
JUNE 2007

REGULARS

Ed’s Note... P03

News ... P04

FEATURE

The Making of .S.C.A.G... P05

OPINION

The Sandtrap... P09

Can Game Developers Learn from Genetics?................................ P10

DESIGN

Blender Intermediate Tutorial: Creating Explosions......................... P12

Taking the Blue Pill for: Game Maker... P15

A Beginner’s Guide to Making Games: Part 1.................................. P16

PROJECTS

Roach Toaster 2: Big City.. P21

TECH

Game Coding with Trigonometry: Part 1... P22

HISTORY

The History of I-Imagine Part 5: The First 9 Months....................... P24

TAIL PIECE

Johannesburg devLAN.. P27

CONTENTS WHAT’S INSIDE

05

15

24

27

ED’S NOTE THE BIG CHIEF

A
n interesting little thingie popped up on the Game.Dev forums the other day. Amidst all the hype, hubbub and

competition entries for Comp 15 (hey, R10 000, remember?) that have been cluttering the community as of

late, one of our members burst in on the latest Dev.Mag thread and drew our attention to the fact that he saw

some Game.Dev ads on the telly. Pretty awesome, I must say! We’re stoked that the group has come so far

in this relatively short space of time, and kudos must be given to the community’s founder and leader, Danny “I’ve-worked-

my-ass-off” Day, known to most as dislekcia.

This kinda got me thinking that maybe this mag doesn’t advertise its link to the Game.Dev group enough. It’s always been

great that the members have worked autonomously on this publication for more than a year now, and we’ve never been

restricted by the high-ups regarding content decisions and how much extra icecream we get on Fridays (it’s a perk for loyal

staff members, I lie not). But, as flattering as it is to have some people forget that Dev.Mag is just a cog in the big Game.

Dev machine, maybe it’s time to pay homage directly to our alma mater over these next few issues. Thank you, Mommy.

You’ve given birth to a beautiful baby ‘zine.

On a similar note, some of our writers have brought up the concern that perhaps we’re losing touch with our original ethos.

No matter what else we put in our pages, this ‘zine was ultimately created to serve as a guide those who were taking their

first tentative steps on that scary game development road — so by golly, we’re gonna stick with that goal! To this end, we’ve

done three things for you, our readers:

1. We’ve introduced a “Blue Pill” article series in the Design section. Every month, we’ll be taking a look at one game

development product. We’ll tell people what it is, how it works, where all the best tutorials can be found and why it’s a

good idea to get started with it.

2. We’ve established our own series of Game Maker tutorials to help anybody who still isn’t convinced by what they hear

about the product’s ease of use. It’s a blast, seriously!

3. We’re now taking care to refer to back issues for the beginnings of article series or once-off tutorials, so that anybody

confused by the stuff they read in here can easily flip back to a previous edition and be enlightened.

We’re doing our best to make this work out as well as possible, so be sure to send us your feedback and tell us what you

think of the changes!

Editor
Rodain “ Nandrew ” Joubert

EDITOR
Rodain “ Nandrew ” Joubert

DEPUTY EDITOR
Claudio “ Chippit “ de Sa

SUB EDITOR
Tarryn “Azimuth” van der Byl

DESIGNERS
Brandon “ Cyberninja “ Rajkumar

Geoff “GeometriX” Burrows

MARKETING
Bernard “ Mushi Mushi “ Boshoff

Andre “ Fengol “ Odendaal

WRITERS
Simon “ Tr00jg “ de la Rouviere

Ricky “ Insomniac “ Abell

William “ Cairnswm” Cairns

Danny “ Dislekcia “ Day

Andre “ Fengol “ Odendaal

Heinrich “ Himmler “ Rall

Matt “ Flint “ Benic

Luke “ Coolhand “ Lamothe

Stefan “?rman” van der Vyver

Gareth “Gazza_N” Wilcock

WEBSITE DESIGNER
Robbie “ Squid “ Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the

South African Game.Dev commu-

nity. Visit us at:

www.gamedotdev.co.za.

All images used in the mag are

copyright and belong to their re-

spective owners. If you try and

claim otherwise, you don’t get to

play .S.C.A.G....

... ever!

WHOOPS!
Well, aren’t we just silly sillies? Last edition, we

failed to mention that this DB model (and, well, all

of the other DB models you see) are done courtesy

of one Geoff “GeometriX” Burrows. He did a pretty

swell job on ‘em, too. Thanks, Geoff!

DEV.MAG ISSUE 14

3

This month’s opinion columnists:
Rodain “Nandrew” Joubert

Simon “Tr00jg” de la Rouviere

This month’s PGD contributors:
Michiel “NecroDOME” Gijbels
Frank “Mad Woody” van Gent
www.pascalgamedevelopment.com

Reminder for Comp 15

http://www.gamedotdev.co.za/

That’s right, a cheeky little reminder that the competition is still on and still accepting new

entrants! Game makers extraordinaire have one month left to get cracking on their own

masterpieces based around an educational theme and get their piece of

 R 10 000! Check out the Game.Dev website and forums for more details on entering.

Game Addiction Discussed

http://www.gamedev.net/community/forums/topic.asp?topic_id=453210

The American Medical Association recently held a discus-

sion about the severity of game addiction and whether or

not it can be considered a formal psychological disorder.

The final decision was against labelling it as such, but only

because it was felt that more research needed to be done

in the area. Gamedev.net has a link to the document out-

lining the issue, and it looks like the medical world is going

to be paying much closer attention to gaming from now on.

NEWS HEADLINES

Doritos game design

http://www.unlockxbox.com/

The latest game-making initiative on the

Xbox is being spearheaded by ... tortilla

chips? Well, that seems to be the case,

and it’s an interesting challenge, to say

the least. The premise is simple: submit

a design idea for a Doritos-based game

which has the chance of being devel-

oped into a Xbox Live Arcade game. If

you happen to have a US citizenship

lying around, take a stab at it yourself,

or watch from the shadows to see what

happens with what’s proclaimed to

be the first “user-generated Xbox 360

game”.

Nintendo says “yes” to indie developers

http://gizmodo.com/gadgets/wiiiiiiiii!/nintendo-opens-wii-to-indy-developers-272717.php

Traditionally, Nintendo has kept its doors closed to third party and

indie developers. However, a recent announcement by the com-

pany has turned that idea on its head and brought hope to Wii

enthusiasts and avid developers. WiiWare, a game distribution

service comparable to the one offered by Xbox Live, is set to al-

low smaller companies a chance to get their games to the public

with a user-friendly sales system. Although it seems unlikely that

this will open up Wii development to the man on the street, we’re

holding thumbs for it.

DEV.MAG ISSUE 14

4

program The_Making_of_.S.C.A.G.;

implementation

constructor Create();

begin

This article will describe in-depth how we made

the game .S.C.A.G.. When we started with the

engine a year and a half ago, the original idea

was to make a first person shooter. When we

finally had a user friendly editor, the PGD com-

petition (Big Boss) crossed our path and we de-

cided to create a game that looked like the old

arcade game Raptor: Call of the Shadows.

end;

procedure Init();

begin

The first thing we did was to create a new proj-

ect, and include our Necro3D game engine in it.

This was a good test for us to see if we actually

THE MAKING OF SCAG
by NecroSOFT

FEATURE SHOOT. FLY. SHOOT SOME MORE.

We just can’t seem to get enough of those

Pascal guys right now. This month, we

sport a postmortem of one of the games

built by the Pascal Game Development

team known as NecroSOFT. They call it

.S.C.A.G.. It’s slick, it’s fancy and it won

2nd place in the 2006 PGD “Big Boss”

competition, so we thought it would be

worthwhile to nag them for a juicy article.

Of course, these guys don’t think like most

people, so what we ended up with was a

cryptic list of Pascal code instead of the

usual English. Fortunately for you, dear

reader, we made a fair effort at translation ...

DEV.MAG ISSUE 14

5

could make a game with the engine. We were

also able to see if the editor was as user friendly

as we wanted it to be. When our engine was

successfully implemented, it was time to load

a low-poly ship and a few cubes to get proper

handling for the player’s ship. In this phase we

also got the great idea to do something more

then a 2D Raptor game in a 3D engine. We

decided to make a game that had a side-view,

and a top-down view. With this in our minds, we

started creating levels and enemies.

end;

function Level_Design()

begin

For the competition we had to make three lev-

els. Well we made four just for fun! After the

competition we expanded it to fourteen, divided

into four different zones plus one bonus level.

The first level was a city. Because we had no

terrain engine yet, we used planes to make the

city road. In a few places in the level we added

some big smoke particles for some really nice

effects. This will give the player the idea that

it’s very windy in the town and that the city is

deserted. It’s easy to create, and gives a great

environment to the game.

The top-down, and side-view cannot be chosen

by the player, but are marked in the map. This

is because we had to align the enemies on two

different axes for the two view modes. All the

enemies were placed with our editor. We can

tell you this - it was one hell of a job to get it

done. It didn’t take very long before we created

a copy and paste function for this in the editor.

FEATURE SHOOT. FLY. SHOOT SOME MORE.

DEV.MAG ISSUE 14

6

FEATURE SHOOT. FLY. SHOOT SOME MORE.

FEATURE SHOOT. FLY. SHOOT SOME MORE.

When the terrain engine was done, it was really

easy to import height-maps and speed up the

level design. A very important thing to create

the right environment is light. Instead of using

one global light, we used a lot of small lights.

The most important thing is that all those lights

we placed had different colors. For example,

in the lava levels we used a lot of yellow and

red lights to make the ugly grey levels more at-

tractive. We had a small problem with this level

because we had a lot of aliasing going on at the

edges of the lava and the terrain. To save you

guys a lot of time when you have this problem,

it’s caused by the Z buffer and the minimum

camera distance.

Another fun thing about the lava level that we

created after the competition was the rocks that

are falling down. This is the only place where

we used the Newton Physics Engine that we

implemented into our engine.

In most of the levels we used multi-texturing.

This means you can place two or more different

textures on each other with a blending effect on

it. In our editor we made a feature in the texture

browser to easily do this. Just create an empty

texture with a size and load the textures you

want to use. You can see this effect in the ice

level, as well as the mirroring on the buildings

of the city level.

end;

function Weapons();

begin

The most fun part of creating a game is of

course adding awesome weapons. The inter-

esting thing of our game is that some weapons

have two different behaviors. For example the

rockets will fall down a little bit in side-view,

and then in top-down view, they will go to out to

the sides a bit on the screen. We also made a

weapon called the Drunkenpod. It fires a bunch

of small rockets that will fly all over the place

--because they’re drunk, of course. Each rocket

FEATURE SHOOT. FLY. SHOOT SOME MORE.

leaves a small trail which creates a really cool

effect. We made this by simply sticking some

particles together.

end;

function Ship_Modeling();

begin

First, I have to say that we are not great de-

signers. Our inspiration came specifically from

‘Raptor’. We also looked for some ships on the

internet for ideas and worked them out in 3D

max, but with our own twist, of course. The idea

of the Sharkfighter (yellow, red enemy) was cre-

ated from an old Game Boy Classic game (don’t

remember the name). But during the creation

we changed it so much it was a completely new

fighter. After we created the models we had to

do our favorite job - texturing. Well we made it,

and looks good, but it’s not the most fun part to

do and very time consuming.

end;

function Soundtrack;

begin

We made four different soundtracks for

DEV.MAG ISSUE 14

7

.S.C.A.G.. The first idea was to let a friend of

ours make it with the help of his band. Unfor-

tunately he didn’t have the time to do it, so we

decided to make it ourselves. We used a very

old program from 1996 called NewBeat. It offers

a lot of different samples divided into samples

from 2, 4 and 8 seconds. With this you can

make great songs if you use it right. It created

just what we wanted, a retro style soundtrack.

Only keep in mind that the samples shouldn’t

conflict with each other.

To play the soundtrack and sound effects, we

had first used the Omega DirectX SDK for Del-

phi, but since the release of Vista we noticed it

wasn’t Vista compatible. So we then decided to

use another SDK and as result, we can now say

that .S.C.A.G. is Vista compatible. It now also

supports the Doppler effect, but is not used.

Yet... :)

end;

function Menu();

begin

For the menu we created a new menu engine

that supports drag-able panels and custom

fonts. Fonts in .S.C.A.G. are created at runtime

to save disk space. The menu itself was created

using buttons. Even the big caption logo on top

of the menu was created using a button with no

click event and two of the same images so you

won’t notice it when you hover your mouse over

it. The scrolling text in the credits window was

made with a render target that was placed on

a button, which in turn was placed on the main

credits panel. It gives a nice look to see credits

scrolling inside a window.

end;

function The_New_Way();

begin

Our Necro3D game engine is great, but there is

always room for improvement. That’s why after

two games in the Necro3D game engine, we are

now busy with the Necro3D game engine ver-

sion 2. The main improvement of this new en-

gine is that it will be fully dynamic. We are going

to use separate modules that are loaded in the

engine like a plugin system. Examples of some

of the modules are; the Render module, Sound

module, Physics module, and so on. With this

structure we can easily change, for example,

the rendering with DirectX 10 or OpenGL, with-

out rewriting the whole game engine. This also

means that we can easily upgrade a game with

a new physics engine. It’s a little more complex

to make, but when it’s done we’ll have a greatly

improved, fully dynamic engine.

The work of this new engine progresses well

and we are already able to load 3D worlds and

compile shaders --something the old engine

couldn’t do. Also the editor is going to be very

different. Instead of the four view sections --top,

left, front and 3D-- we are now going to use one

FEATURE SHOOT. FLY. SHOOT SOME MORE.

single 3D view. We are very excited about our

new engine and hope to be able to show you

the first games made with it soon.

end;

procedure Cleanup();

begin

With .S.C.A.G., we made a great game and fin-

ished second in the Pascal Game Development

Annual Competition. We can say that we had a

lot of fun making .S.C.A.G. and are planning to

try and sell this wonderful game. Keep in mind

that this is not the end, but only the beginning.

We will continue making games and with the

new engine, we hope to be able to create more

quality games then ever. And who knows, may-

be you’ll see a .S.C.A.G. 2? ;)

Print(‘End of line.’);

end;

// Give us a visit at

// http://necrodome.homeftp.net/

end.

DEV.MAG ISSUE 14

8

“THE SANDTRAP”

Y
eah, okay, so we all stand in awe of

creativity and freedom in videogames,

right? I mean, games are evolving

from the droll, go-here-do-this linear hum-

drum of yesteryear into the fl exible, free-form

sandboxes that we’re met with today. They’re

more like the toys that they should be, right?

Riiiiiiight.

Popular opinion seems to be that games like

The Sims, Black and White and, to a lesser ex-

tent, Fable are ushering in the golden age of

gaming – an era of virtual worlds which have ac-

tivities and objectives that go beyond the basic

goals of the game itself. In more extreme cases,

user-defi ned goals serve as the only objectives

in the game. So, woohoo! You have ultimate

power over your destiny! Ain’t that just dandy?

Well, while this sounds great and all, I think

I’m going to step forward here and risk sound-

ing like that proverbial old man on the porch. I

don’t think that this new wave of games are all

they’re cut out to be. They may appeal more

to a new mass market, but as far as I’m con-

cerned, games are defi ned by rules and goals

set by the developer – much in the same way

that movie plots are written by those blokes in

Hollywood and not the people sitting in the cine-

ma. Heck, even a joke has a defi ned punchline.

Imagine how dreadfully boring it would be if

your friend walked over to you and said, “Knock

knock, you get the idea now. Finish it yourself.”

I’ve played The Sims myself. Got rather bored

after a while, so I went on to buy an expansion

pack or two (especially since one of them had

those adorable little pets in it). Those didn’t last

much longer. I eventually clued up as to why I

wasn’t enjoying the game – there was no defi ned

challenges for me. If I got rich, I got rich. If I be-

came fi tter or got new employment, good on me.

There simply did not seem to be enough of the

game saying, “Hey great! You did a sweet job!”

Heck, I also played Fable – went and bought a

house in-game, even got married. The result was

that I now had a wife with a little heart above her

head whenever I decided to step back into that

one particular part of the game. And for what

OPINION WHAT YOU’RE THINKING

purpose? She didn’t help me kill monsters, she

didn’t unlock any bonuses, she hardly even ap-

peared unless I went out of my way to fi nd her.

It all seemed merely for the kudos of having a

wife. Are modern gamers really drawn to that?

Don’t get me wrong. I think sandbox games

are important, and most games contain some

concepts of user-defi ned goals. Still, I think

it’s important for us to pay heed to the advan-

tages presented by a well-scripted and well-

ordered games that provide rewards which

are ... well, truly rewarding. Just a thought.

NANDREW

DEV.MAG ISSUE 14

9

The Dev.Mag staff does not expressly support or agree with the views of guest columnists in this section.
In fact, the Dev.Mag staff does not expressly support or agree with the views of Dev.Mag staff writers in this section.

It’s a crazy world, isn’t it?

“Can Game
Developers learn
from Genetics?”

I
n my quest to discover why certain “original”

games get the limelight while other “original”

games get lost in the recesses of the web, I

stumbled upon the answer.

It happened while I was watching my favourite

show, Heroes. If you don’t know, Heroes is all

about seemingly normal people trying to cope

with their special powers in their everyday lives.

The narrator of the show speaks about the con-

cept of evolution a lot. So being the person that

I am, I wiki’ed Heroes and Evolution. I discovered

an interesting and true phenomenon in evolution.

When there is a huge number of a species

(like humans), any new mutation will be liter-

ally drowned out by sheer number of people who

simply do not have that mutation. The chances

that this new mutation will be carried to new

generations are incredibly remote. A new mu-

tation will have a higher chance to get carried

on to new generations in small closed societies.

I immediately drew a comparison to games - what are

the chances that an original game gets noticed and

accepted as something “great”? Very small, simply

because it is different to everything else out there.

I can hear you asking, “But if a game is original,

doesn’t it then stand out among the masses?”

Yes it does, but again we draw a comparison to

genetics. If someone with a new mutation occurs,

we would be instinctively wary. An extreme ex-

ample is the case that someone mutates a third

arm. Look at all the possibilities and advantages

of a third arm! But let’s be serious here - who

would go out with someone who has a third arm?

So I come back to my original question. Why do

some original games fare better than others?

I’ll explain it by another example. If Super-

man (who has awesome powers) gets tired

of Lois Lane, he will have plenty of girls will-

ing to have his babies. It is instinctively viable.

Now how do we distinguish between third-arm

games and Superman games? Is your original

game third-arm or Superman? If it’s a Super-

man game, you wouldn’t be reading this - you’d

be taking a Sunday drive in your Ferrari. I don’t

know the answer, but I have the solution to get

OPINION WHAT YOU’RE THINKING

your third-arm game or Superman game noticed.

The great difference between genetics and game

developing is that we can choose these new muta-

tions in our games. If more and more people mutate

third arms, the phenomenon will become accepted

in society and be carried over to future generations.

So, what is the solution here? If you have an origi-

nal game that does not seem to get noticed, you

should keep fl ogging it everywhere and produce

sequels with the same gameplay. If more and

more people see your original game and its vari-

ants, it WILL become recognised and talked about.

Take Team 17’s Worms as a brilliant example. All

they have done is develop Worms after Worms.

Who remembers the fi rst worms when it came

out? Back then, no-one really knew about it, but

now it’s grossing huge sales with its latest incarna-

tion on X-box Live Arcade. They just kept going.

It’s as simple as that. Just keep going.

TROOJG

DEV.MAG ISSUE 14

10

The Dev.Mag staff does not expressly support or agree with the views of guest columnists in this section.
In fact, the Dev.Mag staff does not expressly support or agree with the views of Dev.Mag staff writers in this section.

It’s a crazy world, isn’t it?

MAKE A GAME
AND GET YOUR

PIECE OF
R10 000

Here at Game.Dev, we believe that games are more than just entertainment or a silly fad —

games can (and will) change the world and make a difference. Mindset Learn are keen on doing

just that, making a difference. So they’re challenging us – and you – to produce the next gen-

eration of entertaining and meaningful games. That challenge takes the form of:

R5000 for first place,

R2500 for second place,

R1500 for third place and

R1000 for the best new entrant.

So all you have to do now to get a shot at that prize money is put together a game that’s fun

and focuses on a concept you enjoyed or found challenging at school. You don’t need to pro-

duce a fully fledged “educational” experience, in fact we’re looking for quite the opposite: fun

games that are enjoyable because they’re well-designed and entertaining, you just happen to

be playing within rules or a setting that match something you’ve learned. Think “guerrilla learn-

ing” and you’re on the right track!

The competition begins on 1 June 2007, and the deadline for entries is 31 July 2007. That’s two

months that you have to make the ultimate game and win some big money!

For more details, head on over to the Game.Dev website at http://www.gamedotdev.co.za

12

BLENDER INTERMEDIATE TUTORIAL:

Creating explosions with Blender 3D

DESIGN ENTER THE 3D WORLD

s with previous tutorials, I need to stress

the fact that the basic Blender interface

has already been discussed within

previous releases of Dev.Mag. I will not

therefore explain every single step of the way.

There are plenty of interface-related resources

on-line.

Blender 3D has an integrated particle system

that can render production quality special

effects. One possible use for this particle

system is to render a particle system that

simulates an explosion through animated

colour and transparency parameters.

The rendered sequence can then be compiled /

composited as a movie clip, animated GIF, or in

any way that your specific software package will

handle images with sequential numbers.

Hence, an animated explosion.

The field of special effects is bigger than a short

tutorial, so expect to find:

 • The basics for setting up a particle system

 • Basic animation of colour parameters

 • Basic introduction to transparency for

Blender particles

Particle systems can produce spectacular

effects, depending on the time you are willing to

spend tweaking it.

So, first things first. We have to plan this thing,

since it has to fit into a game somehow.

I suggest doing an explosion:

 • That will be an explosion for a scrolling

top-down shooting game

 • That starts and completes the animation

within two seconds (I will work with 25 frames

per second)

Two seconds of animation amounts to 50

frames at 25fps, and I will plan the colour

changes of my particles to fit into that time frame.

I will set my colour animation to go from initial

BLACK smoke, to bright hot RED, to flaming

ORANGE, and ending off with GREY smoke.

Timing will be set as indicated in the image

below.

We will create:

 • An object that will shoot out particles

 • Create a texture for the particles (mainly a

smoky, see-through type of effect)

 • Keyframe the colour changes

 • Position a camera to document the

explosion

 • Render 50 frames

Particles will be generated (in this case) from a

mesh object. We will shape the object so that

the particles do not simply fly out in a straight

line. Speed of the particles is determined by the

menu settings.

Of course we also have to tell the particles

when to appear, how long they will last, and

how long they will be emitted for.

For example, we might say that the particles will

be thrown out of the object (emitter) within the

first ten frames, which will create the actual

explosion, after which some flames and smoke

will billow outwards for the remaining 40 frames.

Start up Blender, if you're up for the challenge!

A

DEV.MAG ISSUE 14

(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)(If you’re new to Blender, check out Dev.Mag Issue 5 for the beginning of our Blender tutorial series!)

13

DESIGN ENTER THE 3D WORLD

Create a mesh 'plane' .

Subdivide the mesh plane (WKEY)

Select the four corners and scale them inwards

Go to Edge mode (Ctrl-TABKey) and select

(RMB) the outer edges. I also switched to

wireframe view (ZKEY) for easier viewing.

Extrude the edges (EKEY), but press LMB (left

mouse button) immediately. After pressing the

LMB, press SKEY. This will put you into scaling

mode. Scale the edges outwards.

Now you have to change your view to a side

view, which will allow us to add the shape that

will make the particles fly out in a wider area.

Move the selected axis according to this image:

Select the center vertex of the initial mesh

object, and move the vertex so that you an

image resembling this:

TABKEY leaves edit mode. This object will be

the emitter for the particles.

It's time to add the particle system. Ensure that

you have enough screen space around the

emitter, so that you may see the effect of any of

the changes you may make.

Click on the “Object” button.

Then locate the “Physics” button and activate it.

Next, create a “NEW” particle system.

A new menu becomes available. Note that

there is a tab for “Particles”, as well as a tab for

“Particle Motion”.

Under “ParticlesParticlesParticlesParticles”, you will find settings that

define the creation and lifespan of particles,

while the “Particle MotionParticle MotionParticle MotionParticle Motion” tab controls

movement of the particles.

My suggestion would be to set the parameters

as follows, after which you can start tweaking:

You will notice that I only changed about six or

seven parameters. If you want the particles to

fly more randomly, try adding some “Random”

under the “Velocity” heading. These values can

also be adjusted negatively to change to the

opposite direction.

Play your animation (mouse over viewport and

ALT + AKEY), or use the arrow keys to look at

the animation of the particles.

Now for the texture of the particles. This part is

quite challenging if you are new to this, so allow

some time to figure this out.

TexturingTexturingTexturingTexturing

We will use the solid color RGB area for primary

color adjustment, and load a texture that will

affect the smoky, transparent look of the fire

and smoke.

DEV.MAG ISSUE 14

14

DESIGN ENTER THE 3D WORLD

Click on the “Material” button.

Assign a new material to your object. Click on

“Add New”.

Firstly, we will set the material to create a “Halo”

material. This is used along with particle

systems and can create starry, or smoky

effects. Click on the “halo” button. A new set of

buttons will appear. Set those according to

these settings:

Next, we will add a texture, and use the

mapping options to get that texture to influence

the alpha channel of the particles. Click on the

“Texture” button (that's the leopard skin one).

Add a new texture, make it a “Clouds” type, and

then set the settings as shown below.

The size of our particles, along with the size of

the scene, will influence what the particles look

like. Tweak the particle size settings, as well as

the noise settings (after we've done the

mapping), to get the desired effect.

Transparency (alpha channel) will be based on

100% transparent for black, and fully opaque

for white, with shades of gray offering various

levels of transparency.

Click back to the Materials button. You should

see the mapping options towards the right-hand

side of your screen if you have a default screen

layout. Activate the “Map To” tab, and activate

the “Alpha” button. This tells Blender to use the

colours from the texture to calculate an alpha

channel. Don't worry about the pink color

swatch. We are overriding that with the texture.

One thing remains – to animate the color

parameters on the particles. Don't get confused

here:

We added a texture to control transparency, not

change the actual colour of the particles!

(You can see that the “Col” button is not

activated in the “Map To” tab)

We will keyframe the RGB colors using the

IKEY.

Ensure that you are on FRAME 1.

Again.

Ensure that you are on FRAME 1. You are

going to struggle if you leave out this step!

Set the color to black, hover the mouse over the

black swatch, and press the “IKEY”. A menu

pops up. Choose “RGB”.

Now advance your frames to frame 4. Change

the colour swatch to a bright red, and insert a

RGB keyframe.

Advance to frame 12. Keyframe that same red

color again.

Move on to frame 25, keyframe a bright orange

RGB value.

At frame 40, keyframe a light grey RGB value.

Last, but not least, use the same method to

keyframe two values of the “A” (short for 'Alpha'):

Value of '1' at frame 44;

Value of '0' at frame 70.

You can now set up your camera and lights,

and start rendering your sequence. My

suggestion would be to render PNG files with

the alpha channel switched on. You can then

composite your explosion on top of other

images.

?RMAN?RMAN?RMAN?RMAN

DEV.MAG ISSUE 14

15

GAME MAKER

DESIGN TOOLS OF THE TRADE

f you ask a triple-A game developer

what is required to create a quality

game, he’ll almost certainly include

‘a talented programming team’ in his list of

prerequisites, leaving many a budding

game developer to wallow in sorrow.

Thankfully, a Dutch computer scientist

named Mark Overmars decided that

complex programming needn’t be a hurdle

for producing quality games. He created

Game Maker, a true boon to the game

development community.

Anyone who ever had even the most

fleeting thoughts about a potentially

interesting game idea will find himself at

home with Game Maker’s simple, yet

powerful, tools. These very tools also

happen to be free. Well, most of them at

least. The program comes of two versions:

The unregistered (‘Lite’) version, which is

free of charge, and the registered (‘Pro’)

version. The Pro version, at the meager

price of €15 (roughly R150), includes

support for advanced drawing effects and

functions, an effects system, and support

for .dll imports, among other things.

Game Maker’s strength lies in its

innovative drag-drop interface, which

allows multiple game creation

opportunities with little or no programming

required. As such, the world of game

development is now open to those without

intimate knowledge of computer systems

and programming languages.

But before any of you hardcore game

programmers write off this ‘measly’

program, know that, for those inclined to

delve deeper, Game Maker includes a

robust scripting language that will allow

even the most complex interactions to be

created. The scripting language, known as

Game Maker Language or GML,

increases the appeal of Game Maker

beyond the non-programmer crowd.

Together with the scripting language, high

quality games can be created. Remember

The Cleaner, a game we reviewed a while

back? You guessed it! That was made in

GM. As was Ninja loves Pirate. (http://

www.ninjalovespirate.com/)

Game Maker also boasts a huge

community base, providing assistance

and tutorials for anyone eager to learn.

The official Game Maker Community is

likely the largest of these, but many more

are abound. A previous Dev.Mag issue

(Issue 9) includes a more exhaustive list.

So wallow no more. Go grab Game Maker

and start making games. And once you’re

done, we’ll be more than eager to see

what you’ve made.

CHIPPITCHIPPITCHIPPITCHIPPIT

I

DEV.MAG ISSUE 14

 Get Game Maker:

www.yoyogames.com/gamemaker

Tutorials and examples:

www.gamedotdev.co.za

www.yoyogames.com/make/tutorials

64digits.com/games/index.php?example=1

Game Maker Community:

gmc.yoyogames.com

TAKING THE BLUE PILL FOR ...

Today’s article will contain the following sections:

1.A brief Game Maker tutorial showing the basics of getting an object

to move, both with the keyboard and with the mouse.

2.This is followed by a discussion, in detail, of the various Game Mak-

er actions available to you.

3.Game Maker Language (GML) is a powerful way for the developer

to get closer to the action, and contains numerous functions for mov-

ing objects.

Game Maker Tutorial

This tutorial is going to create a room

that contains two balls. The first ball

will be controlled by the arrow keys on

the keyboard and the second ball by

clicking the mouse.

This tutorial is not a game as such, but is designed instead to show vari-

ous methods of making objects move. A few small changes could make

this into a fun game. Some possibilities might include spreading various

objects around the screen and scoring as they get eaten by the balls,

creating a two player Pac Man game where the balls must rush through

a maze, of even a chasing game where one player must try and catch

the other.

Step 1 – Create sprites

In Game Maker, add a new sprite. Select an image for it, such as one of

the balls in the default graphics. The sprite screen should look like the

image over the page:

W
elcome to the first in the Beginner’s Guide to Making Games.

Each month a single important concept required for making

games will be discussed in detail. This month we’re starting

with moving objects, and next month we’ll look at collisions. These have

been chosen as the first two concepts because a good understanding of

them will allow you to start building your own unique games.

The main goal of the Beginner’s Guide series is to try and ensure a de-

tailed understanding of the various concepts so that they can be applied

to other new and exciting games. While most traditional tutorials will show

what code is needed, these guides will ensure that you walk away actu-

ally understanding each of these concepts.

This article is aimed at someone who has just started learning to make

games. While it is assumed that the reader of the article has complet-

ed the first official Game Maker tutorial and is able, therefore, to create

sprites and objects, it is quite possible to follow the article without having

done so. The article is structured not only to introduce a new program-

mer to the concept, but should be of some value to the intermediate level

programmer as well.

Moving an object – GM tutorial

The vast majority of games require movement within the game. Some

games such as word puzzles get away without using moving objects but

these are the exception rather than the rule. To keep things simple, we’ll

only look at moving an object in 2D space, while a later article may look

at adding the third dimension.

DESIGN HELPING YOU ALONG

A BEGINNER’S GUIDE TO
MAKING GAMES

DEV.MAG ISSUE 14

16

1PART

HINT: When using Game Maker
always set the Advanced option
on. This makes it easier to see and
access all the functions.

To move the object on the screen we now need to click and drag the

“Start moving in a direction” action into the actions list. This is the first

action on the Move action screen. For more details on how the “Start

moving in a direction” action works, consult the next section.

Whenever an action is added to the Actions list, a dialogue box will be

displayed where you can set the parameters for the action. In this case

we click the arrow pointing left and set the speed to 5. (Note that this

speed is good for testing things, but can sometimes be too fast for actual

in-game events).

Step 3 – Adding our object to the room

Rooms are where everything happens in a Game Maker game. Without

a room, objects can’t do anything. Rooms can also be set up to contain

pretty backgrounds and can transition in fancy ways.

Create a new room in Game Maker. On the left tab ensure that the

oBallKeyboard object is selected to be added to the room. If it isn’t, click

on the selection box under “Object to add with left mouse” and select it

from the list. Click with the left mouse button anywhere in the room.

Step 4 – It works

Run your game by pressing the green “Run

Game” button. The beauty of Game Maker is

how your game runs every time without fail.

Press the Left arrow key and your ball will go flying off to the left. Unfor-

tunately there is no way of changing its direction or stopping it at the mo-

ment. To be able change the direction of the ball repeat what was done

above but for the other three directions of the “Key Press” event.

While not important for this tutorial, it is often a good idea to set the origin

of a sprite to the centre of the sprite to assist with collision detection. To

do so press the Centre button on the Sprite screen.

Transparent sprites usually look a lot better than a solid sprite unless for

some reason the sprite is a single block of colour. The colour used to

make the sprite transparent is the colour in the top right hand corner of

the sprite.

Step 2 – Making an object

Game Maker uses a sprite to store the graphics for the game, and the

objects in the game are represented by a Game Maker Object. Create a

new object using the previously created sprite.

Name this object oBallKey-

board to show that this ball will

be controlled by the keyboard.

To move an object in Game

Maker we need to create

events and allocate actions to

the events. For the keyboard

we need to create four events

(one for each arrow key di-

rection) and allocate a “Start

moving in a direction” action

to each.

On the object screen select the Add Event button, and in the following

dialogue box select Key Press and then choose the Left option from the

menu. This creates an event that will occur whenever the player of the

game presses the left arrow key.

DESIGN HELPING YOU ALONG

DEV.MAG ISSUE 14

17

HINT: Always rename the items you create in
Game Maker. It is always easier to remember
that something called sBall is a sprite contain-
ing the image of a ball than to try and remem-
ber that sprite125 is a 16 frame animated
image of a vampire firing a bazooka!

HINT: A good habit to get
into is saving your game
every time before you run it!

they do, and what alternate options are available for each thing you want

to do.

Often in Game Maker there are alternate options to achieve the same

thing. However by understanding what the various options do, they can

be better used to achieve the effects that your game requires.

Movement in actions consists of two ele-

ments, direction and speed. Speed indi-

cates how far the object will move in each

step, so the higher the speed value, the

faster the object will move. Direction shows,

in degrees, the direction the object should

be moving starting at zero being right and

moving anti-clockwise. A direction of 90 in-

dicates a direction directly up, while a value

of 180 would mean directly left.

A nice trick to understand in Game Maker is the use of the Relative

checkbox. When the relative check box is checked the values entered

into the parameters boxes are added to the current values. So for ex-

ample if an object is moving at a speed of 5, and a relative value of 1 is

selected the object will start moving at 6 thereafter.

Start moving in a direction

The most basic of the movement

actions allows you to choose the di-

rection you want the object to move

without needing to understand what

degrees and direction mean. This

action is best used when you are

designing a game that uses clearly

defined horizontal and vertical lines,

for example a maze game.

Set direction and speed of movement

This option allows you to move an

object in any direction and at any

speed. To use it properly you need to

understand how the various degree

points work. Being able to set any di-

rection for movement gives the devel-

oper a very large range of movement

options. Being able to move in any

direction is typically used in games

Step 5 – Mouse movement

Moving objects using the keyboard is just one method of moving the ob-

ject on the screen. Another frequently used method of controlling object

movement is to use the mouse. Making an object move toward the mouse

is in fact very easy.

Follow the previous instructions to create a new sprite (using a different

ball picture), and a new object called “oBallMouse”.

Create a new event for the next object, select the “Mouse”, “Global Mouse

Event” then the “Global Left Pressed”. Mouse events in Game Maker can

apply to the object individually or on a global level. Mouse Events such as

“Mouse”, “Left Button” will only apply if the player left clicks on the actual

object. The “Global Mouse Events” will trigger for the object irrespective

of where the player clicks on the game screen.

When using the Game Maker actions, it is possible to use the internal

Game Maker functions as parameters. In this case we want to make the

object move in a direction toward the mouse. Fortunately there is a Game

Maker action called “Move in the direction of a point”. Using the internal

Game Maker mouse information, we can just set the x and y coordinates

to mouse_x and mouse_y which represent the current position of the

mouse.

Add the new object into the room. Run the game again and click randomly

on the screen and watch how your new ball follows the clicks around the

screen.

Moving objects with actions

Game Maker is cool because its easy, and Actions are some of the most

important things that make Game Maker such as easy tool to use. To get

the most out of the Game Maker actions, you need to understand what

DESIGN HELPING YOU ALONG

DEV.MAG ISSUE 14

18

the Y to mouse_y.

b.Set the direction to point_direction(x,y,mouse_x,mouse_y) and

the speed

There are almost always various different ways to make an object move

the way you want it to.

Moving objects with GML

Game Maker actions are short cuts to Game Maker Language constructs.

While that sounds complicated, it basically means that actions are the

easier way of doing things that can be done in Game Maker Language.

Before we start discussing the various options for making objects move,

here is a quick breakdown of how movement in Game Maker works.

All movement is based on a direction and a speed. Each step (frame)

makes the object move a number of pixels on the screen as specified by

the speed in a specific direction. Another way of looking at this is that the

objects move a set speed in a vertical and horizontal distance. All these

values are properties of the object and can be manipulated directly.

Property Description

hspeed Horizontal component of the speed.

vspeed Vertical component of the speed.

direction Current direction (0-360, counter-clockwise, 0 = to the right).

speed Current speed (pixels per step).

Now it’s important to understand that these properties adjust based on

the value set in the other properties. So setting the direction and speed of

an object also changes the hspeed and vspeed of the object.

Calling a script

To call a script for an object, add an event to the object and add the “Ex-

ecute a piece of code” action to the action list. In the popup text editor,

add the commands you want to be executed.

Scripts can contain any of the Game Maker Language functions as well

as various control structures such as for loops and if statements. GML

allows statements to be grouped together through the use of braces to

identify start and end sections { }.

Remember also that it is possible to access properties of other objects.

So it’s quite possible, for example. to do things like moving toward other

objects or using the position of other objects to define the movements of

the object.

that use an open game environment, where an object needs to move in

any direction between points, such as enemy fighter planes in a shooter

game.

Move in a direction to a point

Rather than forcing the game de-

veloper to work out the direction an

object would need to move in to get

to a point, Game Maker has sup-

plied an action to just define the

point to which an object needs to

move. Internally, this action uses

the objects current position and the

destination point to calculate the di-

rection the object needs to move in.

Moving directly to a point is very useful in games where one object

moves toward another to attack it, such as enemy bullets being shot at

the player.

Set the horizontal speed, set the vertical speed

These very simple options allow you

to move an object in a horizontal or

vertical manner at a set speed. Note,

however, that these options do not

cancel the other directional speed

that has been set. This means that

if an object is moving up the screen

and a Horizontal Speed is set the ob-

ject will begin moving in a diagonal

direction and not just horizontally.

These actions are useful in games that need some sort of acceleration or

deceleration in a direction option rather than specific speed settings.

Some examples

Here are some examples of doing the same thing in many different

ways.

1.Moving an Object Left

a.Use “Start moving in a direction”, choose Left and define a

speed

b.Use “Set direction and speed of movement”, with a direction of

180 and a speed.

c.Use “Move in a direction to a point”, set the new point’s X value

to “x-100” and set the required speed.

2.Move toward the mouse

a.Use “Move in a direction to a point”, set the X to mouse_x and

DESIGN HELPING YOU ALONG

DEV.MAG ISSUE 14

19

DESIGN HELPING YOU ALONG

Special moves

GML contains some special movement functions. The various jump func-

tions are being excluded as they will be covered in a future article. This

article looks only at the functions that affect the movement of the object.

move_towards_point(x,y,speed)

Does the same as the “Move in the direction of a point” action. So in a

global mouse left pressed event a piece of script

 move_towards_point(mouse_x,mouse_y,5);

will move the object towards the position of the mouse.

The power of scripts

While it is certainly possible to create a fun playable game without using

scripts, the person using scripts will probably be able to create a more

immersive game as they will be able to include proper AI and more be-

lievable behaviours. Taking the time to learn to use GML will definitely

improve your games.

CAIRNSWM

Moving the object

In GML moving an object in a specific direction is as easy as setting the

direction and speed properties of the object. So by creating a “Key Press”,

“Left” event and executing the following code:

The object will move toward the left just as if the “Start moving in a Direc-

tion” action was used to move left at a speed of 5.

The other movement actions can similarly be defined in code. To swap

the horizontal or vertical movement the following statement can be used:

 vspeed = -vspeed;

And to make the object move in exactly the opposite direction to which it

is currently moving, try:

 Direction = 360 – direction;

DESIGN HELPING YOU ALONG

DEV.MAG ISSUE 14

20

So. Roach Toaster 2 has, as of June

2007, been a year into development

from initial design to beta. I am very

very proud of what I have been able to ac-

complish. There have been lots of things that

nabbed my attention from Roach Toaster 2 -

school, games, game dev competitions and just

life in general.

As I am sitting here, Roach Toaster 2 is ready

for public testing. This testing phase is basically

for testing the full gameplay. Does it work? Is

it fun? The next phase will be the meticulous

balancing/polishing phase. I want to have a full-

blown first beta thrown out everywhere. I even

want to flaunt it to possible publishers. The big

thing, however, is that I am stuck without a

proper internet connection!

Yes, the bane that is South Africa’s telecommu-

nications did not plan well enough. The region

I live in currently has a shortage of telephone

points. They are in the process of upgrading it.

The way I currently connect to the Internet is not

so cost effective. It is about R2 per megabyte!

Without my proper internet connection, I won’t

be able to post, read feedback, and upload

updates without chalking up a considerable

amount in telephone bills. So, during this hia-

tus, I am doing five things concerning Roach

Toaster as a whole.

1) I’m getting the art/sprites for Roach Toaster 2

done. I’ve already got an awesome main menu

page from a local artist.

2) I’ve always wanted to remake Roach Toaster

1. This is because people might want to play

Roach Toaster 1 as an extended demo for RT2,

and because of Roach Toaster 1’s poor pro-

duction quality, I am working on a remake. This

remake will be made in XNA for a competition.

Due to XNA’s bad sharing capabilities, I might

just port the graphics to the Game Maker file in

the end.

3) I already have the gameplay and story de-

velopment in mind up to Roach Toaster 4, and

I need this time to develop a character that will

appear in the upcoming games. This might

seem odd, but when Roach Toaster 2 gets re-

leased you will know exactly what I mean by

this.

4) If you don’t know, the official Roach Toaster

website is up! http://www.roachtoaster.com. I

plan to revamp the site a bit, i.e. add pictures/

screenshots everywhere, and just pretty it up.

ROACH TOASTER 2: PICKING OUT THE BUGS
PART 5

PROJECTS LEARNING HOW IT’S DONE

5) I also plan to sort out the online payment op-

tions. I have no clue how this works, and I have

signed up for several e-commerce providers

just to get a better idea about it all.

My original intention was to release the beta in

December 2006… Oh, how wrong I was! As you

can see, I have no idea when Roach Toaster

2 will be ready for release. With the way it has

developed thus far, I’d say (with no certainty)

it will be finished round about October 2007

(yes, rather set too far into the future, than too

soon).

For more info on Roach Toaster 2: Big City,

head on to http://www.shotbeakgames.za.net

or the new site http://www.roachtoaster.com

TROOJG

DEV.MAG ISSUE 14

21

(Wondering what we’re talking about over here? check out Dev.Mag Issue 10 for the beginning of this Project series!)

(a triangle that contains a single 90 degree

corner). Here’s one I found lying around:

Firstly, it’s important that we name the sides of

the triangle so that we can identify them when

we build our equations later. In trig, we name

sides based on their relationships to the corners

of the triangle. Take this triangle as an example:

In this triangle, we’ve defi ned one of the non-

right-angles with the variable theta (Θ). For

now, this is simply a variable to identify the

T
rigonometry. The mere mention of it

strikes terror into the minds of bewil-

dered high school students. Confusing

ratios, bizarre diagrams, trying to fi nd the sine of

the cosine of the tangent of theta - many people

struggle to wrap their minds around it and eventu-

ally give up in desperation to do something eas-

ier, such as ending war or achieving cold fusion.

Well, despite what your high school teachers

may have said, trigonometry can actually be

useful! Yes, in the vast sea of unintelligible

terms is a valuable and powerful mathematical

tool that can aid you immensely in the humble

task of game design. The aim of this series

is to explain to you just how simple trigonom-

etry really is, and how you can use it to solve

some very common programming problems.

Hopefully it will make the job of coding your

next blockbuster game just that little bit easier.

First Principles - The Triangle

Before we start writing any trig in our code,

it’s necessary to understand all the nasty

mathematical stuff behind it (just joking, it’s

not that bad!). First, we should take a look at

how trigonometry works at the most basic

level. To do that, we’ll need a triangle. More

specifi cally, we’ll need a right-angled triangle

corner – don’t worry about about how the

numbers fi t in just yet! Now that we’ve de-

fi ned Θ, we can use it to identify our sides.

Now we’ve designated our sides. In trig, sides

are always designated relative to the angle that

we’re working with, Θ in this case. o is the side

opposite to the specifi ed angle. a is the angle

adjacent (next to) the specifi ed angle. h is the

hypotenuse, which is always the side opposite to

the 90 degree angle. Clear? Well, if not, let’s go

through the same exercise with the other angle

in the triangle. Let’s designate that one Alpha

(α), and take a look at how this affects our sides.

GAME CODING WITH TRIGONOMETRY
PART 1

TECH WHEN MATH GETS USEFUL

DEV.MAG ISSUE 14

22

Figure 1: A boring right-angled triangle

Figure 2: Boring right-angled triangle with

angle theta

Figure 3: RA triangle with angles and sides

defi ned

This is all good and fine, but the real magic

comes in when we slot numbers into those vari-

ables. Time for some good old-fashioned maths!

Basic Calculations

Let’s take the triangle that we’ve been work-

ing on and plug some numbers into it:

Now we have numbers to work with! How-

ever, you’ll notice that side o and a haven’t

been given numbers. We have no idea what

the lengths of those sides are. That means,

of course, that we’ll have to calculate them!

Calculating anything using trigonometry re-

quires three steps:

1.Determine what numbers you have, and what

numbers you want.

2.Determine which ratio to use, and build your

equation.

3.Substitute the known values into the equation

and solve for the unknown.

That may seem like quite a brainful, but once you

see it in action you’ll appreciate its simplicity!

First, we take a look at what we have:

we have values for Θ (45°) and h (6). We

want to calculate o and a. Next, we deter-

Note that this triangle is still the same triangle.

We’ve just renamed the sides according to which

corner we’re viewing them relative to, in exactly

the same way that we did with angle Θ. You’ll

note that h is still assigned to the same side. As

I mentioned, this is because the hypotenuse is

always the side opposite to the 90 degree an-

gle, and so won’t change if we switch corners.

If this still seems a little confusing, don’t worry –

next we’ll be seeing how all of this ties together!

Trigonometric Ratios

Trigonometry is not a new thing. We owe a

lot of our geometrical knowledge to ancient

Greek mathematicians, such as Pythagoras,

who dedicated a lot of time to figuring out the

relationships between the sides and angles

of shapes. One of the many things that the

Greeks managed to determine was that the

lengths of the sides of right-angled triangles

were subject to certain ratios, extrapolated rela-

tive to triangle’s corners in the way that was

discussed in the previous section. From this,

they derived common mathematical functions

to use these ratios for their calculations. For

ease of use, they gave names to the six func-

tions that they discovered. We know them as

sine (sin), cosine (cos), tangent (tan), cotan-

gent (cot), secant (sec), and cosecant (cosec).

The ratios that the names describe are as follows.

Note that the Θ after the ratio names denotes

which angle we are taking these sides relative to.

mine which ratios we need to use. Gener-

ally, we decide that based on the formula

Let’s calculate o first. We’ll use h as our known

value. As a result, the above will look like this:

Looking familiar? Look back to the table

where I outlined the ratios. If you read care-

fully, you’ll see that the ratio corresponding

to o/h is sin. Our equation now looks like this:

And when we plug our numbers in and solve for o:

Note: You can easily use the Windows cal-

culator in Scientific mode to work with trig

ratios. Simply ensure that the calculator is

set to “degrees”, then punch in the angle (45

in this case) and click the “sin” button to get

the result above (0.707). I’ve rounded the an-

swer off to three decimals for convenience.

And there you have it! We’ve calculated

o to be 4.424 units long! Now try calculat-

ing a (hint: you’ll be using cos as your ra-

tio - check the list again to see why). You

should get an answer of about 4.243.

What? Out of space already?

That’s all for this month, but despair not!

Next month, we’ll be looking at how to cal-

culate unknown angles, and you’ll also

get a taste of how you can start using trig

methods in your games. Until then, prac-

tice calculating unknown sides using differ-

ent ratios and values. I’ll see you next month!

GAZZA_N

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 14

23

Figure 4: Right triangle with angle alpha,

and sides

I
’m pretty sure that not many of you have

had the pleasure of experiencing the 18

hour non-stop flight between New York

and Johannesburg. For those of you who

haven’t, re-read the previous sentence and

replace “pleasure” with “misfortune”, and add

“from hell” directly after “flight” if you would

like have an idea as to what it really feels like.

Actually, I could fill an entire separate article

just describing how those 18 hours feel more

like 3 ½ years, and how I no longer fear what

may await me in the afterlife. But I digress...

Looking back on what is nearly eight years

now, the first few months that I-Imagine spent

on developing what would eventually turn into

Chase: Hollywood Stunt Driver were filled with

one growing pain after another. The relatively

easy part of the job had been done, since we

had decided upon a concept to go about de-

veloping our first game around. Now we were

at the stage where we had to dig in and actu-

ally produce the goods, which was not going

to be an easy task given that we had such a

small team consisting of only four program-

mers, two artists and a single designer.

The programming tasks ended up being broken

down quite easily with Dave’s main task being

to handle all of the rigid body physics (for ve-

hicles as well as dynamic objects), Matt’s main

task being to create plug-in tools for 3DS MAX

as well as the vehicle AI, and Dan’s main task

being the rendering engine as well as assuming

the mantle of Lead Programmer. Seeing as how

I was the least experienced programmer in the

team, I was pretty much left to help out wher-

ever I was needed, as well as to tackle all of the

little filler tasks such as the GUI (which isn’t re-

ally a filler task at all...) and various small tools.

The art tasks were pretty much divvied up

evenly between Hoang and Felix with both of

them being equally responsible for level and

object building, although Hoang took on all of

the conceptual artwork creation as well. Lastly,

although the game was very much a design-

by-committee production, it was left up to

Kenny to fill in a lot of the blanks, as well as

to create and maintain our design document.

The rest of 1999 was filled with a lot of hard

work for the team, but it was also a lot of fun.

I think that we all quite enjoyed the challenge

and responsibility of having gone out on our

THE HISTORY OF I-IMAGINE
Part 5: The First 9 Months

HISTORY WHERE IT ALL BEGAN

own to create what we hoped would turn out

to be a hit game. But before we would have

the chance to possibly reach that lofty goal,

we would have to navigate some rough seas...

the first of which was not very far away at all.

The tale of what would ultimately be Felix and

Kenny’s short time at I-Imagine began almost

as soon as they had arrived in South Africa.

Unbeknownst to the rest of the team, Felix and

Kenny had a bit of a problem... actually it was

more like addiction, and it wasn’t long before it

came to the forefront and started to cause an

issue between them and the rest of the team.

DEV.MAG ISSUE 14

24

(Who? What? Where? If you’re lost concerning I-Imagine, check out Dev.Mag Issue 10 for the start of this article series!)

The offending substance wasn’t alcohol, drugs,

sex, or even oiled midget wrestling. No... it was

something far more sinister, devious and life

threatening than any other substance known to

mankind. Although I am sure that it was original-

ly christened with a different name (which was

unpronounceable by human tongues) in the fi-

ery pits in which it was spawned, to us mere

mortals it was known simply as EverQuest.

I actually shudder when I think back to how

utterly dependant those two poor souls were

when it came to the sweet, sweet siren call

that beckoned them to her keyboarded bo-

som. Every day around 4pm it was though

the pied piper would begin to play his magi-

cal notes and Felix and Kenny would drop all

of their work, march up to their rooms, close

their doors, and log onto whatever EverCrack

server they belonged to in order to join up with

their friends who had just woken up on the east

coast of America, only to also be once again

driven to their keyboards by the ever persis-

tent harpy song playing in their subconscious.

Now, as you can imagine (from my completely

down to earth and not dramatised in any way

depiction of the curse that followed Felix and

Kenny from day to day), their actions could

not but have a negative effect on the team and

the work that needed to be done. With most

of their working days being made up of four

or maybe five hours of actual time in front of

their computers, it was going to be difficult in

the least for them to continue along this path

and still remain a part of the team. This meant

that Dan was left with no choice but to sit down

with them and have a long talk. Initially they

responded well, but unfortunately it wasn’t

long until they fell back into their old pattern.

Dan had yet another talk and once again, things

got better, but only for a short time. Eventually

Dan had no choice but to give them an ultima-

tum: either they shape up and become effective

and committed members of the team, or they

would have to part ways with us. I’m not sure as

to their exact reasons (my belief is that they tru-

ly missed a lot of the things that they were used

to from their lives in America), but instead of try-

ing to shape up they decided to ship out. Felix

actually couldn’t wait to get back to the US, and

subsequently bought plane tickets and left just

a few days after Dan’s final meeting with them,

which was around the middle of March 2000.

Even though Felix and Kenny didn’t leave us

under the best of circumstances, it wasn’t as

though any work didn’t get done during the time

that they were still a part of the team. In fact,

most of the demo that we ended up putting to-

gether for E3 2000 was done before they had

left. Our first goal was to have a fun vehicle

simulation up and running with nice arcade-

style physics. We achieved this by the middle

of January or so with our first demo, which was

a free roaming arena filled with obstacles such

as ramps, half-pipes, and loops where players

would try to score as many points as possible

by performing rolls, flips, spins, and various

other stunts in a given time limit. We knew

pretty soon that we were on to something as

the entire team ended up wasting way too many

hours “play testing” this demo once it was done!

Now that we knew that we a physics system

that would handle the type of gameplay we

wanted our players to experience, we moved

on to creating levels that would show off the

core gameplay experience of action packed

stunt driving. Our first level was designed

HISTORY WHERE IT ALL BEGAN

around a post-apocalyptic setting in the vein

of “Mad Max”, which had the player infiltrat-

ing an enemy compound to rescue someone

before escaping and having to drive onto a

moving articulated truck. The gameplay here

was almost platformer-like in nature, as we

wanted to try something that hadn’t really

been done with vehicle-based games before.

Our next level was set in an Asian city where the

player drove a three-wheeled ramen delivery

vehicle. Upon completing a delivery, the des-

tination building would explode and the player

would have to escape chasing police officers

who thought that he was the cause of the explo-

sion. This gameplay was more straight forward

A-to-B driving but it took place in a fully populated

city complete with traffic. The catch that we had

with this level was that the delivery vehicle had

an umbrella in the back of it that bobbed around

like a spring as the player drove, and everyone

who saw this immediately wanted to drive it.

Soon enough the middle of May was upon us

which meant that it was time for E3, so we all

headed to LA to pitch our game to publishers.

We rented a small stand in the Kentia Hall,

which for the E3 uninformed was the small-

est of the three show-halls and it was usually

home to much smaller developers trying to get

lucky. Throughout the show, we managed to

DEV.MAG ISSUE 14

25

HISTORY WHERE IT ALL BEGAN

garner a lot of interest from various publish-

ers even though when all was said and done,

we weren’t able to secure a publishing deal.

However, a senior producer from Infogrames

(this was before they bought the rights to use

the name Atari) whom we had met at the pre-

vious year’s E3 came by to see what we had

done and he seemed very impressed with the

game - so much so that after E3 ended, we

kept in contact with him and eventually sent

him our design documentation for Infogrames

to evaluate the potential of for publishing. But

that is another story best told at a later time.

Once we returned from E3, we focussed on fur-

thering the game in order to show more stuff for

the next big show (ECTS), which was happen-

ing at the start of September. After much testing,

we decided to ditch the gameplay style that we

had designed for our post-apocalyptic level as

we didn’t think that it was paying off enough in

the fun department. The platformer style game-

play was just too slow paced to keep players

interested, and we decided to re-focus all of our

energy into our Asian world in order to create six

fast-paced missions which would keep players

constantly busy and engaged, thereby creating

a more solid demo of our game for publishers

to take back with them and evaluate properly.

However, we would have to do most of this work

without our last experienced artist, as Hoang

would soon be leaving us. Unfortunately, in or-

der for us to get everything done that we need-

ed to do in time for our trip to E3, Hoang was

put under enormous pressure. This was due to

Felix having left, along with the fact that we had

only managed to find and hire a single South

African artist to replace his many years of expe-

rience. Due to this lack of foresight on our part,

Hoang pretty much crunched 12+ hours a day

for the 2 months leading up to E3, and he was

quite burnt out afterwards. So, once we arrived

back from E3, he was given about a month or

so off, which he used to relax and travel around

Africa while we hoped that he would feel rejuve-

nated and be ready to come back to work when

he returned. Unfortunately, when his vacation

HISTORY WHERE IT ALL BEGAN

was over he told us all that he wasn’t ready to

continue working, and that he wanted to re-

turn to the US to pursue something other than

video game development for the time being.

Reluctantly we had to say goodbye to Hoang

and push on towards our next deadline which

was only a few months away. Luckily we had

hired 2 more South Africans just prior to E3, and

although they weren’t able to help Hoang with

his push for that deadline due to their inexperi-

ence, he was able to help train and get them

up to speed before he ended up leaving us.

Now, it was up to an entirely new art team to help

carry I-Imagine forward, and hopefully secure

a publishing deal for our game in what would

eventually turn out to be our most important

and productive show in the history of I-Imagine.

COOLHAND

DEV.MAG ISSUE 14

26

T
he topic of May’s devLAN in Johan-

nesburg was Artificial Intelligence, and

we are very fortunate that we have

Danny “Dislekcia” Day living up here who pro-

vided us with a talk and some advice on the

subject. Although the speaker was unavoid-

ably late due to family matters, Danny never-

theless gave a good definition of AI in relation

to game development and a breakdown of the

phases or steps which an AI must go through in

a game, as well as various systems available

which the developer can use to create an AI.

William “cairnswm” Cairns opened his house

to the local members for the devLAN as he

had become partly immobilised due to a run-

ning accident in which he broke his leg, and

having the devLAN in his home meant he

didn’t have to travel far and could participate.

The group was quite small this time around

with just 5 of us, but it still seems the game

developers in Johannesburg are taking their

hobby seriously as half of us had an exist-

ing project which we were already working on

where we needed some form of dynamic in-

teraction. We were hoping to use the devLAN

as the perfect opportunity to get this done.

Danny attested that “AI is the art of making

things happen dynamically”, and an AI can fulfil

multiple roles like helping the player manage his

resources and make the world he’s playing in

more believable than just being a bot the player

can play against. We then examined the steps

an AI must take while operating which are: In-

formation Gathering, Information Weighing and

Information Output; after which we then ex-

plored various systems which a developer could

use to let the computer reach a decision. We

looked at Fall-through Logic, State Machines,

Heuristic Systems and Decision Trees and

the various benefits and complexities of each.

It’s noteworthy that William finished a simulator

using a state machine where the player fought

against other AIs in a “grow yourself or attack

others” scenario. His quick grasp of the con-

cepts and carefree attitude to flashy graphics

meant he focused all his energy on the problem

space and in the final testing of his game, he

had quite believable characters to play against.

All too suddenly the evening set in, and with other

commitments to attend to the members quickly

and efficiently broke camp and headed home,

promising each other to meet again soon and

TAILPIECE TIME TO CHILL

to upload their results of the day’s endeavours

when the projects reached a presentable state.

I hope we have another devLAN soon as a

lot of work gets done on various projects at

these events and it’s the perfect time to ask

questions of other developers, show off what

you’re working on, and learn a little bit more

about the vast field of game development.

FENGOL

To keep up to date about happenings concerning future dev-

LANs, be sure to regularly check up on the Game.Dev website

(www.gamedotdev.co.za) and the Game.Dev forums.

JOHANNESBURG DEVLAN
GATHERING FOR FUN AND ARTIFICIAL INTELLIGENCE

DEV.MAG ISSUE 14

27

Occasionally, a few of the Game.Dev

members decide to get together in a non-

Hotlabby kind of way and duke it out with

some code. The devLANS are a proud ex-

ample of how local game developers are

able to combine a chilled attitude with a

thirst for learning something new. One of

the attendees of the latest such gathering

describes the experience.

