would be treated as fully fledged developers,

even though we didn’t have a publisher behind

us. Microsoft would also help us to set up meet-

ings with the correct people at publishers and

push our game to them for publishing on Xbox.

This program of theirs was to be named the

Xbox Incubator Program and we were being

invited to be the first members of it. Needless

to say, we were very excited at this prospect,

as in our hearts we always wanted to develop

for a console audience, but were unable to at

this time3. Part of me actually has always won-

dered if we just happened to meet Kevin and

Seamus at the correct time, right when they

were thinking of launching the Xbox Incubator

Program, or whether only after meeting with

Dan did they think up the idea of the XIP as a

way to help out independent developers like

us. Either way, as history went on to record, we

were quick to take them up on their offer and

officially became not only (to the best of our

knowledge) the first console game developer

on the African continent, but also the first Xbox

Incubator Program members in the entire world.

All of this excitement was offset however by

some concerns that Dave, Matt, and myself

had over the creative side of I-Imagine after

Hoang’s departure. We were happy to go on

with our roles as programmers, but we felt that

design and art direction were basically being

left behind. To respond to this, I tried to per-

suade Dan to contract a friend of mine (Marco

Falsitta) who had worked at DigiPen as well as

Nintendo to come to I-Imagine for a year in or-

der to train up our new art team and instill his

years of experience into what was without a

doubt a talented group of individuals, but who

were also without question lacking the experi-

ence necessary to tackle the scope of devel-

oping a video game for the world market on

their own. Unfortunately, Dan declined the of-

fer to bring Marco on board, but he did decide

to bring a world renown game designer in from

America for a week in order to help give the en-

tire team some design direction, as well as to

train up the new game designer we had hired.

This American’s name was Noah Falstein

(http://en.wikipedia.org/wiki/Noah_Falstein), a

freelance designer and owner of a company

called The Inspiracy (http://www.theinspiracy.

com/). He had previously worked for Lucas

Arts amongst other companies on some very

high profile games and had twenty-plus years

of experience as a video game designer. You

can actually find quite a few articles that he

has written about game design online, along

with a series that he did a few years ago for

Game Developer magazine (later re-published

HISTORY WHERE IT ALL BEGAN

on Gamasutra). Noah was a great influence on

us and taught us a lot about successful game

design. His main game design philosophy

was that you must always reward players and

never punish them, as well as give players as

much choice as possible at all times. These

ideals were taken heavily to heart in what

would eventually become the final gameplay

dynamics of Chase: Hollywood Stunt Driver.

While Noah was visiting us in sunny South

Africa, a very interesting thing occurred. I was

doing my daily gaming news reading on the In-

ternet and came across quite a surprising an-

nouncement on the old Games Radar website.

DEV.MAG ISSUE 15

30

Infogrames had just released a press release

detailing the new game that their internal stu-

dio Reflections were working on. It was called

Stuntman and it revolved around the world of

a Hollywood stunt driver doing scenes for vari-

ous movies. I don’t think that I have to tell you

not only how shocked, but also how angry we

were when we read that news. It essentially

boiled down to the fact that for the past five

months, we had been in correspondence with

Infogrames and they knew everything about

our game but we knew nothing about theirs.

Nobody outside of Infogrames and Reflections

will ever know the entire story. Personally, I

doubt that they stole our idea even though I,

along with everyone else at I-Imagine did at

the time. More than likely, they were either al-

ready in development of their idea when they

first heard of Chase, or in the least they already

had the idea of doing a game like that and

the news that there was going to be competi-

tion to their idea spurred them on into making

Stuntman quicker than they had originally in-

tended on doing. This meant that either their

left hand didn’t know what their right hand was

doing, or that they blatantly tried to dissuade

us from developing a competing product by

talking to us about Chase and by having us

send it to them for publishing evaluation, even

though they had no intention of ever doing so.

To make matters worse, throughout all of this

we were still in contact with Infogrames about

doing their port of Driver 2 to PC. Although we

were upset and angry with the situation that we

had gotten ourselves into with them, we were

still determined to exploit this opportunity if

at all possible. At first they seemed generally

serious about us doing the work for them, but

slowly as time went by, it became more and

more apparent that they were using this situ-

ation as just another stall tactic for us so that

their stunt driving game would come out before

ours would. For instance, they wanted us to cre-

ate a demo of some of the missions in Driver

2 using our engine and when they asked us

about this, they actually inquired as to how that

would effect our development of Chase. We

just told them that we would hire more people!

However before we got around to doing the ac-

tual demo for them, they came back to us with

some feedback from inside of their company

saying that it wasn’t going to be very profitable

for them to release Driver 2 on PC. Apparently,

the PC version of the original Driver didn’t sell

very well, and they saw this translating to Driver

2 also. So they came back to us saying that we

would have to do the job for what would basi-

cally amount to no upfront money and only roy-

alty revenue. We were still very intrigued by this

possibility as we desperately wanted to have

HISTORY WHERE IT ALL BEGAN

our name associated with this well known fran-

chise. However, after much consideration, we

decided that we wouldn’t be able to do a project

like this for free as we would more than likely

lose too much money on it, so for the good of the

company we decided that we would have to turn

this opportunity down. All in all, these drawn out

negotiations with Inforgrames lasted from Sep-

tember until the end of December while they

tried to stall us in our development of Chase.

By the time the year 2000 drew to a close,

many interesting things had happened to us

as a company. All of it ended up being an in-

valuable learning process for us, and helped

us to grow in our knowledge of the video game

industry. As well, we also grew physically in

terms of a company as during the year, as

many South African’s were hired to both ex-

pand our team as well as fill in the gaps left

by the departure of Felix, Kenny, and Hoang.

Our first local hiring, Kevin, happened fairly

early in the year and he filled the critical role

of being our primary texture artist. Shortly after

hiring Kevin, Brett was hired as a modeler. By

the middle of the year, we had also hired Kirk

who was also modeler, and Henk who became

our primary world builder. We also hired Mar-

tin as our game designer to help fill the design

void left first by Kenny, then by Hoang. The

end of they year saw us add two more to the

art team with Dave joining as a conceptual and

texture artist, and Jeanine coming on as a con-

ceptual artist. We also made our first addition

to the programming team with Derek who was

brought in to work on our tools. By the end of

2000, the entire I-Imagine team consisted of 12

people, 9 of whom were South African’s. This

meant that our transition from being a company

in South African staffed by almost entirely over-

seas individuals to being one that employed

primarily South African’s took just over a year

to complete. These would be the people who

would help lead I-Imagine in the next year and

a half towards our goal of completing Chase

and having it published for Xbox internationally.

COOLHAND

DEV.MAG ISSUE 15

31

THE CHASE TEAM:
Top Row: (Dave, Matt, Luke, Henk, Kevin, Derek)

Bottom Row: (Kirk, Martin, Dave, Dan, Brett, Jeanine)

A
t the risk of sounding boring, the fol-

lowing information shows my prog-

ress from employee to business

owner. Read on if you are at the point where

you might want some real world information...

The business of earning a living, as a biblical

principle, is a challenge.

I would venture to say that, for most of us, that chal-

lenge is represented by working for a living, and

following our passion after hours. For me, it has

always been a challenge to be free of that setup.

I had a plan, which was this:

1. Work a day job to pay the rent.

2. Work at night to do work for clients.

3. Minimise the risk of earning my own salary

by building up a broad client base.

4. Spot the right time to make the transition.

It took me five years of part time 3D animation

and music production to reach the point where

I could throw my weight into STINK Produks-

ies full-time. Boy, what a change! Gone was

the constant stress-related heartburn, to be

replaced by lots of open working hours for

me to pursue the work that I really want to do.

For me the break came in October 1996,

when a company for which I produced a

range of children’s CDs sold a large number

of these to the big music retailers. That gave

me the financial push to make the transition

from employee to business owner. I am im-

mensely glad that I entered into that agree-

ment, and I am extremely grateful to them.

I decided long before going full-time that ani-

mation was my business, but that I do not pos-

sess all the skills necessary for completing big

productions. My work experience, professional

training and days of playing in a band have

taught me that one must manage skills to reach a

goal. That means that that I must be open to the

knowledge that I need to buy skills from people

around me, and be willing to really pay for them.

One thing that I see time and again, is that

people are too selfish, or too scared to work in

a team. We have all these ‘independents’ pro-

TAILPIECE STINKING IT UP

ducing various products all around us. We prob-

ably all know a video guy, photographer, web

designer or 3D animator who is trying to make

it on their own. Yet, how many finally make it?

By building up a broad client base, I have built

up many contacts. This puts me in a position

where I can work on productions that reach far

beyond my own capabilities. It has also sped up

the process of production - when my part of the

process is finished, I pass the work on to the

next business, who take the product to the next

level. Through all this I have worked through the

fear of letting go of my work, allowing others to

influence it positively, enhancing its capabilities.

One very important factor of running my busi-

ness, is that I made a conscious decision to

finalize productions. I am sure that everyone

has, at some point in time, attempted some-

thing, only to lose focus and not complete what

was started. For obvious reasons, this principle

STINK PRODUKSIES
All about small fish in a very big pond...

DEV.MAG ISSUE 15

32

Stefan van der Vyver (known to most of

us as ?rman) is an external writer for Dev.

Mag who happens to be a bigwig in a lo-

cal multimedia production company known

as STINK Produksies. Just about every

month, we get stuff from him aside from his

regular Blender articles which showcase

what the STINK guys have been most re-

cently getting busy with. This month, we

decided to ask him more about his involve-

ment with it all, along with some info about

the company itself. He swung us this ...

can not be disregarded by any business. I de-

cided to call it the “Wooden block principle”:

Imagine that there is a conference for

knowledgeable folk. Consider that the

need may arise for a small wooden block.

Now, being a bunch of knowledgeable folk,

there might arise some serious discussion re-

garding the exact nature of such a wooden

block. There might be discussions regarding its

size, shape, weight, etc. Being extremely knowl-

edgeable, everyone wants to air their opinion

regarding this wooden block. Consequently,

there is a lot of discussion around the subject,

with immensely wise statements being made.

Now imagine that the caretaker of the build-

ing where the conference is being held walks

past. In ignorance, he hears that there is

a requirement for a wooden block. Good

ole’ soul that he is, he walks out to his work

room, cuts a piece of wood off the end of

a beam, and presents it to the person who

originally inquired regarding a wooden block.

Astonished, the knowledgeable folk are sud-

denly left behind, because the caretaker

has produced what they could only talk

about. HE fi nished a task. Sure, he could

be asked to refi ne it, but he was there fi rst.

For me, that forms the basis of my business. I

want to fi nish the projects that I start, enabling

me to comfortably move on to the next project.

This is no easy task, and you might want to

consider this very thoughtfully - business own-

ers are usually quite sharp, and have probably

met many personality types. Your presentation

and production history will speak for itself. Fin-

ished products will land you more work than

many great ideas. We can all generate ideas,

but few can follow through and complete them.

Thus it seems that, from the STINK Produksies

side, there are two main points up for consideration:

Don’t be scared to work as a team.

It will enhance the fi nal product.

Finish what you start. This be-

comes your track record.

Chatting to one of my business friends, she

mentioned that many times we lose faith in

our efforts, or the quality of our work. We

feel that we can do it better, or that someone

else is doing it better. This is the point where

many people will give up. Should you want to

make a mark for yourself, follow through on

what you started, thereby earning the respect

of people who have done so themselves, and

who are now running successful businesses.

TAILPIECE STINKING IT UP

The computer game industry lends itself bril-

liantly to this principle. How many unfi nished

games are there in your closet, and how many of

your games are being played across the world?

Starting out your business you might fi nd

yourself just a small fi sh in a big pond, but

you’ll be a fi sh. And you might become part

of a bigger fi sh if you can fi nd the right team.

?rman

Stink Produksies is a multimedia production company which

has been operating for four years as a close corporation. Pro-

ductions include corporate logos done in association with video

production companies, television ads, television and radio voice

overs, corporate and private original musical compositions, and

children’s audio CDs available in the major CD stores nation-

wide. Stink Produksies works mainly in association with other

production companies, as it fulfi lls a niche market requirement

for original composed musical scores and 3D design.

Check it out at www.stinkmedia.co.za

DEV.MAG ISSUE 15

33

