
FEBRUARY 2007

REGULARS

Ed’s Note... P03

News ... P04

FEATURE

Using Abstraction to Develop Better Games.................................... P05

REVIEW

The Boomlands.. P07

DESIGN

Blender Tutorial Part 7 : Animation in Blender P09

HTML for Noobs Part 1 : Tags and Formatting................................ P11

PROJECTS

Roach Toaster 2: Big City.. P12

TECH

Copy Protection from the Indie Perspective.................................... P13

Coding Etiquette: Commenting... P14

HISTORY

The History of I-Imagine Part 2: South ****ing Africa! P15

MOBILE

Mobile Game Development in Java Part 8: Wrapping Up................ P17

TAIL PIECE

10 Things Learnt Running Prehysteria .. P19

CONTENTS WHAT’S INSIDE

07

12

09

15

ED’S NOTE THE BIG CHIEF

S
top the press, we’re back! It’s not been an entirely lovely experience, trying to get things sorted

out this month, but we promise that we’ll do our best to finally catch up on our schedule come

next issue. That, and we’ll give you candy. Lots of it. In fact, several key members of our staff

have a truck of it hidden behind your house, so before you get angry at us, just remember that

little truck. Is everything good now? Great, glad to hear it!

But seriously, real world commitments are a hassle right now, and it always seems that at the moments

when we speed up the most, the world just gets the slowed-down afterthought. The Game.Dev organisa-

tion has attended a bunch of meetings (which we’re not allowed to tell you about), discussed a bunch of

business plans (which we’re not allowed to reveal to you) and have been making plans for a whole bunch of

activities (which ... well, we’ll tell you all about those in good time). So the bitter, bitter irony is that there’s

really not that much we can report on, especially where the juicier stuff is concerned. Hopefully, we get the

green light soon and tell you all about it.

Otherwise ... March. People have established schedules for the year, have their engines fully wound up

and are looking forward to upcoming public holidays (one or two of which should be poking their heads out

in the near future). As ever, that makes the staff at Dev.Mag get caught up in real-world commitments,

some of which can be a real pain, but others which can turn out very, very rewarding in a game develop-

ment sense.

Whoops, was I about to tell you what I meant just there? Ahhh, sorry, but that’s another story that’ll just

have to hit next month’s pages. Think about candy in the meantime, and look at all the other cool goodies

we’ve got for you this time around!

Editor
Rodain “ Nandrew ” Joubert

EDITOR
Rodain “ Nandrew ” Joubert

DEPUTY EDITOR
Claudio “ Chippit “ de Sa

SUB EDITOR
Tarryn “Azimuth” van der Byl

DESIGNER
Brandon “ Cyberninja “ Rajkumar

MARKETING
Bernard “ Mushi Mushi “ Boshoff

Andre “ Fengol “ Odendaal

CARTOONIST
Paul “ Higushi “ Myburgh

WRITERS
Simon “ Tr00jg “ de la Rouviere

Ricky “ Insomniac “ Abell

William “ Cairnswm” Cairns

Bernard “ Mushi Mushi “ Boshoff

Danny “ Dislekcia “ Day

Andre “ Fengol “ Odendaal

Heinrich “ Himmler “ Rall

Matt “ Flint “ Benic

Luke “ Coolhand “ Lamothe

WEBSITE DESIGNER
Robbie “ Squid “ Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the

South African Game.Dev commu-

nity. Visit us at:

forums.tidemedia.co.za.

All images used in the mag are copy-

right and belong to their respective

owners. If you try and claim other-

wise, then- SPARTAAAAAAAAAA!

DID YOU KNOW?
The Python programming language, a code known

for its ease of use and sporting the PyGame library

for game developers, was originally named after

the British comedy show Monty Python’s Flying

Circus. The creator said he wanted it to reflect the

fun users could have with the language.

DEV.MAG ISSUE 11

3

 Free texture pack released

http://www.spiralgraphics.biz/packs/

Free stuff is always great! That’s why the release of the third Spiral Graphics texture

pack is being met with such enthusiasm. Bringing the collection to 450 seamless tex-

tures, these little gems are freely downloadable and devoid of royalty costs. Moreover,

they’re fully editable in the texture editing software Genetica, which is also featured on the

site. Have a look, download the textures and try a free demo of the associated software.

Intel hosts “multi-core” game development competition

http://www.gamedev.net/community/forums/topic.asp?topic_id=439588

Gamedev.net reports a six-month contest being held by Intel, designed to test the power of

multi-core processors and laptop form factors through -- you guessed it -- the medium of game

demos. Prizes for the competition, stated by Intel, include goodies such as one-year IGDA

memberships, gaming machines worth $3000, copies of the Torque Advanced engine, bun-

dles of Intel products and lots and lots of money. The competition is divided into two catego-

ries: games that show off multi-core capabilities, and games that show off the advancements in

laptop gaming. Tempted parties can check at the above site for a link to the competition page.

NEWS HEADLINES

Games and the arts

http://www.gamasutra.com/php-bin/

news_index.php?story=13171

The age-old question ... are games

art? This Gamasutra feature brings the

voices of names such as Peter Moly-

neux and Tim Schafer to the limelight,

looking at their opinions of the ‘art’ sta-

tus in games, how important that status

is to the creators and how important it

is compared to other standard gaming

goals. It brings up an important ques-

tion -- after all, does a painter ultimately

decide to make art or paint his picture?

 Book on character modeling released

http://www.gamasutra.com/php-bin/news_index.php?story=13172

A new d’artiste game design book, “Character Modeling 2”, is now avail-

able for those interested in learning the techniques involved in creating

and animating characters and creatures for both films and games. The

book places particular emphasis on the creation of character models for

Epic Games’ “Gears of War”, and also features techniques from artists

such as Timur “Taron” Baysal and Zack Petroc. This is the fifth book in

an already strong series, and comes highly recommended by Gamasu-

tra.

DEV.MAG ISSUE 11

4

C
omponents are effectively little ‘Black

boxes’ within code that hide every-

thing they do away from the developer.

Black boxes are those portions of the code that

deliver specific functionality that is needed but

where the implementation method is complete-

ly unknown. When the functionality in the Black

Box is reliable and consistent, such as in the

case of commercial components, it is seldom

necessary to know how the functionality was

developed as it does not need to be maintained.

When Abstraction is implemented correctly, it

delivers easy to use components that can be

included into the current code base. Very good

implementations of abstraction also promote

the ability to switch out current components for

new components without seriously impacting

the code base. For example, when moving be-

tween different types of databases, good data-

base components will enable the switching out

of one component set for another very easily.

Good components need good design. When a

section of code is identified as a possible com-

ponent it should be extracted from the current

code base, turned into a component with clearly

understandable interfaces and then reintro-

duced to the original code base. By completely

extracting the relevant code form the code base

the new component can be completely inde-

pendent from the original code. To ensure to-

tal independence from the original code small

example programs that show only the new

components functionality should be devel-

oped. These also act as miniature tutorials for

other developers that use the new components.

Using Abstraction to Develop
Better Games

FEATURE GETTING ABSTRACT

Using components is sometimes a difficult

task as the intricacies of the implementation

are so abstracted away from the component

user. Good documentation that gives a pro-

spective user a detailed description of the

functionality contained within the component

is critically important to allow users to evalu-

ate the suitability of the component to their

requirements. Conponents that have been se-

lected for use are typically expected to work

with little or no configuration effort. When you

select a component set to use, it’s also often a

good idea to develop smaller test applications

to validate the functionality of the components

Abstraction is a development method used

to hide how something is done while mak-

ing the functionality available to other de-

velopers. Every function, method or class

in your code makes use of some level of

abstraction. However, with careful design

abstraction can be used to build better,

more modifiable and easy to configure

games. The creation and usage of compo-

nents is a perfect example of abstraction.

DEV.MAG ISSUE 11

5

against your original need for a component.

Components for game development come in

many different forms. These range from sim-

ple components for a specific task (e.g. colli-

sion detection) to complete game engines that

just need content added (e.g. FPS creator).

The level of component you use is defined by

many different aspects of the development

process. These include such things as lan-

guage, graphics libraries, level of expertise

and even the ability of the artist on the project.

Needless to say, whatever your level of experi-

ence, game components can add significantly

to the quality of the end product produced.

The most used set of game components are

wrappers for the standard graphic adapter

libraries. The components typically make it

easier to interact with the graphics card without

an indepth knowledge of the graphics adapter

libraries, making it easier for the game devel-

oper to work with DirectX or OpenGL, or even

abstracting the graphics layer to the point

where the developer need not know whether

they are working with DirectX or OpenGL

but just allows the game to be developed.

Another commonly used set of components al-

lows developers to quickly and easily add sound

into their games. Currently there are numerous

different sound component libraries available

that abstract the complexities of the multitude of

different sound standards from the developer.

Many developers make use of the various

graphics and sound components within their

games without much thought. A much smaller

number of game developers have started mak-

ing use of more specialised libraries for areas

FEATURE GETTING ABSTRACT

such as AI scripting, physics, collision detection

and even character animation. By investigat-

ing and evaluating the various component sets

available and making use of the better ones

in your games, development time can be de-

creased and the quality of the games increased.

CAIRNSWM

DEV.MAG ISSUE 11

6

A
great king has just died and leaves

his kingdom divided equally into

two countries. So naturally one

country gets jealous and decides it wants

the other half too. How do they settle the

dispute? The same way you settle every-

thing in medieval times — with a big battle!

A rather large fight for control of “The Boom-

lands” ensues. The first thing you notice about

this game is its impressive graphics. All the

sprites and backgrounds are masterfully done,

and the game is very pretty. Nothing suits eye

candy better than a unique style. This game has

a very cartoon-like feel. The characters bounce

around with huge heads and tiny limbs. While

everything in the game has some great ambient

animation, most people will never even notice.

The attention to the small details is amazing

and the “earth” colours suit the game nicely.

What’s more, “The Boomlands” has possibly the

best gameplay I have seen in an indie game.

When you start you can choose your country

and who you will face. Your choices are either

the Dutch, The Spaniards or the Scots. You

can also choose your difficulty and the amount

of starting gold for the sides. The battle takes

place between two castles where the kings

stand and survey the scene while making snide

remarks. In the middle of the battlefield, trees

grow in random spots. Workers can be trained

to go and harvest the trees for gold. Gold is

the only resource and vital to success. Luck-

ily, the player earns five gold per second aside

from lumber harvesting, making life easier.

The gameplay is remarkably simple as there

are only seven buttons you can press that affect

the game. Soldiers and archers can be trained

to defend your workers and attack the enemy.

Once you build a unit, it slowly starts moving to-

wards the centre and if it survives will continue

on to the enemy castle. Archers stop in the cen-

tre and fire arrows, while workers will stop at the

nearest tree and carry it back home. Wolfmen

are special units that move very quickly and can

only be stopped by other Wolfmen or level 2

soldiers -- they do come at a high price though.

The key element here is timing. You have to

THE BOOMLANDS
REVIEW IN THE GAMING WORLD

time your creation of units so that they can pro-

tect your workers or kill enemy units before the

baddies get there. When an unit dies, it seems

to fall off the screen while making some quirky

comment, an effect which is very cool. In or-

der to win, your king must win the joust that

appears after one of the castles is destroyed.

Kings gain and lose stamina according to how

his side is doing in the battle. The king with

the most stamina at the time of the joust will

win. Simple game play leads to some intense

battles where diverse strategies and the abil-

ity to recognise opportunities will get you far.

The game is perfectly balanced and use of all

the units is required for a victory. The AI is also

rather pleasantly brilliant: your opponent will

use clever tactics, ingenious timing and general

craftiness to bring you down. The AI will also

Developer:

Shane Heres

2006

http://shaneaheres.googlepages.com/

Strategy

Year of creation:

Genre:

Website:

DEV.MAG ISSUE 11

7

use smarter tactics as you progress through the

difficulty levels. A welcome change, as most

games just have imbalanced damage ratios.

The different strengths and weaknesses of the

units also make for interesting gameplay. For

example Wolfmen are fast and deadly but ex-

pensive and easily disposed of by Level two

soldiers. Yep, soldiers and archers can be

upgraded by collecting a large sum of money,

something which is risky but can give you a

major advantage. Wood depots, shields and

cannons can be built. Depots are rather expen-

sive during the beginning stages of the game

but it means your workers can deliver the wood

quicker. Cannons fire cannon balls at the op-

posing castle while shields protect your castle

from cannonballs and arrows. The gameplay

is addictive and very fun. The sound is rather

average with no music but relevant sound ef-

fects that add to the general feel of the game.

One thing I would like to have seen is

multiplayer. This game is perfect for the

two people on one pc type multiplayer.

The most impressive thing about the Boom-

lands is the large amount of polish and atten-

REVIEW IN THE GAMING WORLD

tion to detail, the smallest things have anima-

tions and special effects. The end of a battle

sports a large and informative statistics screen

and the game is well documented and techni-

cally flawless. I have yet to come across a

bug or poorly designed bit of the game. The

gameplay is fun and addictive, but be warned

this game will suck away the hours as you

try to conquer the elusive challenge of win-

ning on hard mode while starting with no gold.

SQUID

DEV.MAG ISSUE 11

8

A
great way to make any Blender

scene look even more impressive

is to make it move. Blender fea-

tures an array of powerful tools that make

anything from simple movement of ob-

jects to complex facial animation possible.

For this scene, we’ll be working with that check-

erboard we made a few issues back. It’s got

a lot of objects that we can move around and

experiment with, and, with a little patience, we

could even play out an entire game of draughts.

If you don’t have it, fear not. The relatively

small file is available in the Dev.Mag website’s

content section. Look for ‘Blender Part 5’.

Firstly, to make objects move in Blender, you’ll

need to understand how Blender handles ani-

mation. As with all videos, animations in Blend-

er are composed by numerous still images

(frames) played back in rapid succession. You

can change the frame you’re currently seeing

in the 3D view by typing a frame number into

the frame selection box, clicking on the arrows

alongside it, or using the arrow keys on your

keyboard to move in 1 or 10 frame intervals.

DESIGN ENTER THE 3D WORLD

gradually and smoothly move between the two

points. Advance to frame 40, move the object

to another location and store another keyframe.

You’ll notice that Blender automatically

smoothes the movement of the object so that

it makes no abrupt turns. While this is visu-

ally pleasing, it is not always what is required

in certain situations. The IPO curve editor will

solve all these issues and more. Movement of

all objects in a Blender animation is governed

by the IPO curve editor. There you can see and

edit a curve that will dictate the path your ob-

jects will follow in an animation. You can use

it to make fine adjustments to the animation.

To see the IPO curve for the selected object,

click the grid-like icon at the lower left cor-

ner of the 3D view (default layout) and se-

lect IPO Curve Editor. You will be presented

with graph-like display that governs how

your objects actually move. You can navi-

gate this view using the exact same controls

you use in the 3D view. In fact, every single

window in Blender obeys the same control

rules, even the buttons and render windows.

Blender Tutorial Part 7 :
Animation in Blender

The frame selection box.

Choosing which values to
store

DEV.MAG ISSUE 11

9

Doing that now isn’t going to have any ef-

fect, though. To make an object move, they’ll

need a starting location, and a destination.

You provide these in the form of keyframes.

Without keyframes to direct their movement,

the checkerboard and the pieces will just

stay in the position where they were placed.

Make sure you’re currently on frame 1 before

continuing. Select a piece that you’d like to

move and hit the I key on your keyboard, or

select Insert Keyframe from the Object menu.

You’ll be presented with a menu to choose with

properties of the object you’d like to store in the

keyframe. In this tutorial, we’ll only be working

with the position of the object, so select Loc. If

you need to manipulate and animate other prop-

erties of an object, such as rotation or scale,

look for the corresponding option in this menu.

Advance to frame 20

by typing in the cor-

rect value in the frame

selection box or by

using the arrow keys.

Move the object to a

new location and cre-

ate a new Loc key-

frame. Now, if you look

at the frames between

1 and 20, you’ll notice

that the piece will now

IPO curve editor

Each property you’ve

stored as a keyframe

has a corresponding

line on the IPO curve.

All the properties are

listed on the right edge

of the IPO window,

and you use the list

to filter the lines that

will be displayed. You

can select individual

lines and press TAB

like the image below when you’re done.

If you only made one movement, then

you will only need one ‘bump’ on the line.

Finally, note that all animation previews or ren-

ders will be bound within a start and end frame.

The default is 1-250, but you can change them

if your animation is shorter or longer. All ani-

mation related options are in the Scene but-

tons window (F10), and are highlighted in

the image below. Be warned that rendering

animations takes a long time, so if you’d like

to render the entire thing, perhaps it would

be wise to disable or lower your anti-alias-

ing (OSA) settings, reduce render size by a

percentage value or by simply entering differ-

ent x and y sizes. Once your animation is ren-

dered, you can view by clicking the play button.

DESIGN ENTER THE 3D WORLD

You can also preview your animation in the

3D view or IPO window by pressing ALT+A.

The animation will play in real-time, and

is also bound by the start and end frames.

I’ve made an example file, available on the

Dev.Mag site as usual, that displays all the

techniques learnt in the article, and used in

practice to play out a little draughts game.

CHIPPIT

Our LocZ line, to make the piece hop.

DEV.MAG ISSUE 11

10

to edit them. You’ll notice that each node is

actually comprised of three linked nodes. This

is because IPO curves are Bezier curves by

default. This is what causes the smoothing of

the animation. You can make the curve lin-

ear by choosing the appropriate interpolation

mode from the Curve menu, or by pressing T.

You can also make a specific point on Bezier

curve sharp by ‘breaking’ a node. With an en-

tire node (or part thereof) selected in edit mode,

press H, or select Free from the Handle Type

submenu in the Point menu. This will allow you

to edit the individual pieces of the node with-

out affecting the rest of it, and it can be used

to create sharp turns or abrupt movements.

Pressing K in the IPO window, or selecting Show

Keys from the View menu, will display vertical

lines that signify all your keyframes as a whole.

You can manipulate the keyframe lines as well

as the individual nodes to edit an IPO curve.

At the moment, your piece will simply slide

laterally to its next location. We’ll add an ex-

tra little touch by making the piece hop. Ver-

tical movement is movement on the Z-axis,

and is therefore controlled by the LocZ line.

Select it, and enter edit mode. Select the Z

nodes, one at a time, break them – to make

the movement sharp – and move the cor-

responding section of the node upwards.

If you made the piece do two consecu-

tive movements, your curve could look

W
hile not strictly game develop-

ment related, HTML is a good skill

for a game developer to have,

and its remarkably easy! For those of you that

don’t know what I’m talking about, HTML is

the language used to make web pages. You

can right click on any website and click “view

page source” to see the HTML code behind it.

The first concept of HTML is that of tags.

Everything in HTML is composed of tags.

Tags always have an open tag and a close

tag with things in between. An open tag

looks like this <> and a close tag looks like

this </>. Different tags to different things.

The first tag we are going to learn is the HTML

tag. Open notepad. Type <HTML> and </HTML>

on the next line. All our code will go between the

two. An HTML page has two main sections. The

Head section contains various things describing

the page and the Body section contains all our

actual code. For now we are just going to use

the Body. So in your HTML tags add <HEAD>,

</HEAD>, <BODY> and </BODY>. Now in

your Body tags add the text “Hello World”. Save

your text file with the extension “.html”. Now

open it in your web browser and take a look!

Now we are going to add tag parameters, in

your Body tag add BGCOLOR=”#000099”

after the word “BODY” but before the ‘>’.

Now extend the body tag to contain the pa-

rameter TEXT=”#FFFFFF”. You can now

change the colours of your page! Note

that all the colours are RGB hex values. I

think its time to add some basic formatting.

To start a paragraph with formatting add the

paragraph tags <p> and </p>. Everything in-

side those tags will be affected by their param-

eters. So move your text into them and add the

paragraph parameter ALIGN=”CENTER” The

same parameter will work for ALIGN=”LEFT”

and ALIGN=”RIGHT”. If at any time you

need to check how your page looks just

save the file and refresh your browser.

Now lets do some font formatting with the

 tag. So add one around your text with

the following parameters FACE=”Comic Sans

MS” and SIZE=”5”. This will change your font

size and style, you can also change the co-

lour individual bits of text with COLOR= in you

paragraph tag. The tags , <I> and <U> can

be used for bold, italic and underlined text.

All sites need a bit of text but if we add any

more it will appear on the same line as our

heading. The answer? A linebreak tag (

) this is one of the few tags that does

not have a close tag. Adding one will mean

your text will appear on the next line. Adding

two will mean you will skip a line. So now out-

side of your paragraph tag put two
 tags

and then the text “This is my first web page!”

DESIGN LEARNING ABOUT THE WEB

Now you have a basic web page with text all

over it! Look forward to the next issues where

we shall cover images, links and tables.

SQUID

What your code should look like:

<HTML>

 <HEAD>

 </HEAD>

 <BODY BGCOLOR=”#000099”

 TEXT=”#FFFFFF”>

 <p ALIGN=CENTER>

 <FONT FACE=’Comic Sans MS’

 SIZE=’5’>

 Hello World

 </p>

 This is my first web page!

 </BODY>

</HTML>

HTML FOR NOOBS - PART 1:
Tags and formatting

DEV.MAG ISSUE 11

11

“Dear diary,

After the legendary Hoover sucked up the brood mother

in the fast food joint, we thought it was all over. By jove,

my dear diary, we were totally wrong.

The brood mother began to breed inside the Hoover. Of

course, us men never clean our home, so we stored the

Hoover in an old closet.

And now… now that we are back from our well deserved

holiday in Cancune, we found it missing! It wasn’t long

before we received the terrible news! They did not only

take over the fast food corp, but by the powers that be,

they took over the whole “Big City”!”

-Captain’s log 1337

There you have it, the utterly cheesy intro to

Roach Toaster 2: Big City. I have surprising

things in store for the Roach Toaster storyline.

One of the main dislikes people had about RT1

was the graphics… While I am a semi-drawing

wiz, I am not the expert at spriting or “drawing”

with my mouse.

With this in mind, I mused on how to make “like-

able” graphics without a sprite artiste. I first tried

my hand at making my first 3D graphics. After

about a week of meddling with 3D functions in

Game Maker, I finally created a nice looking

3D world for Roach Toaster 2. It looked stylish

enough…

After some playtesting I realized that it just did

not work. Apart from the “horrible” gradients that

burned people’s eyes, gameplay wise it meant

you had to scroll around the level and your view

was sometimes blocked.

So, I inevitably scrapped the “3D”-look. I re-

turned to Roach Toaster 1’s roots. Although

it was still ugly, it was kinder on the player’s

eyes.

I did not want to, but I seriously had to get some

“expert” sprites to really make Roach Toaster 2

shine. Getting a sprite artist would also save me

countless hours of time which in return I could

spend on development.

So, I managed to bribe a fellow Game.Dev

member to be the sprite artist with promises of

ROACH TOASTER 2: PICKING OUT THE BUGS
PART 2

PROJECTS LEARNING HOW IT’S DONE

pink fluffy bunnies, a bottle opener and an all

expenses paid trip to Zimbabwe.

The latest picture is below. Note that some

sprites are still the old ones.

As you can see, the whole interative process of

Roach Toaster 2’s graphics is quite interesting!

For more info on Roach Toaster 2: Big City,

head on to http://www.shotbeakgames.za.net

TROOJG

DEV.MAG ISSUE 11

12

ing your own copy protection system any-

way. Just buy one for your game and use

the time you’ve saved to start on your next

game earlier. There are numerous cheap

systems available out there, but make sure

they’re nothing like Starforce. You don’t want

to chase people away from your games!

In the end, the only really secure way to do

anything is via an online system, but even

then you can’t simply tack one into a game

that doesn’t need the internet for single-player

mode. If you can find a way to provide value

over the net, like releasing new levels only

to registered paid email addresses, or host-

ing high-scores for valid players, that’s good.

But be aware that you’re not going to be able

to protect your game 100%. Roll with the

punches and appreciate the people who enjoy

your work enough to pay you for it, you’ll be

much happier and more successful that way.

DISLEKCIA

obfuscation systems, hardware-lock systems

and even dongle systems all break down on

one key point: They’re running on a computer

you don’t have control over. Anyone can do

absolutely anything to your code (and some

will) to get it working without having to pay.

So that leaves only one alternative: Online

verification systems. Except there are problems

here as well… Firstly, there’s nothing stopping

a good hacker from setting up a fake proxy

that just sends back the correctly formatted

messages (and then making this hack avail-

able to other people). Secondly, your typical

paying customer is going to be freaked out if

their shiny new single player game makes

their firewall pop up every time they play it.

The Wrong People

That’s exactly the problem of copy protection:

The wrong people end up being the ones that

suffer. Be it paying users having to deal with

draconian anti-piracy measures, or develop-

ers going completely insane after spending

months building a 100% secure system that

only lasted 3 days in the wild. Pirates don’t

get inconvenienced nearly as much, plus if

something’s a little too much hassle, they just

go and play another game they didn’t pay for...

So, what do we, as developers, do about this?

The consensus seems to be not to worry too

much about copy protection, as it’s a waste of

time above a certain level of sophistication. By all

means, have a CD-key system in place to keep

casual copiers honest (the kinds of people who’ll

simply copy a CD to give to their friends), but

don’t waste time trying to defeat a bunch of face-

less hackers that can think in memory adresses.

For that matter, don’t waste time build-

There’s always one burning question in the

mind of every aspiring indie developer that

pops up once whatever game they’re working

on approaches some form of completion. A

question that sums up the indie lifestyle in one

neat little package. A question that everyone

has to deal with at some point… “Hang on. If I’m

going to charge people for this, how am I going

to stop bastards from simply copying it?”

The Lofty Goal

An ideal copy protection system has a simple

aim: Wrangle it so that every copy of your game

has been suitably paid for. This ensures that you,

as the developer, can afford to pay for inconse-

quential things like rent and food whilst slaving

away at your next game, until eventually you’re

paying the rent on a three-storey mansion and

swimming in caviar for breakfast every morning.

The problem comes in when other people try to

play your game, your hard work, for free. The

supposed reasons behind this want of theirs is

beyond the scope of this article, but just accept

that they do. Now, imagine that you release a

game that’s copy protected and it becomes pop-

ular. Suddenly you have hundreds (if not thou-

sands) of people trying to get your game for free.

If a reasonable percentage of those people are

actively cracking the game’s protection, there’s

absolutely no way that you are going to be able

to keep up with security as a single developer.

So It Doesn’t Work?

There are many, many forms of copy protec-

tion. The key to understanding them all is that

they’re all capable of being hacked in some

way. As soon as you’re trying to ensure security

on someone else’s machine, you’re asking for

trouble. CD-key unlock systems, encryption/

COPY PROTECTION FROM THE
INDIE PERSPECTIVE

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 11

13

due to the lack (or complete absence) of proper

commenting, will have to waste valuable time

just trying to re-understand what he was so con-

fident of as not needing commenting in the past.

All of these potential headaches and wastes

of time can be avoided by merely spending a

few moments here and there adding comments

to your code. These comments do not usually

need to be long-winded explanations of what is

happening (unless the code in question is very

complex), but can be simple point-form notations

of what the alphabet soup below them means.

However, you also need to be careful not to add

too many comments to your code as that can

make the reading of the actual code more difficult.

COOLHAND

There has probably been a fair bit of debate in

the world of computer science over what sin-

gular concept or component of computer pro-

gramming is the most important or powerful.

Perennial favourites are most likely to be En-

capsulation, Pointers and Addressing, Recur-

sion, and Object Orientation. However, there

is one feature of computer programming that

should be an integral part of this discussion, but

more often than not, isn’t. This is likely due to

the fact that it’s just not as “sexy” as those other

ones, even though it serves a critical functional-

ity and plays a role in the day-to-day lives of

programmers that is at least as important as

every other aspect of computer programming.

This feature is commenting.

The proper use of adding comments to your

code is probably the single most important

skill that a programmer can have, especially

when working with other programmers on large

projects. It is also the easiest of all computer

programming skills to learn. However, far too

many programmers ignore it as merely a waste

of time. They usually convince themselves

that, since they know what they are doing in

their code, there is no need for them to waste

10 seconds here and 30 seconds there writing

small messages and descriptions about what

is actually happening or what their intent is.

Unfortunately, this laziness becomes a serious

detriment to whatever team of programmers they

are working with, as countless man-hours are of-

ten lost by other programmers who have to work

through and understand uncommented code

— especially if the original programmer is now

longer on the team. As well, an ironic situation

will usually come around from time to time when

the original programmer will have to revisit code

that he wrote months or ever years prior, and

Some simple rules to follow for efficient and

helpful code commenting include (but are

not limited to):

 • Label each and every data structure (classes,

structures, enumerations, etc.) with a simple one

line explanation of what they are for.

 • Label functions with not only a simple explana-

tion of what they are for, but also note what each

parameter represents as well as what the (pos-

sible) return value represents.

 • Label conditional statements and loops with a

simple explanation or overview of what they are

doing.

 • Label any line or block of code that is respon-

sible for creating new data (ie. mathematical equa-

tions, calling of another function which returns

data, etc.).

 • Label anything in your code that you had to think

about for more than 5 seconds before actually writ-

ing it.

CODING ETIQUETTE:
COMMENTING

TECH ELECTRONIC PLAYGROUND

DEV.MAG ISSUE 11

14

I
t was a typical February day in Vancouver

- that is to say it was about 10 degrees

Celsius, the sky was a single colour of gray

from horizon to horizon, rain was falling in a

persistently heavy mist, and the dampness ate

at the unprepared individual like a fat man at

a Las Vegas casino hotel buffet - when I got

a most unexpected email from Dan Wagner.

I had been keeping in contact with him from

time to time ever since our meeting the previ-

ous September. Since that time, he had moved

back to South Africa and had been spending his

time working on some personal projects while

trying to drum up interest for his I-Imagine proj-

ect. We had never really talked about anything

related to that during these past few months,

and while I knew that he was still quite hopeful

that he would be able to get it off of the ground,

I had pretty much resigned myself to the fact

that my future lay elsewhere. Which is why this

February morning email was so unexpected...

From what I remember of the email (seven-plus

years of on-again / off-again crunch modes in

a game development studio can cause pretty

bad memory loss...), it was pretty short and

to the point. Dan had some exciting news

that he wanted to talk to me about, and asked

when he could call. Needless to say, I was

very curious about this news so I responded

to the email with a time later that evening (a

ten hour time difference can play quite a bit

of havoc with one’s schedule), and tried to

go about my business for the rest of the day,

which was nerve-wracking to say the least!

Eventually, at around 11pm, the phone rang and

as expected, Dan was on the other end of the

line. The excitement in his voice was evident as

he proceeded to tell me that he had managed

to gather up a quite a few South African ven-

ture capitalists who were interested in invest-

ing in a game development studio. However,

before they would take discussions any further,

Dan said that I, along with some of the other

guys in the States that he had been talking to,

needed to fl y out to South Africa to meet with

them. The reasoning behind this was that while

they were sold on the concept of the company,

they fi rst wanted to meet the team that Dan was

putting together as they knew that at the end

of the day they would be investing in individu-

als and skills, not merely in an idea on paper.

I was quite shocked and excited at this turn

of developments, as it was the last thing that

I was expecting. Without a question in my mind

I knew that I had to go. However, I had to orga-

nise a week off of work in order to do so. There

THE HISTORY OF I-IMAGINE
Part 2: South ****ing Africa!

HISTORY WHERE IT ALL BEGAN

were ample excuses for me to use, but instead I

decided to go and talk to Meighan, the lady who

was head of operations of DigiPen and basically

ran the school. I told her everything, and she told

me that although she didn’t want me to go (as

she didn’t like the idea of me doing anything that

may cause me to leave their employ), she knew

that it was an opportunity that I couldn’t let pass

me by. With Meighan’s help, I concocted a fake

case of a death in my family (my grandmother

I believe...) with which to tell the other people

at work so they wouldn’t know where I was re-

ally going. I thanked her for her understanding

and left to go and organise the details of my trip.

A week or so later I was sitting quite uncom-

fortably in a South African Airways plane,

awaiting our descent into the airport formally

known as Johannesburg International. It was

the fi nal hour of my 28 hour odyssey from Van-

couver, and although I had no idea what to

expect once we had landed, I was quite look-

ing forward to having a shower. Those feel-

ings of longing for water streaming down upon

me increased exponentially when I stepped

out of the plane and could feel the intensity of

the South African heat in the air. I met up with

Dan after collecting my luggage and headed

off to the Don Suite Hotel in Sandton, which

would be my non-air conditioned residence for

DEV.MAG ISSUE 11

15

most of my time here. After having one of the

most satisfying showers in my life, I went out

to dinner with Dan as the other guys from the

States would only be arriving in the morning.

The next day, once Felix and Jim arrived and

had settled in, we all got together with Dan and

his friend Nir to discuss the current situation.

Felix, along with being an artist, was the former

owner of a studio called FlexTech (Felix’s nick-

name was “Flex”) where Dan went to work in Las

Vegas after graduating from DigiPen. He was

there not only representing himself, but also his

brother Kenny who was a designer. Jim was a

classmate of ours at DigiPen and was currently

working at Paradigm in Austin. He was also

representing another former classmate of ours,

David who was working with him at Paradigm.

After getting up to speed with where they were

with the venture capitalists along with what the

initial plans for the company were, we went off

to a meeting with a couple of the VC guys who

were the most interested in what Dan was trying

to do. After they finished quizzing us all, they

seemed quite happy and keen to get the other

VC guys on board. That next round of meet-

ings was to take place a a game farm called

Finfoot which was out towards to Sun City.

I would have to say that the most interesting

part of the trip to the game farm and back was

surviving the South African roads. The memo-

ries of driving there at around 200 km/h in a

Merc still make my palm sweat to this day. Not

to mention that the only animals that we saw

there were some tree spiders and a shongo-

lolo. Throughout all of this though I was hav-

ing the time of my life. Here I was, 21 years old

and more than halfway across the the world

from my home. It was steaming-hot summer

time and I had just come from a much cooler

and damper climate, so sitting around for a

week with Jim and Felix in the sun drinking

Amstel all day long while in complete disbelief

of where we actually were was quite a blast!

With regards to the real reason of our trip to the

HISTORY WHERE IT ALL BEGAN

game farm, it went off without a hitch. The rest

of the venture capitalists were impressed with

the guys that Dan had assembled to start up the

company, and Dan and Nir spent an entire night

getting the budget for the first 2 years in line with

what the investors wanted to spend. We left the

farm and (a few days later) the country with a

warm, fuzzy feeling caused by the knowledge

that even after all of the waiting and the doubt,

we would be starting up our very own game

development studio in the not so distant future.

COOLHAND

DEV.MAG ISSUE 11

16

Mobile Game Development in Java
Part 8: Wrapping up

F
or the fi nal tutorial in this series, we

will look at what probably seems to be

the part of a game that is least game-

like, it’s presentation as an application. Luck-

ily, we will also learn that NetBeans makes

this part of the process quick and painful by

giving us a visual application editor, so we can

focus as much as possible on the game itself.

To use the visual editor, we need to create a

new ‘Visual MIDlet’. Thankfully, we moved most

of the nuts and bolts of our game out of the

MIDlet already, so this won’t be too tough. To

do this, right click on your project and choose

New->Visual Midlet, accept the defaults in the

wizard that pops up and click Finish. The new

editor that appears in NetBeans is called the

Flow Designer, and to start with all it contains is

an image of a phone with start and exit connec-

tion points. Notice the palette to the side, this

is what we will use to add all our new screens.

We will be adding a splash screen, a list so

that the player can choose to play or exit, and

of course our game canvas. NetBeans does

not know that our canvas can be used in the

editor, so we will have to add it to the palette

fi rst. To do this, right click on the palette win-

dow and choose Palette Manager as illustrated

in Figure 1. In the manager, click Add From

Project, and in the wizard that pops up, choose

the Tutorial project, click Next and then make

sure TutorialCanvas is selected in the list and

MOBILE BEING PHONEY IS GOOD

click Finish. Finally, close the Palette Manager.

We can now add all of our elements. We do this

by dragging them from the palette onto the Flow

Designer. Drag one instance each of the Splash-

Screen, List (both under Screens) and Tutorial-

Canvas (under Custom Components) classes.

Now to keep things clear, rename the Tutorial-

Canvas you added from displayable1 to tutorial-

Displayable by right clicking on it and choosing

Rename. Figure 2 shows the fl ow designer with

all the screens added. Don’t worry that yours

DEV.MAG ISSUE 10

17

Figure 1: Importing a visual class to NetBeans’ visual
editor. Figure 2: The NeatBeans Mobility visual Flow Designer allows you to visually design program fl ow in a MIDlet.

does not look quite the same, it’s just miss-

ing the connections, which will be added next.

To make the splash screen run fi rst, click on the

Start Point next to the image of the mobile de-

vice, and drag a connection to splashScreen1.

Now click on Dismiss next to splashScreen1

and drag a connection to list1. We can’t just

connect the list to our canvas, because we

want multiple options, so double-click on list1

to open the ScreenDesigner. This works just

like the Flow Designer and is illustrated in Fig-

ure 3. We want to add two options, so from the

palette drag two List Elements onto the editing

area. Click on the fi rst element and change its

String property to “Play” in the property editor

pane below the palette. Click on the “...” but-

ton next to action to open a dialog that deter-

mines what choosing this option will do. Click

the “Switch to Screen” radio button, and choose

“tutorialDisplayable from the list. Close the

dialog and change the second list element’s

string to “Exit”, and change it’s action to “Exit

Application” in much the same way as above.

Click the “Flow Design” tab above the editor

to return to the fl ow designer. As you can see,

our screens are all connected and ready to go.

One thing is missing though — the list will set

our canvas as the main displayable when we

choose “Play”, but what about the game thread?

To fi x this, we will need to get into the code.

To do this, right click on the “Play” connection

on list1 and choose “Go to Source”. See how

most of the background to the code is blue?

This is code generated by the visual editor, and

we can’t change it. Thankfully we have been left

“hooks” where our code will be safe from the ed-

itor. We add our TutorialCanvas.gameThread.

run() code just after the list selection sets our

displayable as current, and set TutorialCanvas.

exit to true just before exitMIDlet gets called.

The fi nal result is displayed in Figure 4. Now

return to the fl ow designer by clicking the appro-

priate tab and we’ll apply the fi nishing touches.

There’s not much point in a blank splash

screen, so we will add an image to that. First

use your art application to create a new image

called “splash.png” that will be displayed when

the app starts and save it in your res folder

with the rest of your images. A 100x100 image

with the game’s name should be fi ne, to start

with-I called mine Happy Bounce. Back in Net-

Beans, double click on splashScreen1 to open

MOBILE BEING PHONEY IS GOOD

sources” called image1. Click on this item

and it’s properties will appear in the prop-

erty window as in Figure 5. Change the Re-

source Path property to “splash.png”, as soon

as you accept the change, you should see

your image appear in the screen designer.

Finally, compile and run your game. You’ll no-

tice you now have to choose between two MID-

lets when you start, since both are in the jar.

You can prevent this by deleting the old one

from the project if you like. Also, notice that

there is no way to get from the game back to

the menu? See if you can fi gure out a way to get

back when the game ends. Once you’ve done

that, your game really is done except for game-

play tweaks. You now have the basic tools to

create a great mobile game with a professional

interface. You could extend what you have

learned to adding high scores, or perhaps an

options screen, it really is up to you. Good luck!

FLINT

DEV.MAG ISSUE 10

18

Figure 3: The Screen Designer is a drag and drop
WYSIWYG screen layout tool. Figure 4: Boilerplate code (in blue) and the ‘hooks’ left for custom code where we have made our changes.

the screen designer. In a

similar way to adding list

elements, drag an Image

resource onto the splash

screen. In the Inspec-

tor window, you should

see that a new element

has appeared under “Re-
Figure 5: Changing the properties of a resource image.

1. Have a plan
When my partner and I first sat down to write

Prehysteria, we wrote out an action plan. Ba-

sically we covered high-concept topics like:

 • What should the game be like?

 • What are our goals and outcomes?

 • What challenges lie ahead and how can we

overcome them?

 • How do we plan on attracting players?

 • What is the central theme and how do we

reinforce this in the game?

 • How does the game run? Is it turn-based or

real time and how does this affect play?

It was a brainstorming session and our

thoughts, in bullet form, formed this document.

In the initial design sessions, we would actu-

ally bring this plan to the meetings and sit with

it in front of us. Each major decision would ei-

ther be required to fit into our plan or the plan

would have to accommodate the change in di-

rection. Nevertheless, having a written record

kept us firmly focused on our theme and goals.

2. Meet early and often
Meet at least once a week, at least until you’re

over the initial development hump. This is a non-

negotiable. The entire team must be there. Mo-

mentum is paramount in getting a game going,

and organising regular meetings makes it more

concrete and forces the involved parties to act.

Physically meeting is putting aside dedicated

time to analyse and explore the game concept.

It reinforces the evolution of the game, ideas

are generated, progress is monitored and per-

haps most importantly, firm decisions are made.

It’s easy to put down the phone after a tel-

ephonic meeting and continue playing your

Xbox 360. But when you have a physi-

cal meeting it’s a different story. Even if

only slightly, it can make all the difference.

3. Theme is everything
Your theme is essentially what makes your

game special. In a world of 1001 medieval,

space colonization and pirate clones, Pre-

hysteria was to be something out of the ordi-

nary. There was nothing similar to Prehys-

teria on the market. And playing prehistoric

dinosaurs with attitude is cool. Certainly there

were other browser-based games on the Inter-

net, but that is merely a technology platform.

The theme is what made Prehysteria unique.

My partner and I discussed our theme and how

to develop it. Thereafter, every decision had

to fit into theme. Fortunately Prehysteria is a

quirky game so we had loose boundaries. (I.e.

Who says dinosaurs can’t build walks and tree

houses?)

TAILPIECE WHAT HAS BEEN LEARNED

I cannot stress theme more. If you

break your theme and become some-

thing generic, then you’ve lost the magic.

4. You can’t please everyone
No matter what you do and no mat-

ter how hard you try, someone will al-

ways get upset with you for some reason.

Sometimes this is due to a misunder-

standing. To alleviate this we estab-

lished a forum, in addition to online help,

and Frequently Asked Questions (FAQ).

Involve your player base and local development

community in helping to build the game. These

people are gamers or game designers and are

a rich (and often educated) source of feedback.

Have an “open door” policy. Listen to feedback.

Reply promptly and patiently answer questions.

However, some people are just moaners and

there’s no pleasing them. For example, Pre-

hysteria offers the four basic races for free.

The four advanced races are on a par, but ad-

ditionally have a special ability. We took care

not to allow this special ability to give the ad-

vanced races an overwhelming advantage.

Despite this a player complained that $2 a

month was an unacceptable fee to play an ad-

10 THINGS LEARNT RUNNING PREHYSTERIA

DEV.MAG ISSUE 11

19

Dion Scher is one of the wizards behind

the design and running of Prehysteria

(http://www.prehysteria.org), the game

where you play dinosaurs fighting and try-

ing to out-evolve each other to be the top

of the bone pile.

A few issues ago, Dev.Mag featured Pre-

hysteria as an up-and-coming online game.

Now, after several “ages” of gameplay,

Prehysteria has grown considerably and

Dion shares with us what he found most

important to remember during the creation

and maintenance of such a project.

vanced race. I explained that there is no ma-

terial advantage and even pointed out that the

top ranked players were playing basic races.

This player was still not happy. Bottom line,

he wanted the game, the entire game, for free.

Which brings me to my next point...

5. It is not a popularity contest
You can’t please everyone all the time and you

will piss some people off. Running a game is

not a popularity contest. You will need to make

some difficult decisions. Make your decisions

based on the improvement of the game as

a whole. If you make your decisions to keep

a player happy, but the logic of your decision

is flawed, your game will be worse off for it.

Never forget, you are a wizard. And there-

fore you must act like one. Enforce where

necessary, like cracking down harshly on

cheating. At the end of the day be reason-

able. Players want to have fun and they will

as long as the rules are enforced equitably.

6. Marketing is a bitch
The Internet has opened up an incred-

ible channel to market your game, but there

is so much “interference” out there get-

ting knowledge of your game’s existence

to your target market is an art form in itself.

Take part in forums. Find game sites that

will publish your link. Advertise where you

can. If you have a marketing budget, use it

wisely. There are many shifty sites that of-

fer marketing services that mean squat.

Ultimately word of mouth is your best method of

advertising. This relies largely on the hype of your

game and the enthusiasm of your community.

7. Technology versus Story/Theme
What’s more important, technology or

story/theme? The short answer is “yes”.

Technology enables or imposes lim-

its on your game, but story/theme de-

fines it. Such is the nature of game design.

You can spend all your time perfecting the

technology. Creating a supersonic graphics en-

gine and a mind-blowing user interface, but at

the end of the day all you have is the “plumb-

ing” of the game. It’s the equivalent of install-

ing Windows XP on a computer but failing to

install any applications. It may look great and

have all the potential, but without any software

applications no work can ultimately get done.

Technology is vital for game design. It is your

foundation. It enables your game, controls the

mechanics and defines your limitations. How-

ever, that’s all it is. You still need to create the

actual game. A game engine is just that. You

still need to build the world, make it interesting

and give it flavour.

8. Innovate
Keep the game fresh and exciting. Listen to

player feedback as to whether you’re on track

or not. An enthusiastic player is your best ally.

In fact, some of our best ideas have come from

players. An enthusiastic player wants to see

your game succeed as much as you do.

That being said, examine all suggestions care-

fully. Weigh up the pros and cons, development

time and priorities. Not all advice is good ad-

vice.

For Prehysteria we had a Priorities Document.

Each meeting we’d take all the feedback we’d

received that week, make a decision if the sug-

gestion should live or die. And then prioritise.

9. You are your target market
Never forget this. You are your target market.

There is a reason you went into game design

- because you love games. Similarly there is a

reason you chose to design a particular genre

of game.

When it comes to decisions or new features, try

and put yourself in the shoes of a player. Imag-

ine what you would enjoy in a game like the one

you’re designing. What features would you re-

quire? What characteristics would enthuse you

and what would cause you to turn away?

TAILPIECE WHAT HAS BEEN LEARNED

Remember that you’re creating this game be-

cause this is the type of game you love. And if

a new idea inspires you, there’s a good chance

your players will get excited too.

10. Stop farting in the wind
You’ve got a game idea, so just do it (sorry

Nike). Too many game designers talk their

games into oblivion. Until you have a product

that people can play, you have squat. Nada.

Nothing. Okay, reckon I’ve made my point.

You can’t get everything right first time around.

There will be bug fixes. There will be tweaks.

There will be decisions made and routes taken

that you end up having to backtrack on. It’s all

a part of the process. You won’t get it all right

first time, but if your players are enthusiastic

and having fun, then you’ve achieved success.

After all, a game is made to be played.

Hope to see you all online... biting and nipping...

so come visit us at http://www.prehysteria.org!

Prehysteria - the coolest
game since the ice age

thawed.

DEV.MAG ISSUE 11

20

